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Background: Brain tumor ranks as the most devastating cancer type. The complex tumor
immune microenvironment prevents brain tumor from receiving therapeutic benefits. The
purpose of this study was to stratify brain tumors based on their distinct immune infiltration
signatures to facilitate better clinical decision making and prognosis prediction.

Methods: We developed a deep learning model to characterize immune infiltration from
transcriptome. The developed model was applied to distill expression signatures of
transcriptome of brain tumor samples. We performed molecular subtyping with the
extracted expression signatures to unveil brain tumor subtypes. Computational
methods, including gene set enrichment analysis, Kaplan-Meier survival and multivariate
Cox regression analyses, were employed.

Results: We identified two distinctive subtypes (i.e. C1/2) of brain tumor featured by
distinct immune infiltration signatures. The C1 subtype is characterized by protective
immune infiltration signatures, including high infiltration of CD8+ T cells and activation of
CX3CL1. The C2 subtype has an extensive infiltration of tumor-associated macrophages
and microglia, and was enriched with immune suppressive, wound-healing, and
angiogenic signatures. The C1 subtype had significantly better prognosis as compared
with C2 (Log-rank test, HR: 2.5, 95% CI: 2.2 – 2.7; P = 8.2e-78). This difference remained
statistically significant (multivariate Cox model, HR: 2.2, 95% CI: 1.7 – 2.9; P = 3.7e-10) by
taking into account age, gender, recurrent/secondary status at sampling time, tumor
grade, histology, radio-chemotherapy, IDHmutation,MGMTmethylation, and co-deletion
of 1p and 19q. This finding was validated in six datasets. The C2 subtype of glioblastoma
patients with IDH mutation has poor survival analogous to those without IDH mutation
(Log-rank test, adjusted P = 0.8), while C1 has favorable prognosis as compared with
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glioblastoma of C2 subtype with IDH mutation (Log-rank test, adjusted P = 1.2e-3) or
without IDH mutation (Log-rank test, adjusted P = 1.3e-6).

Conclusions: We identified two distinctive subtypes of brain tumor with different immune
infiltration signatures, whichmight be helpful as an independent prognosticator for brain tumor.
Keywords: brain tumor, immune infiltration, prognosticator, transcriptome, molecular subtype
INTRODUCTION

Brain tumors are highly aggressive and rank among the most
fatal and devastating of diseases (1). The standard treatments for
brain tumors include chemotherapy and radiotherapy in
addition to surgical removal (2). However, the efficacy varies
considerably, with some patients showing rapid resistance while
others have a more durable response (3). In addition, a range of
postoperative complications can occur, including seizure, loss of
movement ability, visual impairment, or impairment of speech
and comprehension.

Better understanding of key genomic alterations in brain
tumor leads to effective treatment options for patients. For
example, lack of MGMT methylation is associated with
reduced benefit from temozolomide (4). IDH1/IDH2 mutation
and co-deletion of chromosome arms 1p and 19q are associated
with radio-chemotherapy response and survival outcome (5).
Meanwhile, high-throughput analyses of genomic and
transcriptomic data have led to a refined classification system
of brain tumor to promote effective clinical therapeutics. The
WHO classification of central nervous system (CNS) introduced
in 2016 defined tumor entities based on molecular characteristics
in addition to traditional morphologic findings (2). Nevertheless,
clinical heterogeneity remains an intractable issue. For instance,
patients of astrocytoma without IDH mutation have diverse
clinical outcomes (6).

Brain tumor (7, 8) microenvironment is immunologically
distinct from other cancer types (7). Tumorigenesis can cause
damage to the blood-brain barrier, facilitating the infiltration of
immune cells from peripheral circulation into brain (7). A
compromised blood-brain barrier can activate wound healing
and angiogenesis, which promotes cancer progression and
confers immune suppression (8, 9). Meanwhile, brain tumor is
immunologically “cold” in that tumor-associated macrophages
and microglia (TAMs) prevent tumor from activating the
immune response (10, 11).

In this study, we established a model to distill expression
signatures from the transcriptome of brain tumor tissues. We
revealed two subtypes of brain tumor with distinct immune
infiltration signatures: genomic alteration and prognosis. Our
findings were validated in 11 previous datasets.
MATERIALS AND METHODS

Data Collection
Brain tumor transcriptomes of 3810 patients were downloaded
from the Genomic Data Commons, the NCBI Gene Expression
2

Omnibus, the International Cancer Genome Consortium, the
Chinese Glioma Genome Atlas, the European Bioinformatics
Institute, and GlioVis (Table S1). Each dataset has more than
100 patients accompanied by their vital status and period of
follow-up. Histology, tumor grade, radio-chemotherapy
treatment, recurrent/secondary status at sampling time, IDH
mutation, MGMT methylation, and co-deletion of 1p and 19q
data were collected if available (Table S1). Meanwhile, we
collected 93,293 single-cell RNA profiles subjected to Smart-
Seq2 sequencing protocol from 16 previous studies (Table S2)
from brain cancer, lung cancer, colorectal cancer, ovarian cancer,
melanoma, and head and neck squamous cell carcinoma. These
single cell datasets encompass T cells, B cells, monocytes,
macrophages, natural killer cells, dendritic cells, cancer cells,
and other nonmalignant cells including fibroblast, epithelia cells,
gliocytes, and neurons. In addition, we manually curated a list of
genes related to tumor microenvironment, immune cells,
immune checkpoint blockade therapy response, and prognosis
(Table S3).

Data Preprocessing
For each single-cell dataset, we performed logarithmic
transformation as log2(TPM/10 + 1). We clipped gene
expression values at 99% quantile values of all genes.
Subsequently, we employed R package preprocessCore (version
1.40.0) (12) to perform quantile normalization. We applied
ComBat routine implemented in R package sva (version 3.26.0)
(13) to perform batch effect correction for the normalized
expression data of bulk brain tumors.

Feature Representation Learning Of
Single-Cell Transcriptome
We developed a feature encoder through self-supervised feature
representation learning. The feature encoder could learn
nonlinear feature representations of transcriptomes in a
reduced dimensional space.

The feature encoder was trained with a self-supervised deep
learning algorithm based on contrastive learning (14).
Specifically, contrastive learning allows the feature encoder to
learn representations in a label-free manner (Figure S1). Positive
pairs are defined as two different noise-adding views of the same
transcriptome (Vq, Vk+). Two different transcriptomes form a
negative pair (Vq, Vk-). Vk- came from a dictionary of
transcriptomes {Vk1-, Vk2-,…, Vn1-}, which was defined on-the-
fly by a set of trained data. Contrastive loss aims to minimize the
distance between the positive pair and maximize the distance
between the negative pair. The function of contrastive loss is
defined as:
October 2021 | Volume 11 | Article 734407

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Shen et al. Molecular Subtyping of Brain Tumor
LVq,Vk+, Vk−f g = − log
exp (Vq � Vk+=t)

exp (Vq� Vk + =t) +o
k−

exp (Vq � Vk−=t)

where t is a temperature hyper-parameter (15). In this analysis,
the similarity of each pair was calculated based on the expression
features extracted from the feature encoder. In this manner, the
feature encoder was driven to learn features of transcriptomes by
contrastive loss.

Network Architecture and Training
In our task, the feature encoder was trained to learn the same
representation of different noise-adding views of the same single-
cell transcriptome and dissimilar representation of different cells.

The 93,293 single cells were randomly divided into a training
set (N = 83,964) and a validation set (N = 9,329). We
logarithmically transformed the transcriptomes of the
preselected genes (Table S3) and scaled to a range of 0 to 1
before feeding them into the feature encoder. At each epoch, we
made noise through random zero out and shuffling and added
Gaussian noise (mean: 0, standard deviation: 0.1) to 20% of genes
for all transcriptomes.

The feature encoder was an 18 layered ResNet (16). We
replaced the convolutional layer in the original ResNet with a
linear layer to allow it to process gene expression data. For each
residual block, the input skips training from a few layers and is
connected directly to the output. Moreover, we set the project
head with 128 output neurons. The use of multi-layer perceptron
(MLP) as project head was demonstrated to be beneficial for
contrastive learning. The architecture of the feature encoder was
provided as Figure S2.

We employed stochastic gradient descent algorithm (17) as
the optimizer. The weight decay of the optimizer is 1e-4 and the
momentum is 0.9. We set batch size for each training iteration of
256. The initial learning rate was 0.03 and decay with a cosine
annealing schedule. We set the contrastive learning dictionary
size to 3072. The momentum and t of contrastive loss were set to
0.999 and 0.2, respectively. The model was trained in parallel on
two graphic processing units for 300 epochs. The model was
developed with PyTorch (v1.3.0) package.

Molecular Subtyping of Brain Tumor
The developed feature encoder was applied to extract expression
signatures from bulk sample transcriptomes. Specifically, we
extracted feature representations from the developed feature
encoder applied to the expression data of TCGA pan-cancer.
The feature encoder transformed the expression profile of each
bulk sample into 128 features, which was determined by the
output neurons of feature encoder. The extracted features were
hierarchically clustered through R package ConsensusClusterPlus
(version 1.42.0) (18). The obtained clusters were further grouped
into expression signatures because of the high negative
correlations among these clusters (Figure S3). Subsequently,
we dichotomized brain tumor patients based on each
expression signature and selected one that can better represent
unique immune infiltration signature of brain tumor.
Specifically, we used R package Ckmeans.1d.dp (version 4.2.1)
Frontiers in Oncology | www.frontiersin.org 3
(19) to perform k-means clustering. The k-means clustering
cutoff value closest to the median value of signature was
selected as the optimal cutoff to dichotomize samples. We used
R package fgsea (version 1.6.1) (20) to perform gene set
enrichment analysis (GSEA) for a gene set related to unique
immune infiltration properties of brain tumor such as microglia
and reactive gliosis (Table S4). We kept the signature that ranked
on the top to dichotomize patients as mentioned above for
downstream analysis. A flowchart illustrating this procedure
was provided in Figure S3.

Linear Feature Encoder Comparison
To examine the advantage of self-supervised learning paradigm,
we employed principle component analysis (PCA) as a linear
feature encoder and compared the PCA features with the deep
learning features. Specifically, we performed PCA on single cell
transcriptomes of the 2616 filtered genes with python package
sklearn (v0.24.1). The principle components of single cells were
then projected to brain tumor transcriptome. Then, brain tumor
patients were dichotomized through hierarchical clustering
based on R package ConsensusClusterPlus (version 1.42.0) (18).

Association Between Molecular Subtypes
and Clinical Data
We analyzed the association between molecular subtypes with
immune and genomic alteration signatures, which include
immune cellular fractions, immunomodulatory expressions,
oncogenic and immune pathways, genomic alterations, driver
mutations, and molecular subtypes of glioblastoma proposed by
the Cancer Genome Atlas (TCGA) (21). We used CIBERSORT to
estimate the proportions of 22 immune cell types based on LM22
matrix (22). We performed paired t-test for 78 genes related to
immunomodulation (23) in the 11 collected datasets. In addition,
we performed GSEA based on R pakage fgsea (version 1.6.1) (16)
for cancer hallmark (24) and immune-related gene sets (19)
(Table S4). Continuous variables were evaluated by Wilcoxon
rank sum test, while discrete variables were evaluated via Chi-
square test if not specified. For GSEA, P-values were calculated
based on 10,000 permutations. Kaplan-Meier survival analysis and
multivariate Cox hazards model were utilized to analyze the
association of subtypes and prognosis, which were carried out
with R survival package (2.40-3).

Statistical Analysis
As described above, we generally employed Wilcoxon rank sum
test or Chi-squared test for the statistical analysis as appropriated,
if unspecified. The paired t-test was used for the analysis of
immunomodulators. The P value of enrichment analysis were
calculated based on 10,000 permutations. We employed Kaplan-
Meier analysis to estimate survival distribution. Cox proportional-
hazards model was utilized for multi-variable survival analysis. We
applied log-rank test to compare the statistic difference of survival
curves between two groups. All figures and statistical analysis were
conducted using R software (version 3.6.1). A P < 0.05 was
considered as statistically significant. All statistical tests were
two-sided. P-values were adjusted with FDR method.
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RESULTS

Patients and Analytic Pipeline
RNA profiles and clinical data of 3810 brain tumor patients were
collected from 11 public studies. The baseline characteristics are
shown in Table S5. Glioma andmedulloblastoma account for 83%
(3146) and 16% (624), respectively. Among 2951 patients with
cancer type information, the primary, recurrent, secondary, and
post-treatment tumor account for 71% (2105), 11% (332), 1% (40),
and 16% (474), respectively. In the glioma cohort (3146), patients
with tumor grade II, III, and IV respectively accounted for 24%
(743), 28% (872), and 39% (1226); 10% (305) of patients did not
have tumor grade information.Meanwhile, there were 2960 glioma
patients with pathological information. This glioma cohort
consisted of diverse pathological subtypes such as astrocytoma
(27%), oligodendroglioma (21%), oligoastrocytoma (8%), and
glioblastoma (44%). Among 2289 glioma patients with IDH
mutation examined, 55% of them (1254) had IDH mutation.
Among 1098 of these 1254 patients with co-deletion of 1p/19q
tested, 42% (459) carried co-deletion of 1p and 19q. Among 1731
patients tested for MGMT methylation, 59% (1028) of them were
positive for hypermethylation of MGMT promoter. Among 1226
patients with radio-chemotherapy treatment information, the
proportion of patients treated with chemotherapy, radiotherapy,
and a combination of both were 15% (184), 23% (281), and 62%
(761), respectively.

A flowchart depicting the whole procedures of this study is
shown in Figure 1. We collected 93,293 single-cell RNA profiles
from 16 published datasets. A total of 2,616 genes were selected for
the analysis. These genes were associated with tumor
microenvironment, immune cells, immune checkpoint blockade
therapy response, and prognosis (See Methods). We developed a
self-supervised deep learning model based on single-cell RNA
profiles of these 2616 genes to decipher gene expression
signatures from transcriptomes. Subsequently, we applied this
developed feature encoder to extract expression signatures from
transcriptome of bulk brain tumor samples (See Methods and
Figure S3). We then examined the association of expression
signature with immune signatures, genomic alteration,
and prognosis.
Differences of Immune Infiltration
Signatures in C1 Versus C2 Subtype
The results obtained from CIBERSORT (22) showed that 18 of
22 types of immune cells were significantly different between C1/
2 subtypes (Figure 2A; Wilcoxon rank sum test, P < 0.05). All
types of TAMs (i.e. M0, M1, M2), CD4+ follicular helper T cells,
and neutrophils had higher infiltration rate in C2 as compared
with C1 subtype (Figure 2A). Contrastively, C1 had higher
infiltration of CD8+ T cells, plasma cells, and dendritic cells
than C2 subtype (Figure 2A). The infiltration of the other cell
types was provided in Table S6. Furthermore, the immune
infiltration of C1 versus C2 exhibited consistent trends among
different brain tumor subtypes (Figure S4). For example, there
are higher infiltration of plasma cells and lower infiltration of M1
and M2 macrophages in C1 subtype (Figure S4).
Frontiers in Oncology | www.frontiersin.org 4
We observed that 24 immunomodulatory genes were
differentially expressed in C1 versus C2 subtype (Figure 2B;
Paired t-test, P <0.05). Specifically, C10orf54, CX3CL1, and
EDNRB were highly expressed in C1 versus C2 subtype
(Figure 2B). CD276, CCL5, CXCL10, and HMGB1 and the other
17 immunomodulatory genes were significantly upregulated in C2
versus C1 subtype (Figure 2B). The detailed expression of all
immunomodulatory genes were provided in Table S7.

Enrichment analysis of 50 cancer hallmarks and 132 immune
signaling modules showed that CSF-1, MYC, TGF-b, JAK/
STAT3, IFN-a, and the other 29 signaling pathways were
enriched in C2 versus C1 subtype (Figure S5, P < 0.05). For 11
signaling modules, including core serum response, proliferation,
DNA repair, and E2F target pathways, the same trends were
validated across brain tumor subtypes (Figure S5, P < 0.05).

C1/2 Subtypes Were Significantly
Associated With Genomic Alterations
In the TCGA low-grade glioma, non-silent mutation burden,
intratumor heterogeneity, aneuploidy, and the other six types of
genomic variationwere significantly higher inC2 versusC1 subtype
(Figure 2C and Table S8; Wilcoxon rank sum test, P < 0.05). The
corresponding trends were observed in astrocytoma and
oliodendroglioma patients (Figure S6). In the TCGA
glioblastoma cohort, there was no difference among the
aforementioned variations except for segments of copy number
variation (Figure S6).

We also examined the association of C1/2 subtypes and driver
gene mutations of brain tumors that linked to prognosis and
therapeutic resistance (Table S6). Our finding showed that four
driver events were significantly higher in C1 versus C2 subtype,
including IDH mutation, hypermethylation of MGMT promoter,
high CpG island methylation phenotype (G-CIMP), and co-
deletion of 1p and 19q (Figure 2D; Chi-squared test, P < 0.05).
Four driver eventswere significantly higher inC2 versusC1 subtype
such as EGFR amplification, deletion of CDKN2A/CDKN2B and
PTEN, gain of chromosome 7, and/or loss of chromosome 10
(Figure 2D; Chi-squared test, P < 0.05). Across brain tumor
subtypes, such as glioblastoma and low-grade glioma, differences
in mutation rates showed the same trend in eight driver events
among C1/2 subtypes, including CDKN2A/CDKN2B and PTEN
deletion, IDHmutation, and co-deletion of 1p and 19q (Figure S7).

In addition, we found that C1/2 subtypes were linked to
TCGA molecular subtypes, namely classical, neural, proneural,
and mesenchymal subtypes (21) (Figure 2E). Neural [168(37%)
versus 104(11%); Chi-squared test, P = 6.2e-29] and proneural
subtypes [186(41%) versus 243(26%); Chi-squared test, P = 6.2e-
29] were significantly enriched in C1 versus C2 subtype. C2 had
higher proportions of classical [307(33%) versus 56(12%); Chi-
squared test, P = 1.4e-16] and mesenchymal subtypes [265(29%)
versus 44(10%); Chi-squared test, P = 2.3e-15] as compared with
C1 subtype.

C1/2 Subtypes Were Significantly
Associated With Clinical Characteristics
Clinical characteristics of brain tumor patients were provided in
Table S9. C2 subtype had lower Karnofsky scores (Median: 80 vs.
October 2021 | Volume 11 | Article 734407
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90, Wilcoxon rank sum test, P = 3.4e-6) and higher tumor
microvascular infiltration rate versus C1 subtype (61/76, 80% vs.
31/65, 48%; OR: 4.2, 95% CI: 2.0 – 8.7; Chi-squared test, P = 1.8e-
4). Among patients with recurrence, C1 subtype had marginally
significant lower distant recurrence rate (4/23, 17% vs. 19/48,
40%; OR: 0.3, 95% CI: 0.1 – 1.1) and higher local recurrence rate
(19/23, 83% vs. 29/48, 60%; OR: 3.1, 95% CI: 0.9 – 10.6) as
compared with C2 subtype (Chi-squared test, P = 0.1). There
were no significant differences in family history of cancer, pre-
Frontiers in Oncology | www.frontiersin.org 5
diagnostic symptoms, and tumor location between C1/2
subtypes (Chi-squared test, P > 0.5).

Kaplan-Meier survival analysis showed that C1 subtype has
better survivability than C2 subtype (Figure S8A; Log-rank test,
P = 8.2e-78) in the combined cohort of 3810 patients. This result
was also observed in each individual in the 11 datasets (Figure
S8A; Log-rank test, P < 0.05). Moreover, the difference remained
significant in the combined cohort after controlling for
confounding factors such as age, gender, tumor, histology,
A

B

FIGURE 1 | A flowchart depicting all procedures conducted in this study. The upper panel (A) describes the steps involved in the development of a deep learning
model to learn feature representation from single-cell transcriptomes. The lower panel (B) depicts molecular subtyping of brain tumors and downstream analysis
tasks. CIBERSORT, TIDE, and IMPRES were referenced from (22, 25, 26). DEG, differentially expressed gene; TCGA, the Cancer Genome Atlas.
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A B

C

D

E

FIGURE 2 | Association between C1/2 subtypes with genomic and transcriptomic signatures. (A) The proportion of infiltrated immune cell types in C1 versus
C2 subtype. (B) The median expression levels of immunomodulatory genes across 11 brain tumor datasets in C1 versus C2 subtype. (C) Genomic alteration
signatures in C1 versus C2 subtype in TCGA low-grade glioma cohort. (D) Alteration prevalence of driver events in C1 versus C2 subtype. (E) The proportion of
TCGA molecular subtypes in C1 versus C2 subtype. P values were subjected to multiple hypothesis correction. *P < 0.05, **P < 0.01, ***P < 0.001. LOH, loss of
heterozygosity; G-CIMP, CpG island methylation phenotype.
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radio-chemotherapy, recurrent/secondary status, IDH mutation
status, MGMT methylation status, and co-deletion of 1p and 19q
(Figures S8B, S12; Multivariate Cox model, HR: 2.2, 95% CI: 1.7 –
2.9; Log-rank test, P = 3.7e-10). The independent association of
C1/2 subtypes with prognosis from the multivariate model
remained significant in six individual datasets and exhibited the
same trend in the other four datasets (Figures S8B, S12; Log-rank
test, P < 0.05). In the TCGA glioma cohort, surgery type was taken
into consideration additively. In the medulloblastoma cohort (i.e.
GSE85217), clinically relevant confounding factors, such as age,
gender, and molecular subtypes, were included.

We observed that C1/2 subtypes of PCA have significantly
different overall survival in seven independent datasets (Figure S9;
Log-rank test, P < 0.05). Cox analysis (Table S10) shows that C1/2
subtypes have prognosis significance in five individual datasets
(Log-rank test, P < 0.05) and did not show any trend in three
datasets (i.e. E-MTAB-3892, TCGA-GBM, GSE13041). In
summary, the association between prognosis and expression
signatures derived from deep learning is more general as
compared with PCA.

C1/2 Subtypes Have Prognostic
Significance Across Brain Tumor Subtypes
We examined the association between C1/2 subtypes and prognosis
of glioma patients with respect to histology, genomic alteration, and
grade. The glioma patients were divided into nine subgroups:
astrocytoma, oligodendroglioma, glioma with or without IDH
mutation, glioma with IDH mutation with or without co-deletion
of 1p and 19q, tumor grade II, III, and IV (Figure 3A). The C2
subtype has significantly poorer survival outcome than C1 in all
subgroups (Figure 3A; Log-rank test, P < 0.05). In addition, the
difference remained significant in eight out of these nine subgroups
and marginally significant in grade IV glioma after taking into
account age, gender, histology, IDH mutation status, MGMT
methylation status, and co-deletion of 1p and 19q (Figures 3B,
S12; Log-rank test, P < 0.05). The dataset was taken as strata variable
in multivariate Cox model.

The C2 subtype of glioblastoma with IDH mutation has poor
survival outcome analogous to glioblastoma without IDH
mutation (Figure 4A; Log-rank test, P = 0.8). The C1 subtype
of glioblastoma with IDH mutation, meanwhile, has a favorable
survival outcome versus C2 subtype (Log-rank test, P = 1.2e-3) or
glioblastoma without IDH mutation (Log-rank test, P = 1.3e-6).
The result remained significant after ruling out confounding
impacts of age, gender, and co-deletion of 1p and 19q
(Figure 4B). CIBERSORT analysis demonstrated that there are
high infiltration rates of regulatory T cells and dendritic cells and
low infiltration rates of follicular helper T cells, M1 macrophages,
and neutrophils in C1 subtype of glioblastoma with IDH
mutation (Figure 4C; Wilcoxon rank sum test, P < 0.05).
GSEA analysis showed that glycolysis, MTORC1, core serum
response, proliferation, and E2F signaling pathways were
enriched in the C2 subtype of glioblastoma with IDH mutation
and IDH wildtype glioblastoma as compared with C1 subtype of
glioblastoma with IDH mutation (Figure 4D; P < 0.05).
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We further stratified glioblastoma patients through different
treatment modalities. For patients with radiotherapy (N = 86),
Kaplan-Meier survival analysis showed that C2 subtype has better
overall survival than C1 subtype (Figure S10, Log-rank test, P =
3.3e-2). The same trend was also observed in C1/2 subgroup of
patients with radio-chemotherapy (N = 49, Figure S10, Log-rank
test, P = 0.2).

Kaplan-Meier survival analysis showed that C2 subtype had
worse progression-free survival as compared with C1 subtype in
TCGA glioma cohort (Figure S11, Log-rank test, P = 6.1e-4). The
difference remained significant in radio-chemotherapy patients
(Figure S11, Log-rank test, P = 5.3e-3) and showed the same
trend in radiotherapy alone patients (Figure S11, Log-rank test,
P = 0.4). Progression-free survival was not analyzed for the
chemotherapy group due to the limited sample size (Table S11).
DISCUSSION

The immune microenvironment plays pivotal roles in cancer
progression of brain tumor (27). It is of importance to mine
potential heterogeneity of immune infiltration for better
guidance of treatment. This study represents an attempt to
identify new subtypes of brain tumor based on immune
infiltration signature. It extends the previous classification
systems that are mainly defined on histology and genome (2).
The importance of identifying the C1/2 subtypes lies in their
markedly different survival outcomes due to their distinct
immune infiltration. Our findings will facilitate the elucidation
of distinct immune infiltration in the development and prognosis
prediction of brain tumors.

We trained the feature encoder with nearly 100,000
transcriptomes from multiple cancer types. The large amount of
data were applied to address the big data requirement of deep
learning models (28) and to learn shared immune signatures across
immunemicroenvironment. The feature encoder derived from self-
supervised learning is akin to PCA in that both of them can extract
representation features in a label-free manner. However, the deep
neural network is able to capture thenon-linear feature in contrast to
linear feature reduction of PCA. The non-linear feature modeling
capability of deepneural networkmay be better in distilling immune
infiltration signatures and provide new insights as compared with
PCA(FigureS9). Thiswasdemonstratedby the identificationofC1/
2 subtypes that can better serve as an independent prognosticator
compared with subtypes obtained from PCA.

The C1/2 subtypes can distinguish glioma patients with
different prognosis stratified by histology, tumor grade, and
genomic alteration. In addition, the C1/2 subtypes can also
reflect differences in microvascular infiltration, distant
metastasis, and radio-chemotherapy response of patients. The
intrinsic distinctiveness in immunity may explain the different
prognosis of C1/2 subtypes. The C1 subtype was enriched for a
constellation of protective markers for prognosis such as high
infiltration of CD8+ T cells, plasma cells, dendritic cells, and
activation of CX3CL1. CD8+ T cells are the main force in
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maintaining anti-tumor immune responses (29). CX3CL1 can
inhibit the migration of tumor cells (30). Protective genomic
alteration events, including IDH mutations and CpG island
methylation, also occured frequently in C1 subtype. The IDH
mutation causes aberrant methylation of DNA and histone (31)
Frontiers in Oncology | www.frontiersin.org 8
to force the appearance of CpG island methylation phenotype in
glioma, both of which are favorable prognosticators in brain
tumor (32).

The C2 subtype was characterized by enrichment of immune
infiltration signatures. A striking characteristic of C2 subtype is
A B

FIGURE 3 | Prognostic significance of C1/2 subtypes stratified by different clinical variables. (A) Kaplan-Meier survival analysis of C1 versus C2 subtype.
(B) Combined forest plot portraying multivariate Cox regression analysis of C1/2 subtypes after controlling age, gender, histology, IDH mutation, MGMT
methylation, and co-deletion of 1p and 19q. 1p/19q-, co-deletion of 1p and 19q; HR, hazard ratio; CI, confidence interval.
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the extensive infiltration of TAMs. TAM functions in
immunosuppression to promote the development of a “cold”
microenvironment for brain tumor (33). TAMs recruitment
signatures, such as upregulated CSF-1 response circuits and
highly expressed macrophage chemokine genes including CCL5
and VEGF (33), were also enriched in C2 subtype. Besides,
abundant signatures related to immune suppression, wound
healing, and angiogenesis were detected in C2 subtype. For
example, C2 subtype was poorly infiltrated with CD8+ T cells
and enriched for immune suppression genes such as IL-10, TGF-
b, HAVCR2, and ENTPD1 (33, 34). Wound-healing programs
including core serum response and JAK/STAT3 circuit were
Frontiers in Oncology | www.frontiersin.org 9
overrepresented in C2. Angiogenic signatures, including high
expressions of VEGFA and CD276 and amplification of EGFR
(35–37), were abundant in C2 subtype. Aberrant tumor
angiogenesis contributes to immunosuppression and
tumorigenesis through subvert effector CD8+ T cells and
promotes regular CD4+ T cells infiltration (38). CD276 is a
putative target for CAR T-cell therapy of pediatric glioma (36).
Apart from the upregulation of E2F, MYC, and G2M circuits, C2
subtype was enriched for deletion of CDKN2A/CDKN2B and
PTEN. C2 subtype was highly infiltrated by neutrophil.
Neutrophil has been reported to be associated with acquired
resistance to radio-chemotherapy in brain tumor (39). Moreover,
A B

C

D

FIGURE 4 | Prognostic significance and immune signatures of IDH mutation plus C1/2 subtype in glioblastoma patients. (A) Kaplan-Meier survival analysis of
glioblastoma in patients without IDH mutation, C1 subtype with IDH mutation, and C2 subtype with IDH mutation. (B) Multivariate Cox regression analysis of C1/2
subtypes by ruling out confounding impacts such as age, gender, and co-deletion of 1p and 19q. 1p/19q-, co-deletion of 1p and 19q; CI, confidence interval.
(C) Immune cell infiltration rates of the trichotomy of glioblastoma. (D) Biological pathway enrichment scores of glioblastoma without IDH mutation and C2 subtype
of glioblastoma with IDH mutation relative to C1 subtype of glioblastoma with IDH mutation. NES, normalized enrichment score. NES, number of enrichment score.
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the immune infiltration patters of C1/2 subtypes were largely
consistent across different tumor subtypes. Hence, the C1/2
subtypes are anticipated to be broadly implicated in brain tumor.

It is generally accepted that glioblastoma with IDH mutation
has better prognosis than those without (40). The C2 subtype of
glioblastoma with IDH mutation has poor survival outcomes
analogous to those without IDH mutation, whereas the C1
subtype of glioblastoma with IDH mutation has significantly
better survival outcomes (Figures 4A, B). The similar infaust
prognosis of C2 subtype of glioblastoma with IDH mutation and
glioblastoma without IDH mutation can be partially interpreted
by the commonalities of immune infiltration status. Follicular
helper T cells, M1 macrophages, and neutrophils were more
enriched in them, and were associated with tumor enhancement
and drug resistance (27). Furthermore, canonical pro-
tumorigenic signaling pathways including E2F and MTORC1
pathways were both upregulated in C2 subtype of glioblastoma
with IDH mutation and glioblastoma without IDH mutation.
The C1/2 subtypes proposed in our study may improve the
current glioblastoma classification system based on IDH
mutation status to more accurately reflect prognostic
discrepancy among glioblastoma patients.

Our analysis has several limitations. First, the limited
availability of clinical information restricts the association
analysis between C1/2 subtype with therapy response. The
association between therapy outcome and progression-free
survival can only be explored in TCGA glioma cohort. We
cannot examine the connection between C1/2 subtypes and
chemotherapy due to the limited sample size (N = 9). A
differential trend in progression-free survival of radiation-alone
patients (N = 21) was observed between C1/2 subtypes, and
further studies should include more patients to demonstrate this
difference. Second, the immune infiltration differences between
C1/2 subtypes and their relationship with prognosis are still
preliminary. The detailed mechanisms are still unclear and
require further study.

In summary, we revealed two molecular subtypes (i.e. C1/2)
of brain tumor featured by distinct immune infiltration
signatures and prognosis. Our finding is helpful for better
understanding of brain tumor and has potential clinical utilities.
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Supplementary Figure 3 | A flowchart depicting molecular subtyping of brain
tumor. (A) The procedure to dichotomize brain tumor with extracted expression
signatures. (B) Extracted signature grouping. (C) Signature ranking and selection.
Cor, Pearson correlation coefficient; GSEA, gene set enrichment analysis; P-adj,
adjusted P value.

Supplementary Figure 4 | The proportion of infiltrated immune cell types in C1
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Supplementary Figure 5 | Significantly enriched pathways in C2 relative to C1
subtype for each brain tumor subtype.

Supplementary Figure 6 | Genomic alteration signatures in C1 versus C2
subtype in glioblastoma, oligodendroglioma, and astrocytoma cohort. Oligo,
oligodendroglioma.

Supplementary Figure 7 | Alteration prevalence of driver events in C1 versus C2
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Supplementary Figure 8 | Prognostic significance of C1/2 subtypes stratified by
different clinical variables. (A) Kaplan-Meier survival analysis of C1 versus C2
subtype. (B) Combined forest plot portraying multivariate Cox regression analysis of
C1/2 subtypes after controlling age, gender, histology, IDH mutation, MGMT
methylation, and co-deletion of 1p and 19q. 1p/19q-, co-deletion of 1p and 19q;
HR, hazard ratio; CI, confidence interval.

Supplementary Figure 9 | Kaplan-Meier survival analysis of C1/2 subtypes
classified by PCA.
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Supplementary Figure 10 | Kaplan-Meier survival analysis of C1/2 subtypes of
glioblastoma with different treatment modalities.

Supplementary Figure 11 | Kaplan-Meier analysis of progression-free survival
differences of C1/2 subtypes in TCGA glioma cohort.

Supplementary Figure 12 | Forest plot representation of multivariate Cox
regression analyses in the combined, individual cohort, and different subgroups.
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