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ABSTRACT: The “winner’s curse” is a subtle and difficult problem in interpretation of genetic association, in which as-
sociation estimates from large-scale gene detection studies are larger in magnitude than those from subsequent replication
studies. This is practically important because use of a biased estimate from the original study will yield an underestimate
of sample size requirements for replication, leaving the investigators with an underpowered study. Motivated by investiga-
tion of the genetics of type 1 diabetes complications in a longitudinal cohort of participants in the Diabetes Control and
Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Genetics Study, we apply a
bootstrap resampling method in analysis of time to nephropathy under a Cox proportional hazards model, examining 1,213
single-nucleotide polymorphisms (SNPs) in 201 candidate genes custom genotyped in 1,361 white probands. Among 15
top-ranked SNPs, bias reduction in log hazard ratio estimates ranges from 43.1% to 80.5%. In simulation studies based
on the observed DCCT/EDIC genotype data, genome-wide bootstrap estimates for false-positive SNPs and for true-positive
SNPs with low-to-moderate power are closer to the true values than uncorrected naı̈ve estimates, but tend to overcorrect
SNPs with high power. This bias-reduction technique is generally applicable for complex trait studies including quantitative,
binary, and time-to-event traits.
Genet Epidemiol 39:518–528, 2015. © 2015 Wiley Periodicals, Inc.
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Introduction

Genetic association studies conducted by large-scale geno-
typing of genetic variants such as single-nucleotide polymor-
phisms (SNPs) in existing well-characterized longitudinal co-
horts are an attractive approach to investigate complex traits.
In addition to examining repeated measurements of binary or
quantitative traits, investigators can track phenotypic changes
through time and detect the points of development of dis-
ease relevant events. Such events may include age at onset
of disease, time to mortality, or time to secondary complica-
tions of disease. Notable examples include the Framingham
Heart Study, the Women’s Genome Health Study, and the
Women’s Health Initiative [Cupples et al., 2007; Prentice and
Anderson, 2008; Ridker et al., 2008].

As in the analysis of disease status or a quantitative trait, the
selection of a genetic variant associated with a time-to-event
trait according to a large test statistic introduces optimistic
bias into the association parameter estimate. This exaggera-
tion has previously been referred to as the Beavis effect [Sun
and Bull, 2005; Xu, 2003] or the winner’s curse bias [Kraft,
2008; Voight and Cox, 2004] and is detrimental to the inter-
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pretation of detected associations and to the design of replica-
tion studies. It is a consequence of using the same sample for
both gene discovery and effect size estimation [Göring et al.,
2001]. This is precisely where the problem arises—typically,
investigators are interested in the magnitude of the genetic
association parameter only after an SNP has passed some sta-
tistical selection threshold or is ranked among the top SNPs.
On average, this practice of threshold and/or ranking selec-
tion produces exaggerated association estimates [Faye et al.,
2011]. Estimates of sample size required to detect a statis-
tically significant association is a function of the postulated
effect size. If the effect size estimate used in the design stage
of a replication study is exaggerated, then the study will be
underpowered to detect the true association, if one in fact
exists, and reproducibility will be compromised.

In the context of high-dimensional multiple testing, ad-
justment of association estimates for winner’s curse infla-
tion is critical for interpretation and replication of findings,
including large-scale candidate gene studies, genome-wide
association studies (GWAS), and next-generation sequenc-
ing whole-genome analyses. Although ranking and threshold
selection bias do not apply if independent samples are avail-
able for gene discovery vs. parameter estimation, splitting
study participants into two independent groups is generally
inefficient. Sun and Bull [2005] proposed a nonparametric
bootstrap resampling method that estimates selection bias

C© 2015 The Authors Genetic Epidemiology Published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.



by mimicking a design with independent detection and es-
timation samples within each bootstrap replicate. Wu et al.
[2006] and Yu et al. [2007] applied the bootstrap approach
in genetic linkage analysis and two-stage study design, re-
spectively. The method effectively adjusts simultaneously for
threshold selection arising from use of stringent significance
criteria and ranking selection arising from maximization of
the association statistics over the genome or a gene set, as
demonstrated in extensions for disease status and quantita-
tive traits developed in the genome-wide (GW) association
setting [Faye et al., 2011; Sun et al., 2011].

Likelihood-based approaches, also applied without the re-
quirement of an independent sample, account for threshold
selection by conditioning on the probability that the test
statistic for a single SNP exceeds a critical value threshold.
Available conditional likelihood methods for bias-reduced
estimation were developed mainly for case-control designs,
and do not address ranking bias because they deal with a
single SNP at a time [Ghosh et al., 2008; Xiao and Boehnke,
2009, 2011; Zhong and Prentice, 2008, 2010; Zollner and
Pritchard, 2007]. These methods are designed to reduce bias
in estimates of genetic association for binary or quantitative
traits, but comparable methods for survival models have not
been investigated. The approximate conditional likelihood
procedure of Ghosh et al. [2008] however, can be applied
to a broader class of phenotypes because it requires only
summary statistics from standard statistical procedures. Faye
et al. [2011] also investigated a single-SNP (SS) bootstrap
method that performs similarly to the SS likelihood meth-
ods in GWAS, concluding that SS methods perform well only
when power to detect association is high.

In this report, we extend the bootstrap bias-reduction
methods to the analysis of time-to-event traits under the Cox
proportional hazards (PH) model and apply the methods
in a large-scale candidate gene association analysis of com-
plications in type 1 diabetes (T1D) [Al-Ketab et al., 2008].
Although extensive prior evaluations of bias-reduction meth-
ods for binary traits in the GWAS setting would predict sim-
ilar performance for time-to-event traits, power to detect
SNPs associated with time to event depends on the number
of events, which may be more modest than in a case-control
design. Moreover, the ratio of null to true-positive SNPs in
candidate gene studies can be different from that in GWAS,
particularly in large-scale studies with well-chosen candi-
dates, which is likely to alter the performance properties of
the bootstrap method [Wu et al., 2006]. In simulation stud-
ies based on the application dataset, we therefore evaluate the
performance of the bias-reduction methods across a range of
SNP associations that differ in underlying power.

Methods

Power and Bias in Genetic Association with Time to Event

The magnitude of the winner’s curse bias is a function
of the underlying power to detect an association. This form
of selection bias is especially prevalent in studies with low

power, in which a genetic variant selected as statistically sig-
nificant or being top ranked tends to have a test statistic that
is extreme with respect to the true underlying distribution.
As detailed in the Supporting Information, we derive a sim-
ple approximation for the expected bias based on expressions
from Therneau and Grambsch [2000, Section 3.6] for power
of a test of association under a Cox PH survival model. This
shows that the magnitude of bias in the estimated log hazard
ratio (logHR) depends largely on power. Bias increases with
more stringent significance threshold and lower minor allele
frequency (MAF) of the SNP, whereas bias decreases with
larger magnitude of the true genetic association (logHR) and
larger number of events (supplementary Fig. S1). Supple-
mentary Figure S1 also illustrates that truly associated and
null SNPs can produce similar effect estimates.

GW Bootstrap Bias-Reduction Procedure

As implemented for genetic association analysis [Sun et al.,
2011], the general nonparametric bootstrap bias-reduction
method accounts for MAF variation among SNPs and for
negative correlation between each bootstrap sample and its
complement. Following Faye et al. [2011], we let β̂N(k) (k =

1, . . . , K, where K �1) represent the logHR estimate of the
kth-ranked SNP from Cox PH model analysis of the original
sample of size n, which we term the naı̈ve estimate; p(k) is
the MAF of the kth-ranked SNP. Assuming these K SNPs are
selected by significance threshold and/or ranking criteria, the
naı̈ve estimate will tend to be exaggerated because the same
sample was used for detection/ranking and for estimation of
the associations.

For ease of implementation, if any of the naı̈ve estimates
β̂N(k) are negative, the bootstrap method begins by recoding
the SNP genotype to ensure that all of the association esti-
mates are in the positive direction. A series of bootstrap sam-
ple replicates, indexed by i = 1, . . . , B, are obtained by resam-
pling from the original study observations. For replicate i, the
within-sample estimate includes n observations sampled with
replacement into bootstrap sample i, while the out-of-sample
estimate includes the remaining observations not sampled
into bootstrap sample i. The same significance threshold
and/or ranking criteria are applied, but the SNPs selected
in a bootstrap sample need not be the same as those selected
in the original sample. We let β̂Di(k) be the within-sample
logHR estimate of the kth-ranked SNP in bootstrap replicate
i with variance estimate σ̂2

Di(k) and β̂E i(k) be the out-of-sample

logHR estimate of the same SNP with variance estimate σ̂2
E i(k).

pi(k) is the MAF of the kth-ranked SNP in bootstrap replicate
i; the MAF for this SNP is estimated in the original data.

The bias-reduced parameter estimate of Faye et al. [2011],
adjusted for negative correlation between β̂Di(k) and β̂E i(k) as
well as for SNP MAF, is given by

β̂
∗
boot(k) = β̂N(k) –

1

B (k)

B (k)∑
i=1

(
β̂Di(k) – β̂

∗
E i(k)

)√
2p i(k)(1 – p i(k))

√
2p (k)(1 – p (k))

(1)
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β̂
∗
E i(k) = β̂E i(k) –

σ̂DE i(k)

σ̂2
DE i(k)

(
β̂Di(k) – β̂Ni(k)

)
(2)

The bias-reduction procedure averages over B (k)(≤ B)
bootstrap samples that have at least k SNPs passing the same
selection criterion as the original sample. In deriving Equa-
tion (1), we take an average of the differences between β̂Di(k)

and β̂E i(k) as an estimate of the magnitude of the thresh-
old/ranking selection bias for the kth-selected SNP in the
original sample, treating the within-sample and the out-of-
sample observations as independent samples. That is, in each
bootstrap replicate, the within-sample observations imitate
a sample used for gene detection, while the out-of-sample
observations imitate a separate sample used for association
parameter estimation.

The within-sample and the out-of-sample estimates, how-
ever, are somewhat negatively correlated because the total
sample is fixed. Faye et al. [2011] derived a correction for the
resulting negative correlation between β̂Di(k) and β̂E i(k) that
depends on the estimated variances σ̂2

Di(k) and σ̂2
E i(k), and the

estimated covariance σ̂DE i(k) as shown in Equation (2), where
β̂Ni(k) is the original naı̈ve sample estimate for the kth-ranked
SNP detected in the ith bootstrap sample. Note that β̂Ni(k)

differs from β̂N(k), the estimate for the kth-ranked SNP in the
original sample.

The bias in the logHR estimate induced by selection is
inversely proportional to the square root of the genotypic
variance of the associated SNP (i.e., variance = 2p(1 – p),
where p = MAF, see Supporting Information for details), with
higher sampling bias for lower frequency SNPs. In Equation
(1), each term in the bootstrap sample average is rescaled
using the MAF of the kth-ranked SNP in the bootstrap sample
i (pi(k)) [Faye et al., 2011; Sun et al., 2011]. It is important to
account for allele differences across SNPs by both pi(k) and
p(k), (the MAF of the kth-ranked SNP in the original sample)
because the kth-ranked SNP in the bootstrap sample may
differ from the kth-ranked SNP in the original sample. The
shrinkage estimator β̂∗

boot(k) defined in Equation (1), which
reduces the magnitude of the naı̈ve estimate by the bootstrap
estimate of bias, is truncated at the null to avoid a change in
the direction of association in the bias-reduced estimate as
compared to the naı̈ve estimate.

Implementation

We implemented time-to-event bootstrap bias-reduction
using the open-source software: BR-squared (Bootstrap
Resampling Bias Reduction; http://www.utstat.toronto.edu/
sun/Software/BR2/) [Sun et al., 2011] and the open-source
PLINK software (http://pngu.mgh.harvard.edu/�purcell/
plink/) [Purcell et al., 2007]. Both BR-squared and PLINK are
efficient software packages, designed to handle large datasets
with a large number of SNPs (see Sun et al. [2011] for de-
tails). Analysis of quantitative or binary traits by linear or
logistic regression, respectively, is built into the BR-squared
software. To apply the Cox PH model, BR-squared can make
use of the R “survival” function [Therneau, 2011] as an R

plug-in. Example code with the R plug-in is provided in the
Supporting Information.

Application to the Diabetes Control and
Complications Trial/Epidemiology of Diabetes
Interventions and Complications (DCCT/EDIC)
Genetics Study

Our extension of bias-reduction methods to the analysis
of time to event is motivated by the DCCT/EDIC Genetics
Study which was designed to investigate the association of
SNPs in a large set of candidate genes with time to compli-
cations of T1D in DCCT participants [Al-Ketab et al., 2008].
The DCCT/EDIC study is a long-term follow-up study of
randomized trial participants [DCCT Research Group, 1993;
EDIC, 1999] in which two cohorts of individuals with T1D
(primary prevention and secondary intervention) were ran-
domly assigned to receive conventional or intensive therapy.
As detailed in the methods of Al-Kateb et al. [2008], tagging
SNPs within 5 kb flanking either side of each candidate gene
were selected so as not to be in strong linkage disequilibrium,
and a total of 1,441 SNPs were genotyped by a custom Illu-
mina GoldenGate Beadarray assay in 1,361 white probands.
(Absence of admixture was confirmed subsequently using
GWAS principal components.) These authors reported anal-
ysis of 1,213 SNPs with MAF � 5% in 201 candidate genes,
using a Cox PH model for incidence of severe nephropa-
thy, including known risk factors and study design factors
as explanatory covariates. An association was detected with
rs17880135 in the 3′ region of superoxide dismutase 1 (SOD1)
gene (hazard ratio [HR] = 2.62, P = 5.6 × 10–5). However,
as the authors noted, this HR estimate is expected to be op-
timistic because a large number of SNP associations were
examined.

We analyzed 1,361 individuals for association with time
to diabetes complication including 115 diagnosed with se-
vere nephropathy during follow-up. Our univariable Cox PH
model analysis, including only one SNP at a time and no
other covariates, detected 15 SNPs (MAF � 5%) statistically
significant at the 1% level. We applied the BR-squared time-
to-event implementation to estimate bias-reduced logHR ra-
tios for these SNPs (Fig. 1). The differences between naı̈ve
and GW bootstrap bias-reduced estimates of the logHRs for
the top 15 SNPs (Table 1) exhibit considerable variation in
bias reduction across SNPs with percentage of reduction in
the logHR estimates ranging from 43.1% to 80.5%. For ex-
ample, rs3025035 in VEGFA with an MAF of 7.2% has an
uncorrected naı̈ve logHR of 0.58 (P = 0.0053) compared to a
bias-reduced value of only 0.13, corresponding to a 77.6% re-
duction. In contrast, bias reduction for rs2472448 in ABCA1
(MAF = 10.6%) with a large naı̈ve logHR estimate is more
modest (46.3%). Post hoc power calculations in the last two
columns of Table 1 indicate that power and sample size esti-
mates for replication can differ markedly.

Individual-level risk scores constructed as a linear combi-
nation of risk allele counts weighted by SNP effect estimates
are also subject to a winner’s curse bias. In the Cox PH model,
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Figure 1. Log HR estimates under a Cox proportional hazards model analysis of time to severe nephropathy for the top 15 SNPs in the DCCT/EDIC
Genetics Study dataset, including 1,361 individuals. The horizontal axis corresponds to the minor allele frequency (MAF), with each SNP annotated
with gene name and rs number. The number above each vertical arrow indicates the SNP ranking according to the P-value of the original test of
association (reported in Table 1). The vertical arrows quantify the reduction in the logHR by the genome-wide bootstrap method: the percentage
reduction varies with MAF from 43.1 (at MAF = 48.3%) to 80.5% (at MAF = 15.9%).

the linear predictor in the exponential term of the hazard
model corresponds to a risk score, and the difference in risk
scores between individuals corresponds to a logHR. We calcu-
lated naı̈ve and GW bootstrap risk scores for each of the 1,361
DCCT/EDIC individuals. A higher individual score suggests

a higher risk of severe nephropathy. Here use of bootstrap
resampling is roughly analogous to use of cross-validation to
reduce over-fitting bias due to variable selection. As expected,
the GW risk score exhibits shrinkage relative to the naı̈ve risk
score (supplementary Fig. S2a). The maximum risk score is

Table 1. DCCT/EDIC study naı̈ve and genome-wide bootstrap bias-reduced logHR estimates (taken in absolute value)

Univariable models

Gene SNP MAF (%) P-value
Naı̈ve logHR

estimate

Genome-wide
bootstrap
estimate

Percentage reduction of
naı̈ve by genome-wide

bootstrap
Power by naı̈ve

(%)

Power by
genome-wide
bootstrap (%)

1 LIPC rs1968685 48.3 2.22 × 10–4 0.51 0.29 43.1 90.1 35.3
2 LIPCa rs7178362 13.7 2.36 × 10–4 0.56 0.22 60.1 63.4 7.7
3 FLT1 rs7999615 6.2 6.13 × 10–4 0.75 0.27 64.0 57.3 5.7
4 SOD1a rs17880135 5.6 8.18 × 10–4 0.69 0.17 75.4 43.2 2.4
5 VDR rs2254210 36.3 2.61 × 10–3 0.39 0.16 59.0 60.4 7.9
6 PRKCB1 rs411103 39.2 3.82 × 10–3 0.41 0.16 61.0 67.7 8.2
7 FLT4 rs307806 14.9 3.85 × 10–3 0.46 0.12 73.9 46.4 3.8
8 MMP2 rs17859935 16.9 4.36 × 10–3 0.46 0.14 69.6 53.0 3.8
9 ABCA1a rs2472448 10.6 5.00 × 10–3 0.86 0.46 46.5 91.5 32.2
10 VEGFA rs3025035 7.2 5.34 × 10–3 0.58 0.13 77.6 35.4 1.9
11 PON1a rs854555 34.4 6.22 × 10–3 0.41 0.17 58.5 64.7 8.8
12 UCP1 rs2043125 26.5 6.52 × 10–3 0.46 0.17 63.0 69.3 7.5
13 PARP1a rs3219065 15.9 7.75 × 10–3 0.41 0.09 78.0 38.0 1.9
14 PARP1a rs2027440 15.9 8.18 × 10–3 0.41 0.08 80.5 38.0 1.6
15 MMP2 rs17859970 14.8 9.99 × 10–3 0.43 0.10 76.7 40.8 2.1

a Minor allele is the risk allele, otherwise major allele is associated with risk.
Analysis of time to severe nephropathy (1,361 individuals with 115 events) based on a significance threshold selection criterion of P < 0.01. SNPs with MAF � 5% are excluded.
Bias reduction ranges from 43.1% to 80.5%. The final two columns display post hoc power calculations for a similar sample assuming logHRs are set to the value of the naı̈ve or
the genome-wide bias-reduced estimates.
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reduced from 12.01 to 4.20, and from 4.40 to 1.37 for the
minimum; the HR comparing the highest to the lowest risk
individual is reduced from a naı̈ve value of 2,018.3 to a GW
bootstrap value of 16.9. The ranking of individuals according
to their risk score can be altered by the GW bias reduction,
especially for individuals in the central part of the risk score
distribution (supplementary Fig. S2b).

Simulation Studies

Bias-Reduced Association Estimators

To evaluate the GW bootstrap estimator in comparison
to the uncorrected naı̈ve estimator in a large-scale candi-
date gene study of time to event, we conducted simulation
studies under a Cox PH model based on the DCCT/EDIC
genetic data. We also compare the GW bootstrap estima-
tor to two computationally attractive methods that address
threshold but not ranking bias: a SS bootstrap estimator and
a conditional likelihood estimator (see Supporting Informa-
tion for details). The GW bootstrap, as defined in Equation
(1) above, averages across possibly different SNPs selected in
each of the bootstrap samples by genome-wide association
(or candidate-gene) analysis. The SS bootstrap similarly av-
erages across repeated bootstrap sample replicates, but for
each SNP the bias estimate is based on the difference be-
tween the detection and the estimation logHR values for that
same SNP, averaging only the replicates where the SNP as-
sociation test meets the significance threshold. It effectively
proceeds as if there is only that one SNP being tested for asso-
ciation. The conditional likelihood estimator recommended
by Ghosh et al. [2008] is the so-called compromise estima-
tor for bias reduction, the average of the simple conditional
maximum likelihood estimate and the mean of the normal-
ized conditional likelihood estimate. Here as well, the method
does not account for ranking selection, considering only one
SNP at a time, and conditioning is on the significance of that
SNP alone.

Design

In the simulations, we used the observed DCCT/EDIC
study genotypes to generate time to event, with time from
trial entry to diagnosis of nephropathy as the outcome of
interest. To cover a wider spectrum of power to detect a true
SNP association across the SNPs included in the generating
model for simulated datasets, we used a sampling approach to
expand the sample size from the 1,361 individuals in the orig-
inal DCCT/EDIC study to 5,444 individuals. An additional
4,053 individuals were obtained such that the genotypes of
each “new” individual were a combination of the genotypes
of two individuals randomly sampled with replacement from
the original 1,361 individuals. To maintain LD structure, 729
of the SNPs were taken from the first sampled individual and
735 different SNPs were taken from the second, such that
SNPs within any given candidate gene region were from a
single individual. In this way, MAF was maintained within

half a percentage point of the values in the original data. The
observed covariate values for the second sampled individual
were retained as the covariate values for a “new” individual.

The SNPs specified to have true-positive associations in the
data generating model included 15 common SNPs (MAF �
5%) and four low-frequency SNPs (2% < MAF < 5%). The
former corresponded to the top SNPs in the DCCT/EDIC
data analysis (Table 1), and the latter were included to repre-
sent the presence of undetectable true-positive associations
contributing to polygenetic association. In simulation Stud-
ies 1 and 2, the logHR parameter for each SNP was set to be
the absolute value of the GW bootstrap estimate obtained in
univariable analysis of the original data (based on 100 boot-
strap samples, a P-value threshold of 0.01, and MAF > 2%).
Parameter values for three covariates: “sex” (logHR = –0.59),
“treatment” (logHR = –1.48), and “cohort” (logHR = 0.73)
were set to their multivariable logHR estimates from the orig-
inal DCCT/EDIC dataset with stratification by year of entry.
In simulation Study 3, the data generating model was altered
by setting the parameter values to have the same sign as the
original estimates, which yielded a different combination of
risk alleles.

For each individual in a simulated dataset, we generated a
time to event from their covariate and genotype data using an
SAS implementation of the method described in Bender et al.
[2005]. An individual-specific risk score was calculated from
the linear combination of his/her covariates and genotypes
with corresponding parameter values. We included strata for
year of trial entry with covariates for sex, treatment group,
and cohort, as well as for the 19 SNP genotypes, coded ad-
ditively. The baseline cumulative hazard was estimated for
each stratum using observed time to event for 1,361 individ-
uals from the original EDIC/DCCT dataset. The event-time
variable for each individual was computed using an equation
equivalent to Bender’s Equation (6) [2005], and compared
to a standard uniform variate. Where the uniform variate
fell below the last step of the estimated survival curve, the
event time was set to censored at the last visit. This generated
a censoring pattern similar to that observed in the origi-
nal dataset. In the DCCT/EDIC study, very few individuals
dropped out during follow-up, so we did not simulate any
mid-study dropouts.

In each simulated dataset of 5,444 individuals thus gen-
erated, each of 1,213 SNPs with MAF � 5% was analyzed
separately in a univariable model with additive genotype
coding, regardless of whether the SNP was a true positive
according to the generating model or a null association. Be-
cause time to nephropathy was generated under a multivari-
able model, but the SNP genotypes were analyzed one at a
time under a misspecified univariable model, the underlying
marginal regression parameter value for each true-positive
SNP was determined as the average of the univariable fit-
ted logHR value over all replicates. This included datasets
in which the SNP met statistical significance criteria as well
as those in which it did not. Empirical power for each true-
positive SNP was estimated as the frequency of detection by
the large sample Wald test (P < significance threshold) divided
by the total number of replicated datasets. For each of the
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Table 2. Simulation Study 1 summary statistics for the genome-wide bootstrap, conditional likelihood, and single-SNP bootstrap
estimates (significance threshold P < 5 × 10−5)

Mean bias in logHR estimates

SNP MAF
Data-generated

logHR
Empirical
power (%)

Mean fitted
logHR

Uncorrected
naı̈ve

Genome-wide
bootstrap

Conditional
likelihood

Single-SNP
bootstrap

No. of datasets
selected

10.3 0.50 99.5 0.50 0.00 –0.07 0.00 0.00 4,974
34.9 0.19 77.3 0.22 0.01 –0.04 0.01 0.00 3,863
26.7a 0.22 65.5 0.20 0.03 –0.03 0.02 0.01 3,275
17.1 0.17 55.7 0.26 0.04 –0.03 0.03 0.01 2,785
15.0 0.13 52.2 0.27 0.04 –0.03 0.03 0.02 2,611
13.7a 0.23 50.0 0.22 0.04 –0.03 0.03 0.02 2,499
48.8a 0.27 17.2 0.14 0.05 0.00 0.04 0.03 861
39.0a 0.21 10.0 0.12 0.07 0.01 0.06 0.04 500
5.8a 0.19 9.3 0.21 0.13 0.02 0.12 0.09 463
15.8a 0.09 8.9 0.15 0.09 0.01 0.08 0.06 447
15.8a 0.13 8.4 0.15 0.09 0.01 0.08 0.06 418
14.6 0.14 0.7 0.12 0.16 0.08 0.15 0.13 36
36.3 0.14 0.6 0.07 0.12 0.07 0.11 0.10 29
6.8 0.27 0.2 0.16 0.26 0.15 0.23 0.19 11
6.9 0.12 0 0.09 NA NA NA NA 0

a Minor allele is the risk allele, otherwise major allele is associated with risk.
Comparison with the naı̈ve Cox PH estimates for 15 SNPs generated to have association with time to severe nephropathy in a sample of 5,444 individuals. The rows are ordered
by empirical power, which is the proportion of simulated datasets in which the SNP was detected as significant out of 5,000 replications. Mean bias is calculated as the difference
between the mean fitted logHR in all datasets and the mean logHR in selected datasets.

significant SNPs detected in a dataset, a bias-reduced logHR
was estimated. In total, 5,000 simulated datasets were gen-
erated as replicates to investigate the effect estimate distri-
butions for true-positive and false-positive SNPs. Simulation
Studies 1 and 2 differed only in the significance levels used to
select SNPs, P < 5 × 10–5 and P < 0.01, respectively. We speci-
fied the stricter significance threshold in Studies 1 and 3 to ac-
count for multiple testing, and relaxed the threshold in Study
2 to assess sensitivity of results to the threshold specification.

The empirical mean across replicates was calculated for
the naı̈ve and bias-reduced logHR estimates for the true-
positive SNPs with MAF � 5%. We also examined the distri-
bution of logHRs for each of the true-positive SNPs, and for
the false-positive SNPs grouped into categories according to
MAF (�5%). To obtain a purer assessment of false-positive
associations, 254 SNPs in linkage disequilibrium (r2 > 0.2)
with those in the generating model were excluded from the
false-positive distributions.

Results

GW Method

As evident in summary statistics for the true positive com-
mon SNPs reported in Table 2 for simulation Study 1 (where
row entries are ordered by empirical power under the signif-
icance threshold of P < 5 × 10–5), power is higher for SNPs
with larger mean fitted marginal logHR and higher MAF. As
empirical power falls below 65%, the naı̈ve logHR values in-
creasingly overestimate the marginal fitted value on average,
while the GW bootstrap estimates are closer to the true effect
size. For instance, among the 463 statistically significant re-
alizations for the SNP with MAF of 5.8%, which is detected
with power of only 9.3%, the mean naı̈ve logHR estimate is
0.34, much larger than the marginal fitted logHR of 0.21 (sup-

plementary Table S1). The mean GW bootstrap estimate for
this SNP is 0.23, corresponding to a 34.0% reduction in the
naı̈ve estimate, an under-correction with a modest absolute
bias of 0.02.

The distributions of estimates for the 14 true-positive SNPs
with nonzero empirical power (P < 5 × 10–5) demonstrate
that power is a critical factor (Fig. 2). Among SNPs with
power below 65%, the distribution of the naı̈ve estimates ex-
ceeds the marginal fitted value, while the distribution of the
GW bootstrap estimates usually includes it. At power greater
than 70%, the naı̈ve estimates are nearly unbiased, while the
GW bootstrap estimates tend to become conservative on av-
erage, with about 25% of the estimates larger than the true
effect size. As an extreme example, consider the SNP in the
first row of Table 2 where the underlying effect size is quite
large and the empirical power (99%) at a level rarely achieved
in practice. Averaged across 4,974 statistically significant as-
sociations (P < 5 × 10–5), the mean naı̈ve logHR estimate of
0.50 (HR = 1.65) is the same as the underlying marginal fitted
effect size, while the mean GW bootstrap value is 0.43 (HR =

1.54). On the other hand, across all power levels, the GW
bootstrap estimates are less likely to have values larger than
the marginal effect size (Fig. 2). At lower MAF, the bias in
the naı̈ve estimates can be quite large, and moreover, in each
MAF category of false-positive SNPs, the distribution of the
GW bootstrap estimates is much closer to the null than that
of the naı̈ve estimates (Fig. 3).

When the significance threshold is less stringent (P < 0.01),
the power to detect association is higher for the true-positive
SNPs and the naı̈ve estimates are less biased on average (Study
2: supplementary Table S4, supplementary Fig. S9), but this
comes at the cost of more false-positive detections (supple-
mentary Fig. S10). Furthermore, for SNPs with less than 55%
power, the GW bootstrap method has smaller absolute mean
bias than the naı̈ve estimates. For Study 3 where true-positive
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Figure 2. Simulation Study 1 genome-wide bootstrap estimates for true-positive SNPs (significance threshold P < 5 × 10−5). Comparison of
distributions of genome-wide bootstrap (transparent red GW BR2) and uncorrected naive (transparent blue) logHR estimates of true-positive SNPs
with MAF � 5% out of the 5,000 replications of a sample of 5,444 subjects. The vertical, solid red line denotes the fitted logHR averaged across
unselected datasets. The SNPs are ordered by number of simulation datasets (N) in which the SNP was detected as statistically significant (see
Table 2).

Figure 3. Simulation Study 1 genome-wide bootstrap estimates for false-positive SNPs (significance threshold P < 5 × 10−5). Comparison of
distributions of genome-wide bootstrap (transparent red GW BR2) and uncorrected naive (transparent blue) logHR estimates of false-positive
SNPs in a sample of 5,444 subjects, stratified by MAF categories. False-positive SNPs are those found to be statistically significant among 5,000
replications and not in the same gene as any of the SNPs in the model used for data generation. The vertical solid red line denotes the null reference
value.
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parameter effects include a different combination of minor
and major allele associations, results are similar generally to
those of Study 1 (supplementary Table S5, supplementary
Fig. S11). Here again, the GW bootstrap method is effective
for SNPs with power less than 65%. False-positive distribu-
tions are also similar to the patterns observed in Figure 3,
with decreasing variance as MAF increases (supplementary
Fig. S12).

SS Methods

The conditional likelihood estimator works directly with
the Cox PH regression results, separately for each of the SNPs,
so it is easy to compute. For true-positive SNPs with power
greater than 50%, we observed substantial overlap of the dis-
tribution of the conditional likelihood estimates with those
of the naı̈ve and the GW bootstrap estimates, although the
variance of the conditional estimates is wide with a long up-
per tail indistinguishable from that of the naı̈ve estimates
(supplementary Figs. S3 and S5). This method tends to be
unsatisfactory for bias reduction of false-positive associations
(supplementary Figs. S4 and S6) and true-positive SNPs with
power less than 50% (Table 2). The SS bootstrap estimates are
less biased than the conditional likelihood estimates (Table
2). For SNPs with power greater than 50%, the SS bootstrap
yields estimates closer on average to the true underlying ge-
netic effect than the GW bootstrap, but the SS bootstrap
estimates have increasingly positive bias as power falls below
50% and the majority of the SS estimates are larger than the
marginal fitted effect size (Table 2, supplementary Figs. S7
and S8).

When power is high to detect a true-positive SNP, the SS
bootstrap estimates are closer to the marginal fitted mean
on average, but are optimistic for low power true positives
and false positives (Fig. 4). Consideration of the SS bias-
reduction term illustrates why the SS bootstrap does not
sufficiently correct a low power or false-positive SNP. In the
SS procedure, only the SNP of interest is tested in each of the
bootstrap samples. Assuming it is detected as significant in B
of the bootstraps, the effect size bias estimate (ignoring the
correlation correction) is

�SS =
1

B

B∑
i=1

(β̂Di – β̂E i)

For a false-positive SNP detected in the original sample
when threshold bias is high, both effect estimates, within-
sample and out-of-sample, will be exaggerated. Then the
bootstrap sample difference, β̂Di – β̂E i , will tend to underes-
timate the bias, and �SS will be too small.

Risk Score Estimation

Based on generating models and the mean of the naı̈ve
and GW bootstrap estimates obtained in simulation Studies
1–3 (supplementary Tables S1, S4, and S5), we calculated the
corresponding expected risk scores according to the linear
predictor equation: S =

∑m
k=1 βk × qk with βk, the logHR for

Table 3. Expected risk scores based on the naı̈ve and genome-
wide (GW) bootstrap mean logHR estimates from 5,000 simulation
datasets compared to the risk score based on the generating values

Expected risk score

Simulation
study

Bootstrap
P-value

threshold Generating Naı̈ve GW
Naı̈ve – GW

difference

1 5 × 10–5 3.49 4.44 3.40 1.04
2 0.01 3.49 4.18 2.83 1.35
3 5 × 10–5 2.89 4.38 3.45 0.93

Risk scores are calculated from 15 SNPs generated to have association with risk of
severe nephropathy in a sample of 5,444 individuals. Expected scores are taken over a
hypothetical population with the same marginal allele frequencies as the sample of
5,444.

the risk allele of SNP k, as specified in the generating model
or as determined by the mean naı̈ve or GW bootstrap es-
timate from the simulations. Here, qk is the expected value
of an additively coded genotype for the risk allele, and un-
der Hardy-Weinberg equilibrium, qk = 2p k, where p k is the
risk allele frequency. Overall, the naı̈ve expected risk score
overestimates the risk score under the generating model, and
the GW bootstrap expected risk score is closer to the gen-
erating risk score, but can over or underestimate depending
on the P-value threshold, and the risk allele frequency in the
generating model (Table 3).

Discussion

BR-squared computation time scales linearly with the
number of individuals and the number of SNPs [Sun et al.,
2011]. BR-squared is implemented to utilize a single com-
puter with multiple CPUs or a heterogeneous computer clus-
ter. In the DCCT/EDIC application, the CPU time for GW
bias-reduction using the R plug-in with the BR-squared soft-
ware for a sample of 1,361 individuals, 1,213 SNPs, and B(k)

= 100 bootstrap samples at the 1% significance level, was 9
min on a quad-core 2.33 GHz processor. The method can
be equally well applied in single SNP regression models with
covariates, for example, multivariable models that include
nongenetic covariates. At present, use of an R Cox PH sur-
vival model plugin called from the BR-squared software is
relatively slow compared to the built-in logistic and linear re-
gression analysis. For example, we previously reported total
CPU time requirements of less than an hour for point esti-
mation in a typical GWAS of 2,000 individuals and 1 million
SNPs [Sun et al., 2011]. Computation time could be sub-
stantially improved by building a survival analysis function
directly into the software. Moreover, to reduce computation
in GWAS with little compromise in estimation accuracy [Sun
et al., 2011], the top command in the BR-squared software
provides an option to include only the top ranked 5–10% of
the original set of GWAS SNPs in the bootstrap averages (e.g.,
25–50 thousand SNPs in a GWAS of 500,000 SNPs). The cur-
rent BR-squared implementation requires data formats with a
single record per individual which precludes the use of meth-
ods for the analysis of survival data with time-dependent co-
variates, repeated measures longitudinal data, or family data
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Figure 4. Simulation Study 1 relative mean bias comparison of the genome-wide (GW BR2) and single-SNP (SS BR2) bootstrap estimates with the
naı̈ve estimates for 14 SNPs with MAF � 5% generated to have association with time to severe nephropathy in a sample of 5,444 subjects. Relative
mean bias is calculated as Mean bias/mean fitted effect size, where means are taken over 5,000 replications (values derived from supplementary
Tables S1 and S3).

which typically require multiple-record file formats; we plan
to implement this extension in future versions of BR-squared.

Our findings for time-to-event traits in the candidate gene
setting are consistent with those previously reported for boot-
strap bias reduction in logistic and linear regression models
applied to disease status and quantitative traits in GWAS
[Faye et al., 2011; Sun et al., 2011]. The GW bootstrap logHR
estimates are closer to the truth than the uncorrected naı̈ve
estimates for both low and moderate power true-positive
and false-positive SNPs, but tend to be attenuated for high
power true-positive SNPs (Fig. 4). The SS methods perform
adequately for high power true-positive SNPs, but fail oth-
erwise because they do not account for GW SNP selection
and ranking competition among all SNPs. Our GW candi-
date gene simulation setup specified 19 true-positive SNPs in
14 genes, a modest proportion of the 1,441 SNPs that were
successfully typed in the original study. The effect sizes were
distributed such that empirical power to detect them at a
significance threshold of P < 5 × 10–5 ranged from 99.5%
down to 0%. In this respect, it is more similar to GWAS
than a focused candidate gene study. For SNPs with power
below 50%, the need for bias reduction was substantial and
the GW estimates had lowest mean bias. For 50–65% power,
the GW and SS estimates effectively reduced bias, with the SS
estimates being optimistic and the GW estimates pessimistic.
Above 65% power, the SS estimates reduced bias adequately
on average without under-correction.

As an example of the consequences for replication study
sample size determination, consider the results of simulation
Study 1 for the SNP with MAF = 15.0% and empirical power
of 52% at P < 5 × 10–5 (row 5 of Table 2). The mean naı̈ve, SS
bootstrap, and GW bootstrap logHR estimates are 0.31, 0.29,
and 0.24, respectively. Given an underlying marginal logHR
of 0.27, a replication study with 630 events would have 80%
power to detect an association at P < 0.01 (power approxi-
mation given in the Supporting Information). A replication
study with 480 events designed using the naı̈ve estimate would
have 66% expected power to detect this SNP, while a study
with 545 events based on the SS bootstrap estimate would
have 72% power to detect this SNP but only 47% power to
detect the next ranked SNP (row 6 of Table 2, empirical power
of 50%). A study with 800 events based on the GW bootstrap
estimate would provide more than adequate power (90%) to
detect this SNP and higher ranked SNPs, and 67% power to
detect the next ranked SNP.

The GW bootstrap estimator is influenced by the compo-
sition of the set of genotyped SNPs, including the number of
SNPs tested, the relative proportions of null and true-positive
SNPs, and the distribution of effect sizes. In the GW boot-
strap procedure, all the SNPs are tested for association with
the trait in each bootstrap sample, which mimics the original
GW scan. In BC of the bootstrap samples, a true-positive SNP
detected with high power in the original sample will be top
ranked, but due to sampling variation, in BC∗ of them a null
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or a lower powered SNP is significant and top ranked. The
GW bootstrap estimates the bias by:

�G W =
B C

B
�C +

B C∗

B
�C∗

where �C = 1
B C

∑
i∈C (β̂Di – β̂E i) ≈ �SS and �C∗ = 1

B C∗∑
i∈C∗ (β̂Di – β̂E i) (ignoring the correlation correction). The

�C∗ term will tend to be greater than zero because when the
effect estimate of a null or lower power SNP selected in a boot-
strap sample is exaggerated by selection, β̂Di > β̂E i . However,
unless a study is so well powered that a true-positive SNP is
detected and accurately ranked in nearly all of the bootstrap
samples, the �GW bias estimate will tend to underestimate
the effect size.

It follows that the performance of the methods can depend
on the set of candidate genes chosen for the discovery study.
If a well-informed choice of candidate genes enriches the dis-
covery study for true-positive SNPs with good association
signals, then the accuracy of the GW method is improved
for a true-positive SNP, and retained for a false-positive SNP.
Even if null SNPs are eliminated, selection bias can remain
among the true-positive SNPs and be reduced by application
of the GW method. Good prior knowledge, whether based
on genetic information or knowledge of biology or pathways,
is helpful to the extent that it identifies a strong set of can-
didate genes with a smaller proportion of null associations.
The accuracy of the SS method for an SNP of interest, which
does not use information from any other SNPs, depends only
on the magnitude of the association effect size and associated
power for that SNP. Our discussion here is limited, but sug-
gests that information about the GW distribution of effect
estimates for a given trait, i.e., genetic architecture, may be
informative for method choice.

For any particular SNP association detected in analysis of a
single discovery dataset, it is important to keep in mind that
we cannot tell whether it is a true or a false positive; when
power is low, a large logHR can be observed in either case
(see supplementary Fig. S1, for example). In principle, any
bias-reduction method, including the bootstrap procedures,
cannot distinguish between true- and false-positive detec-
tions. When the proportion of true positives is expected to
be small and false positives are of concern, we recommend
use of GW bootstrap estimates when multiple SNPs are be-
ing considered for replication. Providing feasibility is not in
jeopardy, conservative estimates may give a better sense of the
prospects for successful replication. Replication studies often
aim to replicate multiple top SNPs, so sufficient power for
lower ranked SNPs (smaller effect or small MAF) is critical
and conservative estimates for the high-powered SNPs is less
of a concern.

In summary, statistical detection of the association of a
putative disease susceptibility genetic variant with a complex
trait is typically followed by estimation and interpretation
of the parameter estimate describing the association. The
accuracy of this estimate plays a critical role in the successful
design of replication studies and in achieving the goal of
reproducibility. Bootstrap bias-reduction methods provide

a general, highly adaptable approach to improve accuracy
and guide study design for the conventional approach of
one-at-a-time SNP association analysis. The GW bootstrap
estimator also shows some promise for utility in the con-
struction of accurate polygenetic risk scores based on single
SNP effect estimates and related multiparameter prediction
approaches.
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