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Abstract

Triple negative breast cancers (TNBC) are difficult to treat due to a lack of targets and heterogeneity. Inhibition of
angiogenesis is a promising therapeutic strategy, but has had limited effectiveness so far in breast cancer. To quantify
heterogeneity in angiogenesis-related gene expression in breast cancer, we focused on two families – VEGFs and
semaphorins – that compete for neuropilin co-receptors on endothelial cells. We compiled microarray data for over 2,600
patient tumor samples and analyzed the expression of VEGF- and semaphorin-related ligands and receptors. We used
principal component analysis to identify patterns of gene expression, and clustering to group samples according to these
patterns. We used available survival data to determine whether these clusters had prognostic as well as therapeutic
relevance. TNBC was highly associated with dysregulation of VEGF- and semaphorin-related genes; in particular, it appeared
that expression of both VEGF and semaphorin genes were altered in a pro-angiogenesis direction. A pattern of high VEGFA
expression with low expression of secreted semaphorins was associated with 60% of triple-negative breast tumors. While all
TNBC groups demonstrated poor prognosis, this signature also correlated with lower 5-year survival rates in non-TNBC
samples. A second TNBC pattern, including high VEGFC expression, was also identified. These pro-angiogenesis signatures
may identify cancers that are more susceptible to VEGF inhibition.
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Introduction

Angiogenesis is the formation of new blood vessels from existing

networks of capillaries. This blood vessel sprouting and remodel-

ing, which is a normal part of organ growth and of adult

physiology, can be co-opted to supply tumors by stimulating the

growth of new branches from the host organ vasculature.

The vascular endothelial growth factor (VEGF) family (Figure 1)

plays a large role in the regulation of angiogenesis. This family

comprises five ligands (VEGFA, VEGFB, VEGFC, VEGFD, and

PlGF) and three receptors (VEGFR1, VEGFR2, and VEGFR3).

There are also two neuropilin co-receptors (NRP1 and NRP2).

VEGFR2 signaling plays a prominent role in promoting angio-

genesis, while VEGFR3 signaling promotes lymphangiogenesis

[1,2,3].

Inhibition of angiogenesis, depriving tumors of nutrients by

preventing the formation of a surrounding vasculature, has shown

promise as a therapy for cancer. The VEGF-neutralizing antibody

bevacizumab is currently approved for treatment of colorectal,

lung, brain, and kidney cancers [4,5,6,7]. Tyrosine kinase

inhibitors such as sunitinib and sorafenib, which inhibit the kinase

activity of VEGF receptors, are approved for use in kidney,

pancreatic, stomach, and liver cancers [8,9,10,11]. Angiogenesis

inhibition has also been shown to have an effect on progression-

free survival in breast cancer, but a lack of effect on overall survival

has limited its use for this disease [12,13]. Accelerated approval for

bevacizumab in breast cancer was withdrawn in 2011 after 3

years. The limited effectiveness of these therapies – in particular

the variability in efficacy between cancer types and even between

individuals – necessitates a better understanding of the mecha-

nisms through which VEGF signaling inhibitors act, and the

environment in which they find themselves.

Varying responses to treatments among populations of breast

cancer patients reflects the fact that breast cancer is a heteroge-

neous disease. Breast cancers are commonly divided into

subgroups based on the expression of three cell surface receptors:

estrogen receptor (ER), progesterone receptor (PR), and HER2.

Tumors that are negative for all three of these receptors (‘‘triple-

negative’’) tend to have poorer prognoses due to a more invasive

phenotype and fewer treatment options [14]. A second, somewhat

orthogonal classification defines breast tumors as basal or luminal;

the major difference being which types of keratins are expressed,

as determined by immunohistochemistry. A third classification

uses gene expression signatures to group breast cancers into five

intrinsic subtypes based on a subset of 50 genes (‘‘PAM50’’): a

basal group and two luminal groups (luminal A and B), as well as

normal-like and HER2-enriched groups. Luminal groups tend to

be ER-positive while basal tends to be ER-negative [15].

Substantial overlap exists between triple negative breast cancers

(TNBCs) and basal tumors [16]: a large proportion of TNBCs are

basal, whereas a smaller proportion of non-TNBCs are basal [17].

TNBCs can be further subdivided into multiple different subtypes

[18]. Angiogenesis inhibition is of particular interest in TNBCs, as

the VEGF concentration and microvessel density are often higher

in these tumors than in non-TNBC tumors [19,20].
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The effectiveness of therapies that target VEGF signaling may

be modified by the presence of other ligands that can bind to the

VEGF co-receptors neuropilin-1 and neuropilin-2. One such

family of neuropilin-binding proteins are the class 3 semaphorins,

which have been shown to have inhibitory effects on tumor

progression and angiogenesis, possibly through competition with

VEGF for binding to neuropilins [21,22,23,24,25,26]. While class

3 semaphorins require neuropilins for binding and signaling

though plexin receptors, other semaphorins (classes 4, 5, 6, and 7)

bind to plexins directly [22]. Despite the lack of neuropilin binding

by these semaphorins, they have been shown to affect VEGF

signaling as well, either through direct interactions with VEGF

receptors [27] or through modulation of downstream signaling

pathways [28,29]. These indirect VEGF-semaphorin interactions

suggest that: (1) semaphorins may be novel anti-angiogenic

therapeutic targets; and (2) semaphorins should be considered

when determining patient subgroups that may be responsive to

anti-VEGF therapies. Figure 1 shows a schematic of known

VEGF-VEGFR-semaphorin-plexin interactions (the genes and

their associated microarray probes are listed in Tables S2 and S3

in File S1).

In this study, we explore how gene expression of VEGF and

semaphorin ligands and receptors is altered in a large number of

breast tumors from many previously published microarray studies,

totaling over 2,600 individuals. Our analysis identifies differences

in VEGF and semaphorin ligand and receptor expression between

triple negative tumors and other tumors, as well as differences

among the subtypes of triple negative breast cancer.

Results

Expression Patterns Differentiating Normal and Tumor
Tissue
The 2,656 tumor samples were compared to 42 normal

samples to identify differentially expressed genes. Overall, 20 out

of 29 of the ligand probe sets differed between tumor and normal

tissues at a significance level of 0.01 (Figure 2A). All of the

VEGF ligands were up-regulated in tumors except PlGF. PlGF

had two probe sets on the U133A platform: one was down-

regulated and the other did not differ significantly between

normal and tumor tissues. Semaphorin ligand expression

differences varied, with a mix of up- and down-regulation.

Ligands in Figure 2A were annotated on the left axis with a color

of red if they were known to have pro-angiogenic functions, blue

for anti-angiogenic functions, gray if they had been shown to

both promote and inhibit angiogenesis in different studies, or

white if no data were available. The studies supporting these

designations are listed in Table S2 in File S1

[3,23,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44]. In

general, class-3 semaphorins inhibit angiogenesis, while the other

four classes have varying effects.

Although 20 out of the 26 receptor probe sets differed from

normal expression at a significance level of 0.01 (Figure 2B), the

overall magnitude of the fold change between tumor and normal

tissue was less for receptors than for ligands: the mean absolute

difference was 0.58 for ligands (mean of all points in Figure 2A)

compared to 0.32 for receptors (mean of all points in Figure 2B).

Most receptors that were differentially expressed were up-

regulated, with the exception of FLT4 (VEGFR3) and PLXNA1.

We used principal component analysis (PCA) to determine

patterns of covariation in gene expression between tumor and

normal samples. Projection of the gene expression data onto the

plane defined by principal components 1 and 4 (PC1, PC4)

showed the best separation between tumor and normal samples

(Figure 2C). Normal samples showed moderate values of PC1 and

high values of PC4; tumor samples had a broader range of PC1

values and lower values of PC4. High PC1 scores were associated

with high expression of VEGFC, KDR, NRP1, and PLXNC1,

and low expression of SEMA3A, SEMA7A, FLT1, and FLT4.

Low PC1 scores were associated with the opposite expression

pattern. Low PC4 scores were associated with a pro-angiogenesis

signature, a combination of high expression of VEGFA,

SEMA4D, NRP2, and PLXNA1, and low expression of several

secreted semaphorins: SEMA3B, SEMA3C, SEMA3E, SEMA3F,

Figure 1. Ligand-Receptor interactions for the VEGF and Semaphorin families. VEGF ligands bind to and signal through three RTKs:
VEGFR1, VEGFR2, and VEGFR3 (blue). Neuropilins are in red, with numbers to distinguish between neuropilin-1 and neuropilin-2. Semaphorin ligands
bind to and signal through Plexins A-D (green). Many (but not all) members of the VEGF and Sema3 families use Neuropilin 1 or 2 as a co-receptor for
binding to the canonical signaling receptors. This competition for Neuropilin is thought to represent one mechanism by which VEGF and Semaphorin
ligands antagonize each other; in addition, the downstream signaling of VEGFRs and Plexins can have opposite function. Note that not all splice
isoforms of VEGF-A, VEGF-B, and PlGF can bind to the receptors indicated, and that kinetic rates of binding vary among isoforms.
doi:10.1371/journal.pone.0061788.g001
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and SEMA3G. The advantage of the PCA-based approach for

comparing tumor and normal samples over the differential

expression analysis used in Figures 2A and 2B was that patterns

of co-expression could be observed. For example, KDR expression

by itself was not significantly altered between tumor and normal

samples (Figure 2B), but co-expression of KDR with VEGFC,

NRP1, and PLXNC1 was associated with tumors (Figure 2D).

VEGF and Semaphorin Gene Expression are Differentially
Regulated in Triple Negative Breast Cancer
To determine patterns in VEGF and semaphorin expression

that may be important in distinguishing various breast cancer

subgroups, we performed PCA on the expression measurements

for the 31 VEGF- and semaphorin-related genes in the data set

consisting of 2,656 tumors. We compared the scores obtained from

PCA with commonly used clinical variables and found that the

principal components had the most significant associations with

triple negative status (Figure S1C in File S1), as indicated by the

large logistic regression coefficients. Some significant associations

were found between the principal components and lymph node

status (Figure S1D in File S1) and tumor grade (Figure S1E in File

S1), but the coefficients were much smaller than those for triple

negative status. Tumor stage was not associated with the

components at all (Figure S1F in File S1). Additionally, we noted

that applying PCA to the VEGF-related gene subset alone failed to

distinguish TNBC samples from receptor-positive samples as

Figure 2. Differences in expression patterns of VEGF- and semaphorin-related genes between normal breast tissue (n=42) and
breast tumors (n=2,656). A–B, Differences in mean expression with 99% confidence intervals as determined by the Wilcoxon rank sum test for (A)
ligands and (B) receptors at the probe level. Ligands are marked with the following colors to denote known effect on angiogenesis: red for pro-
angiogenic, blue for anti-angiogenic, gray for context-dependent (could be pro-or anti-angiogenic) and white for unknown. Genes for which
expression is significantly altered in tumors are denoted by * (p,0.001) and the direction noted by an arrow. C–D, Principal component analysis
shows separation of tumors from normal samples based on first and second principal component scores (C), with corresponding gene expression
patterns given by the loadings for these components (D). Gene labels are only shown for genes whose loading vectors onto PC1 and PC4 exceed a
magnitude of 0.23. Circles denote the loading of genes whose names do not appear.
doi:10.1371/journal.pone.0061788.g002
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effectively as the combined data set (Figure S1A in File S1).

Applying PCA to the semaphorin-related gene subset alone

resulted in some significant associations with triple-negative status

(Figure S1B in File S1). The NRP1 and NRP2 genes were

included in both subsets. Together, this suggests that the (indirect)

interactions between the VEGFs and the semaphorins lead to

different neuropilin-regulated signaling activities in TNBC tumors

compared to receptor-positive tumors.

When applying PCA to the combined VEGF and semaphorin

data set, the projection of the data onto the fourth principal

component (PC4a, ‘‘a’’ to denote the all-tumor data set) provided

the highest degree of separation between TNBC samples and the

rest of the tumors (Figure 3A), with low values of PC4a

corresponding to TNBC samples. A group of tumors also scored

highly on PC3a. A relatively large proportion of these were TNBC

samples that did not score low on PC4a. PC1a had a slight

association with TNBC status but only in samples that scored low

on PC4a, while PC2a did not appear to have any association with

TNBC status. PC4a also was significantly associated with the basal

subtype (as defined by the PAM50 gene signature classifier

described previously [45]) (Figure S2 in File S1), consistent with

the similarities between TNBCs and the basal subtype.

Low PC4a scores were associated with a pro-angiogenic

signature consisting of high expression of VEGFA, SEMA4D,

NRP2, and PLXNA1 and low expression of SEMA3B, SEMA3C,

SEMA3E, SEMA3F, and SEMA3G. High PC3a scores were

associated with high expression of VEGFC, SEMA3A, SEMA3G,

SEMA5A, KDR, and FLT4, and low expression of VEGFA

(Figure 3B). Clustering based on just the PC3a and PC4a scores

resulted in two groups of tumors with higher amounts of TNBCs

(clusters 1 and 3, respectively, in Figure S3 in File S1). In addition

to the established roles of VEGFA and VEGFC as promoters of

angiogenesis, published experimental data has shown that other

genes associated with low PC4a and high PC3a, SEMA4D and

SEMA5A, also have pro-angiogenic function [29,39,40] (Table S2

in File S1). Interestingly, three of the ligands with reduced

expression in high PC3a and low PC4a samples, SEMA3B,

SEMA3F, and SEMA3G, had both anti-angiogenic and tumor

suppressor functions [23,30,31,36,37,38] (Table S2). The role of

SEMA3C in angiogenesis has not been well-defined, but like other

class-3 semaphorins, it binds to neuropilin receptors. Thus, it may

impair signaling by members of the VEGF family by competing

for neuropilin.

Examining the correlations between PC4a scores and all genes

whose expression was measured on the U133A platform revealed

that the ESR1 gene, which encodes ER, had the second highest

correlation with PC4a of all genes (Table S7 in File S1). Other

transcription factors associated with ER, such as GATA3 and

FOXA1, had high correlations as well. This indicated that the

association between PC4a score and TN status may arise primarily

because of an association with ER, as opposed to PR or HER2.

ER, PR, and HER2 did not appear in the list of the most

correlated genes with PC3a scores (Table S6 in File S1).

The MSL Subtype Differs Significantly from Other TNBC
Subtypes
Next we examined VEGF and semaphorin expression in TNBC

samples assigned to the TNBC subtypes discovered in Lehmann

et al [18]. PCA of VEGF and semaphorin expression for only the

TNBC samples revealed that of all of the subtypes, the

mesenchymal stem-like (MSL) subtype was most distinguishable

from the others (Figure 3C). The MSL subtype projected to low

values of the second principal component (PC2t, ‘‘t’’ to denote the

TNBC-only data set). The gene expression pattern corresponding

to low PC2t included low expression of VEGFA and high

expression of VEGFC, SEMA5A, and SEMA3G (Figure 3D). This

was similar to the PC3a from the analysis of all tumors in the

previous section (Figure 3B), except that the signs were reversed

(Figure S4 in File S1, also see Table 1 for a comparison of

expression signatures across all principal component analyses in

this study). There was substantial overlap between the triple

negative tumors that had high PC3a scores in Figure 3A and the

tumors that had low PC2t scores in Figure 3C, indicating that the

MSL subtype could likely be distinguished even in the PCA of all

of the tumors.

The median expression of VEGFA, VEGFC, SEMA5A, and

SEMA3G in the MSL subtype was closer to the median of

receptor-positive tumors than to that of TNBC samples. In the

case of VEGFA, SEMA5A, and SEMA3G, the expression levels in

the MSL subtype were closer to those of normal tissues than the

tumor average. On the other hand, VEGFC was expressed at

higher levels on average than in any of the other groups (Figure S7

in File S1), indicating that this subgroup may be susceptible to

angiogenesis inhibitors that target VEGFC instead of VEGFA.

Consensus Clustering Defines VEGF- and Semaphorin-
based Tumor Subtypes
We used consensus K-means clustering to determine VEGF-

and semaphorin-related subtypes independent of any other

classifications. This differed from the PCA-based clusters in

Figure 3 in that all gene expression variation was analyzed here

to determine the natural clusters that arise in VEGF- and

semaphorin-related gene expression. Consensus clustering re-

vealed 7 clusters (labeled A–G) for ‘‘all tumors’’ data (Figure S8 in

File S1), and 5 clusters (labeled J–N) for ‘‘TNBC-only’’ data

(Figure S9 in File S1). The gene expression for the seven tumor

clusters is illustrated in the heatmap in Figure 4, with the clusters

arranged by the number of TNBCs present in decreasing order.

High VEGFA-expressing clusters. The first two clusters (A

and B) in Figure 4 possessed the pro-angiogenic PC4a gene

expression signature noted in Figure 3, namely high VEGFA

expression and low expression of SEMA3B/3C/3F. Cluster A is

distinguished from cluster B by higher expression of FLT1

(VEGFR1), FLT4 (VEGFR3), and several semaphorins (including

SEMA3A), and lower expression of VEGFC, KDR (VEGFR2),

and NRP1. Both clusters have high percentages of TNBCs (78%

and 66%, respectively). Using the intrinsic classifier (PAM50,

Figure 4), these two clusters were found to contain most of the

basal subtype tumors. As expected, most of the TN tumors were

basal as well (rows 3 and 4 of Figure 4 compare the overlap

between the TN and basal subtypes). Both of these clusters had

low expression of the genes encoding for ER and PR (ESR1 and

PGR) and of some of their associated transcription factors

(GATA3, FOXA1, MYB), and high expression of proliferation-

related genes (the basal/luminal panel in Figure 4), consistent with

the basal subtype.

High VEGFR1/VEGFR3-expressing cluster. Cluster C in

Figure 4 had high expression of FLT1 (VEGFR1), FLT4

(VEGFR3), SEMA3A, and some other semaphorins, with low

expression of VEGFA, VEGFC, KDR (VEGFR2), NRP1,

SEMA3C, PLXNA1, and PLXND1. This cluster also had a

relatively high percentage of TNBCs (43%), but with a lower

amount of basal subtype tumors than the high VEGFA-expressing

clusters. This indicated that although many TNBCs had the pro-

angiogenic PC4a signature, it was not strictly required for a tumor

to be triple-negative. This cluster had low expression of the claudin

genes CLDN3, CLDN4, and CLDN7, raising the possibility that

tumors in this cluster were members of the claudin-low subtype, a

VEGF and Sema Expression Define TNBC
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group of breast tumors known for their invasive, mesenchymal-like

behavior.

High VEGFC-expressing cluster. Cluster D in Figure 4 had

high expression of a group of genes including VEGFC, KDR

(VEGFR2), NRP1, and SEMA5A. This corresponded to the

alternative pro-angiogenic TNBC PC2t signature noted in

Figure 3. This cluster had some TNBCs (16%). Significant overlap

was noted between this cluster and the luminal A subtype of the

PAM50 intrinsic classifier; 67% of cluster D tumors were luminal

A, representing 30% of all luminal A tumors. Cluster D was

notable in that it had the highest expression of transcription factors

implicated in the epithelial-to-mesenchymal transition (EMT),

including SNAI2, TWIST1, ZEB1, and ZEB2 (the panel labeled

‘‘EMT’’ in Figure 4). This could indicate a role for VEGFC-

mediated signaling in tumors undergoing an EMT.

High SEMA3-expressing clusters. Clusters F and G in

Figure 4 had the anti-angiogenic high PC4a signature described

previously: high expression of the anti-angiogenic semaphorins

SEMA3B, SEMA3E, and SEMA3F, with low expression of

VEGFA. These clusters had the lowest number of TNBCs and

were mostly luminal A or B when classified into the PAM50

intrinsic subtypes. The pattern of expression of luminal markers

and proliferation-related genes was opposite to that noted for the

high VEGFA-expressing clusters: expression of ESR1, PGR, and

associated transcription factors was high while expression of

proliferation-related genes was low.

Consensus Clustering Defines VEGF- and Semaphorin-
based TNBC Subtypes
The 5 TNBC clusters, denoted J–N (Figure 5), were ordered as

closely as possible to the tumor clusters in Figure 4. Thus the

Figure 3. Triple negative breast cancers and the mesenchymal stem-like (MSL) subtype of triple negative breast cancers are
associated with increased pro-angiogenic gene expression and decreased anti-angiogenic gene expression. A–B, Principal
component analysis (PCA) scores (A) and loadings (B) for VEGF- and semaphorin-related genes in all tumors. Gene names are only shown for probes
whose loadings on the two principal components exceeded a radius of 0.2 from the origin. Circles denote genes whose names do not appear. Triple-
negative (TN) samples project to lower values of tumor PC4a, corresponding to high VEGFA and low SEMA3 expression. C–D, PCA scores (C) and
loadings (D) for VEGF- and semaphorin-related genes in only the TN samples. The MSL subtype projected to low values of TNBC PC2t, corresponding
to up-regulation of VEGFC, SEMA3G, and SEMA5A and down-regulation of VEGFA.
doi:10.1371/journal.pone.0061788.g003
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majority of samples in cluster A of Figure 4 fall into cluster J of

Figure 5, and so on. The relationship is not perfect; many samples

are differentially classified between the two cluster analyses.

The 5 TNBC clusters had similar expression patterns to the

clusters described above for all tumors. TNBC clusters J and K

had higher VEGFA expression on average, and as with clusters A

and B, were differentiated by the pattern of high FLT1, FLT4,

SEMA3A in cluster J and high KDR, NRP1 in cluster K. Clusters

L and M had lower VEGFA expression, with cluster L expressing

high levels of PGF, FLT1, FLT4, and SEMA3A, and cluster M

Figure 4. Heatmap of the 7 VEGF/Sema-based tumor clusters. Samples are ordered across the columns by cluster membership as determined
by consensus K-means clustering. The clusters are ordered by TN content, with cluster A on the left having the highest percentage of TNBCs. The
VEGF/Sema-based clusters are able to differentiate the basal intrinsic subtype from the other intrinsic (PAM50) subtypes. As previously noted, the
basal subtype is strongly associated with triple negative tumors (third and fourth bars: black for basal TNBCs and non-basal TNBCs, respectively).
Other breast cancer-related genes have expression patterns that align with the VEGF/Sema-based clusters.
doi:10.1371/journal.pone.0061788.g004
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expressing high levels of VEGFC, KDR, and NRP1. Cluster D

had low PC2t scores from Figure 3C/D. The fifth cluster was not

particularly distinguishable from the other TNBC clusters.

Notably, all the clusters except cluster M were heavily populated

by tumors of the basal PAM50 intrinsic subtype. This was seen for

clusters A and B in the all-tumor data set (Figure 4), but not for

clusters C and E. This is further evidence for the association

between the basal subtype and TNBC; basal tumors comprised a

small minority of clusters C and E in Figure 4, but this minority

became the majority in Figure 5 when only the TN tumors were

considered.

The TNBC subtypes found in Lehmann et al [18] had some

associations with the VEGF2/Sema-based clusters found here. Of

tumors in the MSL subtype, 81% were found in cluster M,

Figure 5. Heatmap of the 5 VEGF/Sema-based TNBC clusters. Consensus K-means clusters of only the TNBC data are arranged according to
the ordering from Figure 4, in that the TNBCs that appeared in tumor cluster A generally now appear in TNBC cluster J (although the correspondence
is not perfect) and so on for the other clusters. The VEGF/Sema-based clusters are able to differentiate the MSL subtype from Lehmann et al. (cluster
M) from the other TNBC subtypes. Claudin-low subtype-related patterns of gene expression in the panel labeled ‘‘EMT’’ were associated with cluster
M, the MSL-enriched cluster.
doi:10.1371/journal.pone.0061788.g005
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comprising 65% of the tumors in that cluster. This corresponds to

the PCA results that demonstrated a strong association of PC2t

with the MSL subtype. Most of the other subtypes were evenly

distributed across the clusters, with the exception of the basal-like 1

(BL1) subtype, which comprised 66% of cluster J.

Patterns of expression for other genes when sorted in the order

of the TNBC clusters were less apparent in Figure 5 than in

Figure 4, with cluster M showing the most significant regulation.

Growth-associated genes such as FOXM1, AURKB, and MKI67

were strongly down-regulated in this cluster while the EMT-

associated transcription factors SNAI2, TWIST1, ZEB1, and

ZEB2 were up-regulated. Notably, the claudin genes CLDN3,

CLDN4, and CLDN7 were down-regulated the most in this

cluster, consistent with the observation that the MSL subtype and

claudin-low subtype are closely related [19].

Validation Using TCGA Data
Using two TCGA data sets consisting of 537 tumors quantified

using a different microarray platform (Figures 6A and 6B) and 750

tumors quantified using an RNA-Seq platform (Figures 6C and

6D), we showed that the same patterns of gene expression that

distinguish TNBCs from other tumors could be found in other

patients using different technologies. PCA scores between the two

platforms used in the TCGA datasets had strong correlations

(Figure S5 in File S1). Patterns of gene expression associated with

the 2,656-tumor dataset were found in both TCGA datasets

(Figure S6 in File S1), including the low PC4a gene expression

signature of high VEGFA and low SEMA3B, SEMA3C,

SEMA3F, and PLXNB1. Some additional genes were altered

consistently in the two validation data sets as well: SEMA5B,

SEMA7A, and PLXNA1. All three of these had similar expression

patterns to that of VEGFA (Table 1 and Figure S10 in File S1).

Survival Analysis of Clusters
We performed Kaplan Meier survival analysis on the tumors to

determine the impact of the PCA-derived clusters on patient

prognosis. Triple negative status and increasing stage of the tumor

were both correlated with poorer prognoses as expected

(Figures 7A and 7B). Multivariate survival analysis using a Cox

proportional hazards model showed that tumor stage, lymph node

status, PC3a score, and PC4a score were all independent

prognostic factors (Table 2). Interestingly, triple negative status,

which was clearly correlated with poor survival, was not significant

in the multivariate model (p = 0.06). The likely reason for this is

that TN status is also highly correlated with PC4a scores. There

were more non-TNBC samples with low PC4a scores (n = 89) than

TNBC samples with high PC4a scores (n = 29), possibly resulting

in a stronger survival effect from PC4a score than from TN status

(Figure 7C). We also examined the interaction of ESR1 expression

with PC4a; both low ESR1 expression and low PC4a scores were

significantly associated with poor prognoses (Figure S12 in File

S1). Interestingly, PC4a score was significantly associated with

survival in a subgroup consisting of tumors with high ESR1

expression. Although ER+ tumors are already associated with

effective therapies, combination of existing therapies with angio-

genesis inhibition may provide additional benefits for these low

PC4a, ER+ tumors.

Survival analysis by cluster (Figure S11A in File S1) showed that

tumor clusters F and G had significantly better outcomes than the

rest of the clusters. These were the only clusters that had both low

PC3a scores and high PC4a scores (both anti-angiogenic

signatures), reinforcing the prognostic value of these two principal

components. The five TNBC clusters found here did not have

significantly different prognoses; instead the survival curves of the

clusters shared the same poor prognosis characteristic of TNBCs

(Figure S11B in File S1). Despite the lack of variability, the

differences in patterns of VEGF and semaphorin gene expression

may indicate different growth factor dependencies. For example,

VEGFC-targeting therapies may be more effective in cluster M,

while the rest may benefit more from VEGFA-targeting therapies.

Within each PAM50 subtype, ESR1 was not significant (Figure

S13 in File S1) while PC4a score was significantly associated with

survival only in the HER2-enriched subtype (Figure 7D). The lack

of association between survival and PC4a in the basal and luminal

PAM50 groups (Figure S13 in File S1) is not unexpected since

PC4a is somewhat consistent within these groups (low in basal,

high in luminal, as shown in the heatmap in Figure 4). The

prognostic effects of PC4a score in the HER2-enriched subtype

could indicate that a low-PC4a subgroup of patients treated with

HER2-targeting therapy may benefit from the addition of an anti-

angiogenic drug to their treatment. Overall the association of

survival and PC4a score in particular subtypes may aid in selecting

patients where anti-angiogenic therapy would provide the greatest

benefit.

Table 1. VEGF/Sema gene PCA loading patterns.

All Tumors (PC1a–4a) TNBC (PC1t–4t) TCGA-microarray (PC1m–4m) TCGA-RNA-Seq (PC1r–4r)

PC1 High VEGFC, KDR, NRP1 High FLT1, FLT4, SEMA3A, 6B, 7A High VEGFC, KDR, PGF, NRP1

Low FLT1, FLT4, SEMA3A, 7A Low KDR, NRP1 Low SEMA4F, 4G Low VEGFC, FLT1, KDR, FLT4, NRP1

PC2 High PLXNB1, PLXNB2 High VEGFA High VEGFA, PLXNA1 High SEMA3B, 3F, PLXNB1

Low SEMA4D Low VEGFC, KDR, NRP1,
SEMA3G, 5A

Low SEMA3B, 3C, 3F, PLXNB1

PC3 High VEGFC, KDR, FLT4,
SEMA3A, 5A

High PLXNB1, B2, B3 High VEGFA, PLXNA1, SEMA7A

Low SEMA4D, PLXNC1 Low PLXNA3, B3 Low SEMA3C

PC4 High SEMA3B, 3C, 3E, 3F High SEMA3F High SEMA5B, 6A, 6B High SEMA3A

Low VEGFA, SEMA4D, PLXNA1 Low VEGFB Low NRP2, PLXNC1, SEMA3A,
4D, 7A

Low VEGFA, PGF, FLT1, KDR, FLT4

The genes with the largest magnitude loadings are shown for each component across the 4 different principal component analyses performed in this study. All of the
expression patterns listed here correspond to samples with high scores for the particular component.
doi:10.1371/journal.pone.0061788.t001
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Discussion

Just as individuals have distinct genomic and gene expression

profiles, so too the tumors of each individual are distinct.

Understanding and quantifying this variability and individuality

is crucial for the development and targeting of therapeutics for

diseases as complex and heterogeneous as cancer. Triple negative

breast cancers (TNBCs), in particular, are a diverse and difficult-

to-treat set of tumors defined primarily by molecular targets for

treatment that they do not express, rather than targets that they do

express. Angiogenesis, a blood vessel morphogenesis process

underpinning the growth and metastasis of most tumors, is a

possible common target for TNBCs, and vascular endothelial

growth factor (VEGF) has been targeted in breast cancer as a key

regulator of angiogenesis. However, this has succeeded only for a

subset of breast cancer patients, and thus understanding which

subsets of patients may be responsive to this treatment is desirable.

This requires data from a large number of patients, and we used

one type of patient population data, gene expression microarrays,

to quantify changes in VEGF and semaphorin expression to define

relevant patient subgroups.

A high proportion of the genes considered here were

significantly different between normal breast tissue and breast

tumors (34/55 probe sets with p,0.001). This high rate of

significance may be an indicator that these genes are heavily

regulated by the genomic changes that occur in tumors.

Alternatively, the low number of normal samples (n = 42) relative

to tumor samples (n = 2,656) may result in an unrealistic estimate

for significance. It is important to note that the range/variability in

tumor expression is very high compared to the normal samples, as

indicated by the standard deviations of each group (Table S4 in

File S1). Although the mean values of expression for tumors and

normal tissues may differ, the range of tumor expression often

overlaps the range of normal expression. This makes individual

genes poor biomarkers; however, they can be combined to identify

tumor subgroups that correlate with differences in tumor

characteristics.

The overall expression changes were consistent with previously

reported breast cancer data of these genes at the mRNA and

protein level. The increased expression of VEGFA in TNBCs

compared to non-TNBCs was consistent with previous work that

found an approximately 3-fold increase of VEGF as measured by

ELISA of intra-tumoral samples from 679 patients [46]. VEGFR2

(KDR) was previously found to be significantly associated with

TNBC in a panel of tissue microarrays from 564 patients [46].

This is consistent with our results, which showed a relatively high

loading of KDR on the principal component associated with

VEGFC, NRP1, and PLXND1, which had the second highest

association with triple-negative (TN) status in the all-tumor data

set. The increased expression of VEGFC in TNBC samples found

here has also been demonstrated in IHC of breast cancer sections,

Figure 6. Validation of VEGF- and Semaphorin-related gene expression differences between triple negative and non-TN breast
cancers using TCGA data. A–B, Principal component analysis of TCGA microarray data set consisting of 537 breast tumors. C–D, Principal
component analysis of TCGA RNA-Seq data set consisting of 750 tumors. Both data sets were processed to gene-level measurements (rather than
probe-level) prior to downloading. Tumors were classified as triple negative based on gene expression data for the ESR1, PGR, and ERBB2 genes as
described in the Methods, all of which had clear bimodal distributions.
doi:10.1371/journal.pone.0061788.g006
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Figure 7. Angiogenesis gene expression subgroups correlate with survival. A–D, Survival curves for tumor samples that had available
survival data. A log-rank test was used to determine p-values. Triple negative (TN) status was associated with worse prognosis for 572 patients with
survival data (A). Higher tumor stage correlated with worse prognosis in 508 patients with available stage and survival data (B). Non-TNBC patients
with low PC4a scores had poor prognoses similar to the TNBC patients (C). Patients in the HER2-enriched PAM50 subtype had significantly poorer
prognoses if they also had low PC4a scores (D). E–F, Schematic of VEGF/semaphorin competition in the tumor microenvironment. The gene
expression patterns of the different subgroups of TNBC and other cancers suggest different regulation of pro- and anti-angiogenesis pathways. The
case with high expression of VEGFA and low SEMA3B, which corresponds to the high PC4a group, results in increased signaling through VEGF
receptors such as VEGFR2 (blue). Most TNBC fit this profile, although many non-TNBC did also and these showed decreased 5-year survival similar to
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where VEGFC stained positively in TNBCs significantly more

often than in non-TNBCs [47]. Studies examining the amount of

semaphorins and plexins expressed in breast cancer patients by

TNBC and non-TNBC subgroups are not available, but there are

some reports comparing their expression in normal breast and

tumor tissue. SEMA3A, SEMA3B, SEMA3F, PLXNA1, and

PLXNA3 were all shown by IHC to decrease as tumors

progressed, while NRP1 increased and NRP2 stayed the same

[48]. Another study showed the same pattern for PLXNA3

expression, while also showing that SEMA4F expression increased

as tumors progressed [49].

Using multiple clustering and analysis algorithms, we have

revealed patterns of gene expression associated with the triple-

negative subtype of breast cancer that may indicate a higher

collective pro-angiogenesis activity (Figure 4, tumor clusters A–C).

In addition to up-regulation of the well-known angiogenic growth

factor VEGFA in clusters A and B, several anti-angiogenic

semaphorins were down-regulated. SEMA3B and SEMA3F have

both anti-tumorigenic and anti-angiogenic properties

[23,30,31,36,37,50,51]. SEMA3C, whose role in angiogenesis is

less well-understood [32,33], was also consistently down-regulated

in tumors with high expression of VEGFA. Given that class-3

semaphorins compete with VEGF for binding to neuropilin co-

receptors, this overall pattern of gene expression may enhance

VEGF signaling in three ways: directly by increasing the amount

of VEGFA; indirectly by reducing the amount of competitive

inhibition for neuropilin; and decreasing anti-angiogenic Sema-

Plexin signaling. The survival analysis in Figure 7C demonstrates

the significance of this high-VEGF/low-Sema3 signature; patients

with this signature have similar poor prognoses regardless of their

triple negative status. The activity of angiogenesis in the TNBC-

enriched cluster C from Figure 4 is less clear: VEGFA is down-

regulated, while several semaphorins with both pro-angiogenic

(SEMA6B and SEMA7A) and anti-angiogenic (SEMA3A and

SEMA4A) effects are up-regulated.

What do these different gene-expression subgroups mean for

treatment? We would hypothesize that high-VEGFA-expressing

tumors would be more vulnerable to anti-VEGF treatment.

Clinical trial results for the anti-VEGF drug bevacizumab have

thus far not shown an increased efficacy in triple-negative subtypes

[12,52,53,54,55] (Table S5 in File S1); instead, similar improve-

ments have been seen in both triple negative and hormone

receptor positive cancers (all cases were HER2-negative). Howev-

er, we note that the high-VEGFA, low-Sema3 pattern (clusters A

and B in Figure 4) makes up only 69% of all TNBC samples, and

that 12% of non-TNBC samples can be classified as having a

similar gene expression profile, possibly confounding this analysis.

Other clusters found in the tumor data may be less susceptible

to inhibition of angiogenesis. The clusters with high expression of

class-3 semaphorins would likely not benefit from this type of

therapy because class-3 semaphorins function as endogenous

inhibitors of angiogenesis. These tumors would be expected to be

less aggressive; survival curves for patients with high class-3

semaphorin expression have the best prognoses (high PC4a in

Figure 7C). The gene expression pattern consisting of high

expression of VEGFC, PlGF, NRP1, and PLXND1 and low class-

3 semaphorin expression (PC3a in Figure 3A/B) is also likely to be

pro-angiogenic. However, it would not be expected to benefit from

an anti-VEGFA therapy; instead, a different target would be

needed to inhibit angiogenesis. This is supported by a report that

low IHC staining of VEGFC and NRP1 is associated with

improved progression-free survival in patients receiving bevacizu-

mab, while the level of VEGFA was not associated with changes in

progression-free survival [56].

The TNBC subtypes previously identified [18] demonstrated

similar expression of VEGF- and semaphorin-related genes with

the exception of the mesenchymal stem-like subtype. This subtype

was noted for its enrichment of genes involved with migration and

growth factor pathways, including KDR [18]. Here, we found a

cluster of angiogenesis-related genes with increased expression in

the MSL subtype, including VEGFC and KDR (TNBC cluster M

in Figure 5, corresponding to tumor cluster D in Figure 4).

Notably, however, VEGFA expression was decreased, indicating

that although angiogenesis may occur in tumors of this subtype,

VEGFA-targeted therapies are not likely to be successful

inhibitors. In the analysis of all tumors, this VEGFC-dominated

signature (tumor cluster D) was present in 18.5% of tumors. This

cluster had a low proportion of triple negative tumors, raising the

possibility that the MSL subtype may not just be a small subgroup

within TNBCs, but a therapeutically relevant subgroup of breast

cancers as a whole.

The concordance of the VEGF2/Sema-based clusters that we

found here with expression patterns of genes associated with the

basal/luminal distinction and EMT suggests that different breast

cancer subtypes utilize the VEGF and semaphorin signaling

pathways in consistently different ways. In particular, basal tumors

with high expression of growth-associated genes such as MKI67

and AURKB tend to have higher levels of VEGFA, presumably to

provide the rapidly proliferating cells with sufficient vasculature.

On the other hand, tumors with low expression of growth-

associated genes but high expression of EMT-associated tran-

scription factors such as SNAI2 and TWIST1 have low VEGFA

TNBC (C). Lower expression of VEGFA with high SEMA3B, corresponding to the low PC4a group, results in reduced signaling through VEGF receptors
and more signaling through semaphorin receptors such as PLXNA1 (green). Note that these schematics only consider receptor expression on
endothelial cells; signaling by plexins or VEGFRs on tumor cells may also play a significant role.
doi:10.1371/journal.pone.0061788.g007

Table 2. Survival analysis.

Univariate Multivariate

Parameter HR p-value HR p-value

TN 2.83 4.9*1027 1.72 0.06

Grade 3 vs. 1 or 2 1.57 0.03 0.87 0.55

Stage III vs. IIA or IIB 2.42 1.5*1025 1.58 0.05

Age .50 1.03 0.89 1.02 0.91

Lymph node positive
vs. negative

3.16 4.2*1025 2.17 0.02

PC1a.median PC1a 0.86 0.69 0.87 0.73

PC2a.median PC2a 0.69 0.08 0.91 0.66

PC3a.median PC3a 1.81 0.003 1.75 0.01

PC4a.median PC4a 0.364 7.3*1026 0.52 0.02

PC5a.median PC5a 1.22 0.33 1.21 0.36

PC6a.median PC6a 1.61 0.02 1.30 0.21

A Cox proportional hazard model demonstrated that the third and fourth
principal components had significant effects on survival of patients, even when
accounting for clinical variables.
doi:10.1371/journal.pone.0061788.t002
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expression and high VEGFC expression. The lymphangiogenic

VEGFC may facilitate invasion by allowing tumor cells to travel

through the lymphatics, a commonly used route of metastasis in

breast cancer [47]. This highlights the usefulness of this study not

just in targeting anti-angiogenic therapies, but in understanding

tumor biology as well.

One limitation of using gene expression microarrays on tumor

samples taken from biopsies or surgeries is that the samples are

heterogeneous. Along with the tumor cells they also contain

stromal cells, including endothelial cells, fibroblasts, and immune

cells. The expression of most of the ligands considered here can be

assumed to be predominantly attributable to expression in the

tumor cells, but for receptor expression the analysis is less

straightforward. This is particularly true for receptors whose

primary function of interest is on a cell type making up a small

percentage of the total, e.g. endothelial cells. Their expression may

be up-regulated in those cells but down-regulated in the more

numerous cell type, resulting in detection of no or opposite change

in expression in the microarray measurement of the heterogeneous

sample. Immunohistochemistry can address this issue by measur-

ing the cell-type-specific protein expression. For example, studies

in a wide range of breast tumors have shown that NRP1 and

NRP2 are both expressed on almost all endothelial cells, but very

rarely on breast tumor cells [57,58]. Conversely, PLXNB1 has

been shown to be expressed on the surface of tumor cells, but less

so on neighboring endothelial cells [59]. Thus, differences in

expression of NRP1 and NRP2 measured by microarray can be

assumed to be primarily due to endothelial cells, and differences in

PLXNB1 due to tumor cells. Laser capture microdissection or

other sorting methods could also resolve cell type differences by

isolating specific cell types prior to analyzing gene expression.

Methods such as these will be particularly useful in determining

the relative amount of VEGF signaling taking place in tumor and

endothelial cells.

We have yet to determine whether the VEGF- and Sema-

phorin-based clusters found here are recapitulated in gene

expression data for breast cancer cell lines. Extensive work has

been done to characterize the subtypes found in these cell lines and

the differential susceptibility of the cell lines to various therapeutics

[60,61]. Many aspects of VEGF and semaphorin signaling depend

on other cells in the tumor microenvironment, in particular

endothelial cells and tumor stromal cells, and an analysis of cell

lines could aid in determining which differentially expressed

ligands in the present study arise due to tumor cells and which are

due to stromal cells; as well as insight into whether observed

receptor expression variation is due to tumor cells or tumor-

associated endothelial cells.

We analyzed survival data in part to assess whether the VEGF-

and Semaphorin-based clusters were associated with prognosis of

breast cancer patients. The high correlation of VEGF- and

Semaphorin-related gene expression with existing prognostic

indicators such as TN status confounds the analysis and makes it

impossible to determine from this data why some patients have

poorer prognoses. However, we used a multivariate Cox

proportional hazards model and Kaplan-Meier plots to demon-

strate that a subgroup of ER+ tumors with the pro-angiogenic

PC4a signature had poorer prognosis. Thus, the pro-angiogenic

PC4a signature may have a role in severity of the disease,

independent of ER or TN status. To determine the actual

significance of the VEGF- and Semaphorin-based groups found

here, experimental models of breast tumors are needed. Tumor

xenografts in immunocompromised mice could be used to

measure the growth and invasion of tumors of the various

subtypes. This type of experimental model provides the advantage

of allowing for other processes that contribute to cancer

progression other than tumor cell growth, including angiogenesis.

Targeted VEGF inhibitors and inhibitors of VEGF-pathway

receptors could be administered to show whether the VEGF2/

Semaphorin-based signature found here is truly relevant in

tumorigenesis.

Computational models of VEGF and Semaphorin ligand-

receptor interactions will be useful in unraveling the effects of

the expression changes found here. The large number of proteins

involved, combined with the complexity of their interactions, will

make it necessary to use models to understand the overall effect of

the expression patterns on signaling through VEGF receptors.

Models of VEGF signaling [62,63,64] can be extended to include

the Semaphorins found to be relevant in the current study. These

models will enable prediction of patients expected to respond to

existing therapies and can suggest effective therapeutic targets.

Methods

Data Sets
Published human breast cancer gene expression data sets were

collated based on the following criteria: the tumors had to be

untreated, primary tumors, and the gene expression had to be

analyzed using the Affymetrix GeneChipH Human Genome

U133A platform. Of the 98 data sets returned by searching for

human breast tumors on the U133A platform in the GEO

database, 22 met the criteria of being untreated and primary as

of April 13, 2012. If available, the following data were also

collected: ER, PR, and HER2 immunohistochemistry (IHC),

lymph node status, age at diagnosis, tumor stage, and tumor

grade. The breast cancer data sets

[53,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83]

(Table S1 in File S1) were compiled into one expression data set

and normalized using the justRMA function in the affy Bioconductor

package of the R statistical software environment. Some samples

were removed prior to normalization: 30 samples in GSE20194

were replicates, 47 samples in GSE5847 were stromal cells

isolated by laser capture microdissection, and 20 samples in

GSE5847 had received neoadjuvant chemotherapy prior to

surgery when the sample was taken. Many of the samples in

different data sets were found to be from the same patients;

samples were removed so that each patient was represented in

the final data set only once. After removal of samples, the data

set consisted of 2,656 individual tumor samples and 42 normal

samples. When multiple probe sets corresponded to a single

gene, only the probe set with the highest variance across all

samples was used to represent expression of the gene.

The two TCGA data sets used for validation were current as of

April 25, 2012. One data set consisted of 537 tumor samples

analyzed on the Agilent G4502A microarray platform, while the

other was an RNA-Seq data set consisting of 750 tumor samples

analyzed on the Illumina HiSeq 2000 system. There were 481

patients overlapping between these two TCGA data sets. This

replication was allowed in order to show similar results using

different gene expression measurement technologies. Positive and

negative status for the receptors was assigned based on IHC if

available, otherwise based on the gene expression measurements

for the ESR1, PGR, and ERBB2 genes.

Assignment of TN Status and TN Subtypes
The assignment of triple negative status and subtype was made

based on the gene expression levels of ESR1, PGR, and ERBB2

when IHC data were not available, as previously described by

others [18]. A Gaussian distribution was fit based on expression of
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the three receptors for IHC TN samples, and another distribution

was fit for IHC receptor-positive samples. Samples with no IHC

data were classified by computing the probability of being TN

based on the two density functions derived from samples with IHC

data. Comparison of IHC data to expression-based assignments

has demonstrated that misclassification of samples is rare (,3.6%)

[18].

Subtypes of the triple negative classification were assigned by

calculating subtype centroids based on the classification used

previously by others [15]: expression of ,2000 genes was used to

compute centroids of each of the six subtypes based on 193 tumor

samples. The classifier derived from this was tested using leave-

one-out cross validation and classified 171 of the 193 samples

correctly, for an accuracy of 88.6%. Testing the classifier trained

with all 193 samples resulted in correct classification of 187

samples, for an accuracy of 96.9%. This classifier was used to

determine the subtypes of the remaining 582 triple negative

samples.

PAM50 Intrinsic Subtypes
A previously used classifier for breast cancer involves the use of

50 genes to place tumors into one of five categories: basal, luminal

A, luminal B, HER2-like, and normal-like. The method for

classifying a new sample is to take the Spearman correlation

coefficient of the expression of the 50 genes in the sample with

each of the five class centroids. The class whose correlation

coefficient is the highest is the class to which the sample belongs,

unless all correlation coefficients are less than 0.1, in which case

the sample is unclassified [84]. It should be noted that no genes in

the PAM50 classifier overlap with the VEGF- and semaphorin-

related genes that we consider here; thus when we compare

VEGF- and semaphorin-based clusters, we are considering two

completely independent methods of classification.

Differential Expression
Genes for VEGF and semaphorin ligands and receptors that

were significantly different between two groups (e.g. tumor vs.

normal, receptor-positive vs. triple negative, etc.) were determined

by the Wilcoxon rank sum test. This was carried out using the

wilcox.test function in R.

Principal Component Analysis
Principal component analysis (PCA) was used to reduce the

dimensionality of the data sets from the 31 VEGF- and

semaphorin-related genes under consideration to a smaller

number of components that can reproduce most of the variability

in the data. The components are linear combinations of the

expression of the genes, and capture patterns of co-expression.

The prcomp function in R was used to perform PCA. The columns

of the x matrix returned by this function corresponded to the

scores, while the columns of the rotation matrix corresponded to the

gene loadings. For 2-D score plots where colors were used to show

different groups of samples, the statistical significance of differ-

ences in PCA scores between the groups was determined using

multivariate analysis of variance. The p-values were determined by

comparing the Wilk’s lambda statistic to a chi-squared distribu-

tion.

Logistic Rregression
For triple-negative status, lymph node status, tumor stage,

tumor grade, age at diagnosis, and tumor size, logistic regression

models were fit based on the scores of the first eight principal

components using the R function glm.

Survival Analysis
The R package survival was used to perform survival analysis on

tumor samples for which survival and clinical variables were

available. A log-rank test was used to assess univariate significance

of factors. A Cox proportional hazards model was used for

multivariate analysis of all factors.

Cluster Analysis
K-means clustering was performed on the 2656-sample data set

consisting of all of the breast tumors, as well as the 775-sample

data set consisting of all triple negative tumors. The R function

kmeans was used for clustering. To ensure that the algorithm

converged to the global minimum instead of a local minimum,

clustering was performed 50 times and the solution with the lowest

within-class sum of squares was used to determine the cluster

membership of each sample.

Consensus K-means clustering was used to assess the stability of

the clusters. This consisted of performing the clustering algorithm

100 times on different subsets of the data set, and then computing

the fraction of iterations in which any pair of samples were found

in the same cluster. At each iteration, the sample subsets were

determined by taking a random sample without replacement

whose size was 80% of the data set. The consensus matrix is a

visual representation of the fraction of iterations in which any pair

of samples co-clustered. The cumulative distribution of the

consensus matrix across all possible sample pairs was used to

determine the number of clusters. The appropriate number of

clusters was the cluster number at which no further increases in the

area under the cumulative distribution curve occurred. Typically,

the relative change in area is close to zero above a certain value of

K. For example, in the all-tumor data set and the TNBC-only data

set, values of K greater than and equal to 5 resulted in low relative

area changes (Figures S6B and S7B in File S1). To select the

appropriate number of clusters from these cases, the consensus

matrices were investigated to determine which cluster number

resulted in the most off-diagonal white space (Figures S6C-F and

S7C-F in File S1) [84].

Visualization of Data
Gene expression differences between tumor and normal samples

were plotted in Figure 2A and B as the log of the ratio of the two

means. Error bars corresponded to the 99% confidence interval of

the log ratio derived from the Wilcoxon rank sum test. The range

of gene expression across groups was shown in boxplots with the

extreme ends of the boxes corresponding to the 25th and 75th

percentile of the data and the line inside the box corresponding to

median. The whiskers extended to the furthest point outside of the

boxes that still fell within 1.5 times the interquartile range from the

nearest end of the box, where the interquartile range was the

difference between the 75th and 25th percentiles.

Heatmaps of gene expression data were generated in R using

the image function. Data were scaled (zero-mean, unit-variance)

and assigned colors, with red corresponding to high expression

and green corresponding to low expression. Ordering of genes in

the heatmaps was performed using the hclust function in R with the

complete-linkage agglomeration method. When dendrograms

were used, they were generated using the plot.dendrogram function

in R.

Supporting Information

File S1 Supporting information for this study. This file contains

Tables S1–S7, which list the datasets and genes analyzed in this

study, basic statistics on the gene expression measurements,
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clinical trial results with anti-angiogenic agents, and genes

correlated with PC3a and PC4a. It also contains Figures S1–

S13, which contain information on the relationship of principal

components to breast cancer subgroups, relationships between the

different principal component analyses performed on various

datasets, and additional details on K-means clustering; plus

heatmaps of the TCGA datasets and survival analyses of several

of the breast cancer subgroups considered in this study.

(PDF)

Author Contributions

Conceived and designed the experiments: RJB FMG. Performed the

experiments: RJB. Analyzed the data: RJB FMG. Wrote the paper: RJB

FMG.

References

1. Shibuya M, Claesson-Welsh L (2006) Signal transduction by VEGF receptors in

regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312: 549–560.

2. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor

signalling - in control of vascular function. Nat Rev Mol Cell Biol 7: 359–371.

3. Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal

transduction by vascular endothelial growth factor receptors. Biochem J 437:

169–183.

4. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, et al.

(2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic

colorectal cancer. N Engl J Med 350: 2335–2342.

5. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, et al. (2006) Paclitaxel-

carboplatin alone or with bevacizumab for non-small-cell lung cancer.

N Engl J Med 355: 2542–2550.

6. Vredenburgh JJ, Desjardins A, Reardon DA, Peters KB, Herndon JE 2nd, et al.

(2011) The addition of bevacizumab to standard radiation therapy and

temozolomide followed by bevacizumab, temozolomide, and irinotecan for

newly diagnosed glioblastoma. Clin Cancer Res 17: 4119–4124.

7. Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, et al. (2007)

Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell

carcinoma: a randomised, double-blind phase III trial. Lancet 370: 2103–2111.

8. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, et al.

(2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma.

N Engl J Med 356: 115–124.

9. Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, et al. (2011) Sunitinib

malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med

364: 501–513.

10. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, et al.

(2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal

stromal tumour after failure of imatinib: a randomised controlled trial. Lancet

368: 1329–1338.

11. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, et al. (2008) Sorafenib in

advanced hepatocellular carcinoma. N Engl J Med 359: 378–390.

12. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, et al. (2007) Paclitaxel

plus bevacizumab versus paclitaxel alone for metastatic breast cancer.

N Engl J Med 357: 2666–2676.

13. Miller KD, Chap LI, Holmes FA, Cobleigh MA, Marcom PK, et al. (2005)

Randomized phase III trial of capecitabine compared with bevacizumab plus

capecitabine in patients with previously treated metastatic breast cancer. J Clin

Oncol 23: 792–799.

14. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer.

N Engl J Med 363: 1938–1948.

15. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, et al. (2009) Supervised

risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:

1160–1167.

16. Bertucci F, Finetti P, Birnbaum D (2012) Basal breast cancer: a complex and

deadly molecular subtype. Curr Mol Med 12: 96–110.

17. Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, et al. (2007)

Prognostic markers in triple-negative breast cancer. Cancer 109: 25–32.

18. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, et al. (2011)

Identification of human triple-negative breast cancer subtypes and preclinical

models for selection of targeted therapies. Journal of Clinical Investigation 121:

2750–2767.

19. Linderholm BK, Hellborg H, Johansson U, Elmberger G, Skoog L, et al. (2009)

Significantly higher levels of vascular endothelial growth factor (VEGF) and

shorter survival times for patients with primary operable triple-negative breast

cancer. Ann Oncol 20: 1639–1646.

20. Mohammed RA, Ellis IO, Mahmmod AM, Hawkes EC, Green AR, et al. (2011)

Lymphatic and blood vessels in basal and triple-negative breast cancers:

characteristics and prognostic significance. Mod Pathol 24: 774–785.

21. Casazza A, Fu X, Johansson I, Capparuccia L, Andersson F, et al. (2011)

Systemic and targeted delivery of semaphorin 3A inhibits tumor angiogenesis

and progression in mouse tumor models. Arterioscler Thromb Vasc Biol 31:

741–749.

22. Neufeld G, Sabag AD, Rabinovicz N, Kessler O (2011) Semaphorins in

Angiogenesis and Tumor Progression. Cold Spring Harb Perspect Med.

23. Guttmann-Raviv N, Shraga-Heled N, Varshavsky A, Guimaraes-Sternberg C,

Kessler O, et al. (2007) Semaphorin-3A and Semaphorin-3F Work Together to

Repel Endothelial Cells and to Inhibit Their Survival by Induction of Apoptosis.

Journal of Biological Chemistry 282: 26294–26305.

24. Bielenberg DR, Pettaway CA, Takashima S, Klagsbrun M (2006) Neuropilins in

neoplasms: expression, regulation, and function. Exp Cell Res 312: 584–593.

25. Bielenberg DR, Klagsbrun M (2007) Targeting endothelial and tumor cells with

semaphorins. Cancer Metastasis Rev 26: 421–431.

26. Gaur P, Bielenberg DR, Samuel S, Bose D, Zhou Y, et al. (2009) Role of class 3

semaphorins and their receptors in tumor growth and angiogenesis. Clin Cancer

Res 15: 6763–6770.

27. Kigel B, Rabinowicz N, Varshavsky A, Kessler O, Neufeld G (2011) Plexin-A4

promotes tumor progression and tumor angiogenesis by enhancement of VEGF

and bFGF signaling. Blood 118: 4285–4296.

28. Toyofuku T, Yabuki M, Kamei J, Kamei M, Makino N, et al. (2007)

Semaphorin-4A, an activator for T-cell-mediated immunity, suppresses

angiogenesis via Plexin-D1. EMBO J 26: 1373–1384.

29. Basile JR, Afkhami T, Gutkind JS (2005) Semaphorin 4D/plexin-B1 induces

endothelial cell migration through the activation of PYK2, Src, and the

phosphatidylinositol 3-kinase-Akt pathway. Mol Cell Biol 25: 6889–6898.

30. Kigel B, Varshavsky A, Kessler O, Neufeld G (2008) Successful inhibition of

tumor development by specific class-3 semaphorins is associated with expression

of appropriate semaphorin receptors by tumor cells. PLoS One 3: e3287.

31. Varshavsky A, Kessler O, Abramovitch S, Kigel B, Zaffryar S, et al. (2008)

Semaphorin-3B is an angiogenesis inhibitor that is inactivated by furin-like pro-

protein convertases. Cancer Res 68: 6922–6931.

32. Esselens C, Malapeira J, Colome N, Casal C, Rodriguez-Manzaneque JC, et al.

(2010) The cleavage of semaphorin 3C induced by ADAMTS1 promotes cell

migration. J Biol Chem 285: 2463–2473.

33. Banu N, Teichman J, Dunlap-Brown M, Villegas G, Tufro A (2006)

Semaphorin 3C regulates endothelial cell function by increasing integrin

activity. FASEB J 20: 2150–2152.

34. Gu C, Yoshida Y, Livet J, Reimert DV, Mann F, et al. (2005) Semaphorin 3E

and plexin-D1 control vascular pattern independently of neuropilins. Science

307: 265–268.

35. Sakurai A, Gavard J, Annas-Linhares Y, Basile JR, Amornphimoltham P, et al.

(2010) Semaphorin 3E initiates antiangiogenic signaling through plexin D1 by

regulating Arf6 and R-Ras. Mol Cell Biol 30: 3086–3098.

36. Kessler O, Shraga-Heled N, Lange T, Gutmann-Raviv N, Sabo E, et al. (2004)

Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Res 64: 1008–

1015.

37. Parker MW, Hellman LM, Xu P, Fried MG, Vander Kooi CW (2010) Furin

processing of semaphorin 3F determines its anti-angiogenic activity by regulating

direct binding and competition for neuropilin. Biochemistry 49: 4068–4075.

38. Kutschera S, Weber H, Weick A, De Smet F, Genove G, et al. (2011)

Differential endothelial transcriptomics identifies semaphorin 3G as a vascular

class 3 semaphorin. Arterioscler Thromb Vasc Biol 31: 151–159.

39. Basile JR (2006) Semaphorin 4D provides a link between axon guidance

processes and tumor-induced angiogenesis. Proceedings of the National

Academy of Sciences 103: 9017–9022.

40. Sadanandam A, Rosenbaugh EG, Singh S, Varney M, Singh RK (2010)

Semaphorin 5A promotes angiogenesis by increasing endothelial cell prolifer-

ation, migration, and decreasing apoptosis. Microvasc Res 79: 1–9.

41. Dhanabal M, Wu F, Alvarez E, McQueeney KD, Jeffers M, et al. (2005)

Recombinant semaphorin 6A-1 ectodomain inhibits in vivo growth factor and

tumor cell line-induced angiogenesis. Cancer Biol Ther 4: 659–668.

42. Urbich C, Kaluza D, Fromel T, Knau A, Bennewitz K, et al. (2012) MicroRNA-

27a/b controls endothelial cell repulsion and angiogenesis by targeting

semaphorin 6A. Blood 119: 1607–1616.

43. Catalano A, Lazzarini R, Di Nuzzo S, Orciari S, Procopio A (2009) The plexin-

A1 receptor activates vascular endothelial growth factor-receptor 2 and nuclear

factor-kappaB to mediate survival and anchorage-independent growth of

malignant mesothelioma cells. Cancer Res 69: 1485–1493.

44. Ghanem RC, Han KY, Rojas J, Ozturk O, Kim DJ, et al. (2011) Semaphorin

7A promotes angiogenesis in an experimental corneal neovascularization model.

Curr Eye Res 36: 989–996.

45. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, et al. (2000)

Molecular portraits of human breast tumours. Nature 406: 747–752.

46. Ryden L, Jirstrom K, Haglund M, Stal O, Ferno M (2010) Epidermal growth

factor receptor and vascular endothelial growth factor receptor 2 are specific

biomarkers in triple-negative breast cancer. Results from a controlled

randomized trial with long-term follow-up. Breast Cancer Res Treat 120:

491–498.

VEGF and Sema Expression Define TNBC

PLOS ONE | www.plosone.org 14 May 2013 | Volume 8 | Issue 5 | e61788



47. Liu HT, Ma R, Yang QF, Du G, Zhang CJ (2009) Lymphangiogenic

characteristics of triple negativity in node-negative breast cancer. Int J Surg
Pathol 17: 426–431.

48. Staton CA, Shaw LA, Valluru M, Hoh L, Koay I, et al. (2011) Expression of

class 3 semaphorins and their receptors in human breast neoplasia.
Histopathology 59: 274–282.

49. Gabrovska PN, Smith RA, Tiang T, Weinstein SR, Haupt LM, et al. (2011)
Semaphorin-plexin signalling genes associated with human breast tumourigen-

esis. Gene 489: 63–69.

50. Castro-Rivera E, Ran S, Thorpe P, Minna JD (2004) Semaphorin 3B (SEMA3B)
induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this

effect. Proc Natl Acad Sci U S A 101: 11432–11437.
51. Castro-Rivera E, Ran S, Brekken RA, Minna JD (2008) Semaphorin 3B inhibits

the phosphatidylinositol 3-kinase/Akt pathway through neuropilin-1 in lung and
breast cancer cells. Cancer Res 68: 8295–8303.

52. Miles DW, Chan A, Dirix LY, Cortes J, Pivot X, et al. (2010) Phase III study of

bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-
line treatment of human epidermal growth factor receptor 2-negative metastatic

breast cancer. J Clin Oncol 28: 3239–3247.
53. Iwamoto T, Bianchini G, Qi Y, Cristofanilli M, Lucci A, et al. (2011) Different

gene expressions are associated with the different molecular subtypes of

inflammatory breast cancer. Breast Cancer Res Treat 125: 785–795.
54. Bear HD, Tang G, Rastogi P, Geyer CE Jr, Robidoux A, et al. (2012)

Bevacizumab added to neoadjuvant chemotherapy for breast cancer.
N Engl J Med 366: 310–320.

55. von Minckwitz G, Eidtmann H, Rezai M, Fasching PA, Tesch H, et al. (2012)
Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer.

N Engl J Med 366: 299–309.

56. Jubb AM, Miller KD, Rugo HS, Harris AL, Chen D, et al. (2011) Impact of
exploratory biomarkers on the treatment effect of bevacizumab in metastatic

breast cancer. Clin Cancer Res 17: 372–381.
57. Jubb AM, Strickland LA, Liu SD, Mak J, Schmidt M, et al. (2012) Neuropilin-1

expression in cancer and development. J Pathol 226: 50–60.

58. Jubb AM, Sa SM, Ratti N, Strickland LA, Schmidt M, et al. (2012) Neuropilin-2
expression in cancer. Histopathology.

59. Rody A, Holtrich U, Gaetje R, Gehrmann M, Engels K, et al. (2007) Poor
Outcome in Estrogen Receptor-Positive Breast Cancers Predicted by Loss of

Plexin B1. Clinical Cancer Research 13: 1115–1122.
60. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, et al. (2006) A collection of

breast cancer cell lines for the study of functionally distinct cancer subtypes.

Cancer Cell 10: 515–527.
61. Heiser LM, Sadanandam A, Kuo WL, Benz SC, Goldstein TC, et al. (2012)

Subtype and pathway specific responses to anticancer compounds in breast
cancer. Proc Natl Acad Sci U S A 109: 2724–2729.

62. Mac Gabhann F, Popel AS (2006) Targeting neuropilin-1 to inhibit VEGF

signaling in cancer: Comparison of therapeutic approaches. PLoS Comput Biol
2: e180.

63. Stefanini MO, Wu FTH, Mac Gabhann F, Popel AS (2008) A compartment
model of VEGF distribution in blood, healthy and diseased tissues. BMC

Systems Biology 2: 77.
64. Finley SD, Engel-Stefanini MO, Imoukhuede PI, Popel AS (2011) Pharmaco-

kinetics and pharmacodynamics of VEGF-neutralizing antibodies. BMC Syst

Biol 5: 193.
65. Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S, et al. (2005) Gene expression

profiling spares early breast cancer patients from adjuvant therapy: derived and
validated in two population-based cohorts. Breast Cancer Res 7: R953–964.

66. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, et al. (2005)

Identification of molecular apocrine breast tumours by microarray analysis.
Oncogene 24: 4660–4671.

67. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, et al. (2005) Gene-

expression profiles to predict distant metastasis of lymph-node-negative primary

breast cancer. Lancet 365: 671–679.

68. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, et al. (2005) Genes that

mediate breast cancer metastasis to lung. Nature 436: 518–524.

69. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, et al. (2006) Gene expression

profiling in breast cancer: understanding the molecular basis of histologic grade

to improve prognosis. J Natl Cancer Inst 98: 262–272.

70. Miller LD, Smeds J, George J, Vega VB, Vergara L, et al. (2005) An expression

signature for p53 status in human breast cancer predicts mutation status,

transcriptional effects, and patient survival. Proc Natl Acad Sci U S A 102:

13550–13555.

71. Minn AJ, Gupta GP, Padua D, Bos P, Nguyen DX, et al. (2007) Lung metastasis

genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci U S A

104: 6740–6745.

72. Boersma BJ, Reimers M, Yi M, Ludwig JA, Luke BT, et al. (2008) A stromal

gene signature associated with inflammatory breast cancer. Int J Cancer 122:

1324–1332.

73. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, et al. (2007) Strong time

dependence of the 76-gene prognostic signature for node-negative breast cancer

patients in the TRANSBIG multicenter independent validation series. Clin

Cancer Res 13: 3207–3214.

74. Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A, et al. (2008) The humoral

immune system has a key prognostic impact in node-negative breast cancer.

Cancer Res 68: 5405–5413.

75. Popovici V, Chen W, Gallas BG, Hatzis C, Shi W, et al. (2010) Effect of

training-sample size and classification difficulty on the accuracy of genomic

predictors. Breast Cancer Res 12: R5.

76. Tabchy A, Valero V, Vidaurre T, Lluch A, Gomez H, et al. (2010) Evaluation of

a 30-gene paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide chemo-

therapy response predictor in a multicenter randomized trial in breast cancer.

Clin Cancer Res 16: 5351–5361.

77. Graham K, de las Morenas A, Tripathi A, King C, Kavanah M, et al. (2010)

Gene expression in histologically normal epithelium from breast cancer patients

and from cancer-free prophylactic mastectomy patients shares a similar profile.

Br J Cancer 102: 1284–1293.

78. Palaskas N, Larson SM, Schultz N, Komisopoulou E, Wong J, et al. (2011) 18F-

fluorodeoxy-glucose positron emission tomography marks MYC-overexpressing

human basal-like breast cancers. Cancer Res 71: 5164–5174.

79. Iwamoto T, Bianchini G, Booser D, Qi Y, Coutant C, et al. (2011) Gene

pathways associated with prognosis and chemotherapy sensitivity in molecular

subtypes of breast cancer. J Natl Cancer Inst 103: 264–272.

80. Creighton CJ, Sada YH, Zhang Y, Tsimelzon A, Wong H, et al. (2012) A gene

transcription signature of obesity in breast cancer. Breast Cancer Res Treat 132:

993–1000.

81. Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, et al. (2011) A genomic

predictor of response and survival following taxane-anthracycline chemotherapy

for invasive breast cancer. JAMA 305: 1873–1881.

82. Karn T, Pusztai L, Holtrich U, Iwamoto T, Shiang CY, et al. (2011)

Homogeneous datasets of triple negative breast cancers enable the identification

of novel prognostic and predictive signatures. PLoS One 6: e28403.

83. Gonzalez-Angulo AM, Iwamoto T, Liu S, Chen H, Do KA, et al. (2012) Gene

expression, molecular class changes, and pathway analysis after neoadjuvant

systemic therapy for breast cancer. Clin Cancer Res 18: 1109–1119.

84. Monti S, Tamayo P, Mesirov J, Golub T (2003) Consensus clustering: A

resampling-based method for class discovery and visualization of gene expression

microarray data. Machine Learning 52: 91–118.

VEGF and Sema Expression Define TNBC

PLOS ONE | www.plosone.org 15 May 2013 | Volume 8 | Issue 5 | e61788


