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Abstract: Colorectal cancer (CRC) is one of the most common causes of cancer mortality in the world.
The incidence is related to increases with age and western dietary habits. Early detection through
screening by colonoscopy has been proven to effectively reduce disease-related mortality. Currently,
it is generally accepted that most colorectal cancers originate from adenomas. This is known as the
“adenoma–carcinoma sequence”, and several studies have shown that early detection and removal of
adenomas can effectively prevent the development of colorectal cancer. The other two pathways for
CRC development are the Lynch syndrome pathway and the sessile serrated pathway. The adenoma
detection rate is an established indicator of a colonoscopy’s quality. A 1% increase in the adenoma
detection rate has been associated with a 3% decrease in interval CRC incidence. However, several
factors may affect the adenoma detection rate during a colonoscopy, and techniques to address
these factors have been thoroughly discussed in the literature. Interestingly, despite the use of these
techniques in colonoscopy training programs and the introduction of quality measures in colonoscopy,
the adenoma detection rate varies widely. Considering these limitations, initiatives that use deep
learning, particularly convolutional neural networks (CNNs), to detect cancerous lesions and colonic
polyps have been introduced. The CNN architecture seems to offer several advantages in this field,
including polyp classification, detection, and segmentation, polyp tracking, and an increase in the rate
of accurate diagnosis. Given the challenges in the detection of colon cancer affecting the ascending
(proximal) colon, which is more common in women aged over 65 years old and is responsible for
the higher mortality of these patients, one of the questions that remains to be answered is whether
CNNs can help to maximize the CRC detection rate in proximal versus distal colon in relation to a
gender distribution. This review discusses the current challenges facing CRC screening and training
programs, quality measures in colonoscopy, and the role of CNNs in increasing the detection rate of
colonic polyps and early cancerous lesions.

Keywords: deep learning; convolutional neural network (CNN); colonic polyps; colorectal cancer;
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1. Introduction

Colorectal cancer (CRC) is responsible for approximately 10% of cancer-related mortality in
western countries and is considered the second leading cause of death from cancers in the United
States and the United Kingdom [1]. Approximately more than half of these cancers occur in developed
countries. However, there are significant geographical variations in the incidence and mortality of
CRC, with the highest estimated rates in the Australia and New Zealand region (age-standardized
incidence rates of 45 per 100,000 and 32 per 100,000 in males and females, respectively), and the
lowest estimated rates in western Africa (approximately 4 per 100,000) [1,2]. Several risk factors have
contributed to the progressive increase in incidence of CRC, including advancing age, western dietary
habits, smoking, a sedentary lifestyle, and obesity [3]. Those with long-standing inflammatory bowel
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disease, a family history of CRC, familial adenomatous polyposis, or hereditary non-polyposis colon
cancer (HNPCC) have a greater risk of developing CRC. A personal history of colorectal adenomatous
polyps is another important risk factor. Adenomas of the colon are a precursor to CRC in the majority
of cases. Adenomas are estimated to be present in 20–53% of the U.S. population older than 50 years of
age, and adults have approximately a 5% lifetime risk of developing adenocarcinomas [4].

Colonic adenomas may be flat, sessile, sub-pedunculated, or pedunculated. According to current
opinion, CRC can develop via three different pathways [5]. First, approximately 50–75% of all CRCs
evolved from conventional adenomas through chromosomal instability pathways or microsatellite
instability pathways, resulting in gene mutations in a process referred to as the adenoma-to-carcinoma
sequence. At the molecular level, these changes involve the Wnt pathway, TP53, KRAS, and BRAF
mutations as the underlying pathophysiological mechanisms. In the absence of signal transduction
pathways such as Wnt, the binding of the APC tumor suppressor protein to beta-catenin produces a
destruction complex [6,7], and the formation of phosphorylation of beta-catenin by GSK3β, resulting
finally in degradation into the proteasome [6]. A cascade of events take place, resulting in the
disruption of the APC/axin 1/GSK3β complex and cytoplasmic accumulation of unphosphorylated
beta-catenin [6,8]. The changes downstream are related to cell-cycle regulation or apoptosis. More
recently, attention has been paid to microsatellite instability. A fraction develops cancerous changes
through an alternative hypermutation pathway, resulting in the alteration of protein products and the
development of high-frequency microsatellite instability. The second pathway is the “Lynch syndrome”
mutator route (3–5%). While Lynch syndrome has historically been referred to as a “non-polyposis”
syndrome, a subset of patients actually present with an attenuated polyposis-like phenotype [9]. The
third pathway involves the sessile serrated pathway (15–20%). Sessile serrated polyps are usually found
in the ascending (proximal) colon. These lesions are heterogeneous, yet can be differentiated from
conventional adenomas. They have saw-toothed and luminal serrations with dilatations in the bases
of the colonic crypts. Serrated polyps can be classified into three different types: hyperplastic polyps,
sessile serrated adenomas/polyps, and traditional serrated adenomas. The latter two types of lesions
are associated with CRC development [10]. Factors that increase their risk of being cancerous are an
increase in the polyp size, advanced age, a history of smoking, a family history of cancer, and non-use of
nonsteroidal anti-inflammatory drugs (NSAIDs) [11]. Interestingly, two studies reported a significant
reduction in colorectal cancers in the left colon as compared to the right colon. The differences in
mortality could be related to a significant proportion of missed adenomas/polyps, particularly sessile
serrated polyps, during primary colonoscopy [12,13].

This review focuses on colonic polyps (adenomatous polyps) and the factors that increase their
risk of becoming cancerous, the significance of screening for CRC, colonoscopy training programs,
quality measures in colonoscopy, the current opinion on the role of convolutional neural networks
(CNNs) in the early detection of colonic polyps and cancerous lesions, and future research directions
in this field.

2. CRC Screening and Surveillance

Colonoscopy is the cornerstone of CRC screening programs. It can enable the early detection
of cancerous lesions or be used as a follow-up to another screening test. Adhering to the nationally
recognized guidelines for determining the interval between colonoscopies helps to minimize the
development of cancer [14]. However, the challenge we currently face is that of “interval CRCs”,
which have been defined as “colorectal cancer diagnosed after a screening or surveillance exam in
which no cancer is detected, and before the date of the next recommended exam”. These cancers are
believed to arise from serrated polyps and have mostly been found in the proximal colon [15,16]. They
account for 3.4–9% of all cases of CRC. The possible explanation for an “interval CRC” may include (1)
the predecessor polyp being too small on initial examination and thus challenging to detect, (2) the
patient being inadequately prepared for the colonoscopy, (3) the cecum being incompletely visualized
(the failure of colonoscopists to routinely intubate the cecum is a known reason limiting colonoscopy
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outcomes and effectiveness), (4) difficulty in pathological interpretation, and (5) the polyps being
inadequately resected [17]. Studies using tandem colonoscopy (studies in which patients undergo a
colonoscopy twice in the same day) have provided strong evidence that colonoscopists miss small
colorectal polyps and even larger polyps [18]. In Hixson et al., a prospective tandem colonoscopy
study was performed by two alternating examiners to determine the proportion of polyps missed
during a colonoscopy examination. The study comprised 90 patients, and three groups were identified
on the basis of lesion size. In the first group, a total of 58 lesions were detected in 31 patients, where
no neoplastic lesion greater than or equal to 10 mm in size was missed. In the second group, 16% of
lesions/neoplastic polyps less than or equal to 5 mm in size were missed by the first examiner. In the
third group, 12.3% of the medium-sized (6–9 mm) neoplastic polyps were missed by the first examiner.
The authors concluded that even an experienced colonoscopist is likely to miss approximately 15%
of the colorectal neoplastic polyps that are less than 10 mm in size in the setting of adequate bowel
preparation. However, polyps greater than or equal to 10 mm were rarely missed [19]. The study
showed that a colonoscopy is a highly operator-dependent procedure with respect to the detection
of colonic polyps/lesions. Accumulated data since then suggest that endoscopist-related factors
are responsible in over 75% of interval cancers, including missed lesions or incompletely resected
lesions [20,21]. These concerns have triggered an emphasis on improving the quality of colonoscopies
and training programs in this area, and hence reducing CRC incidence.

3. Quality Measures in Colonoscopy

Quality assurance in colonoscopy has emerged as a necessity over the last decade. As stated
above, this is based on evidence from several studies that show that colonoscopy outcomes are
operator-dependent, and that some colonoscopists miss more polyps than others. The research on
quality measures for colonoscopies continues to evolve, particularly with respect to the advantages
and limitations of each measure and the degree to which each measure can reduce the burden of CRC;
it is recommended that each endoscopist’s colonoscopy performance should be tested regularly. There
is general agreement that three main measures warrant consideration.

The first measure is the adenoma detection rate (ADR), which is defined as the proportion of
screening colonoscopies where at least one adenoma is detected. The current ADR benchmarks are
20–25% or higher for men and 15% or higher for women [22]. This measure is considered to be
the most reliable and practical surrogate quality metric [22–24]. The significance of ADR has been
demonstrated; for example, a patient scoped by a colonoscopist with an ADR of <20% was found to
have a 10 times higher risk of post-colonoscopy cancer than when scoped by a colonoscopist with
an ADR of >20% [25,26]. Interestingly, the ADR significantly increases when gastroenterologists
are aware that they are being monitored, which highlights the significance of effective mentoring in
training programs.

The second measure is the cecal intubation rate. This is a quality metric that is used to ensure
that a colonoscopist has the ability to perform a complete examination of the cecum in almost all
procedures. For the current benchmark, colonoscopists must demonstrate the ability to intubate the
cecum in 90% or more of all examined cases. Interestingly, patients who underwent an examination
by colonoscopists whose cecal intubation rates were 95% or higher were found to be less likely to
have interval cancers, compared with patients who underwent an examination by colonoscopists
whose intubation rates were less than 80%. Therefore, evaluating the cecal intubation rate is another
important metric in assessing colonoscopy quality [27,28].
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The third measure is the withdrawal time (WT). This metric is used to evaluate whether a
colonoscopist has spent sufficient time to perform a thorough mucosal examination between intubating
the cecum and removing the colonoscope from the patient. The current benchmark for withdrawal time
is 6 min or more in examinations where no biopsies or polypectomies are performed [29]. Variability
in colonoscopy outcomes was associated with the examination technique used during withdrawal [30].
Another study showed that the colonoscopy WT is shorter than is recommended in unmonitored
gastroenterologists. However, the WT increases when gastroenterologists are aware that they are
being monitored. Therefore, the implementation of systematic monitoring and an analysis of each
endoscopist’s WT records may help to increase the ADR [31]. The results of a recent study involving
31,000 colonoscopies suggest that the WT has value as a quality metric [32].

Other measures of quality in colonoscopy include the accreditation and professional registration
of the center, the number of performed colonoscopies, the number of conducted polypectomies,
the comfort score (defined as the percentage of colonoscopies in which the participant experiences
moderate or severe discomfort according to the Gloucester Comfort Scale: expected minimum <10%),
and complication rates during colonoscopy (defined as the percentage of colonoscopies performed by
the colonoscopist in which complications occur up to 30 days after the procedure). These complications
include perforation rates associated with the colonoscopy, polypectomy bleeding, and the polypectomy
perforation rate [33,34].

These measures of colonoscopy quality have been shown to be useful in assessing colonoscopists’
performance and in planning training programs to individualize feedback depending on deficiencies
found in the evaluation. However, there is a need for studies that assess their long-term impacts on
CRC incidence and mortality. To date, these measures have not resolved difficulties in discriminating
between hyperplastic polyps and adenomas using conventional white-light observations and
chromoendoscopy [35]. Current research is exploring whether deep learning, particularly convolutional
neural networks, can help to overcome these challenges.

4. Convolutional Neural Networks

Convolutional neural networks (CNNs), which form a division of deep learning architecture, were
initiated by the discovery of “natural visual perception” mechanisms in animals. The story dates back
to the early 1960s when David Hubel and Torsten Wiesel made a breakthrough discovery in the visual
system, the visual cortex, and visual processing at Harvard University. Their discovery triggered much
research in the area that earned them the Nobel Prize in Physiology in 1980 [36]. Their finding and the
recording of electrical activity in individual neurons in the brains of cats inspired further research,
including that of Kunihiko Fukushima in 1980 and LeCun et al. in 1990. The work of Fukushima
at the Nippon Hoso Kyokai (NHK) Broadcasting Science Research Laboratories, Tokyo, Japan, led
to the proposal of “neocognition”, a mechanistic self-organizing neural network model for pattern
recognition [37]. Yan LeCun et al. outlined the CNN framework [38]. Their innovation was developed
further by introducing an artificial neural network system comprising multi-layers, called LeNet-5.

Approximately 16 years later, several studies explored these ideas and several methods
were established to solve challenges in training deep learning CNNs. For example, the work of
Krizhevsky et al. at the University of Toronto, Canada, produced a significant improvement in image
classification through the introduction of AlexNet [39]. Further research enabled the development of
ZfNet, VGGNet, GoogLeNet, and ResNet [40].

ResNet has been shown to have approximately 20 times the deep learning capability of AlexNet,
and 8 times that of VGGNet [41]. Despite these differences, the basic components of a CNN are similar.
For example, LeNet-5 comprises three levels of layers, namely the convolutional layer, the pooling
layer, and the fully connected layer.

Over the last six to seven years, there has been significant improvement in CNNs. The current
applications of CNNs in the detection of colonic polyps and other medical images can be summarized
as follows:
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1. Image classification: AlexNet was the first CNN architecture that was capable of image
classification. The classification methods are based on sharing information using a hierarchy of
classes. Some methods are based on the decomposition of a task into a series of steps, which
led gradually into fine category classifiers and further processing. This architecture is known as
the coarse-to-fine classification model. Other methods are based on subcategory classification.
For example, a CNN architecture could provide a system for colorectal polyp grouping into
subcategories that increases the rate of correct diagnosis and improves the quality of colonoscopic
examinations. A study by Komeda et al. showed that the accuracy of the 10-fold cross-validation
was 0.751, where the accuracy is measured as the ratio of the number of correct answers to the
total number of answers produced by the CNN. This means that the decisions made by the CNN
were correct in 7 of 10 cases [42]. Studies on use of CNN models for the automatic detection,
segmentation, and histological examination of colonic polyps [42–54] are summarized in Table 1.

2. Object detection: This involves the use of CNNs in the detection and localization of objects. The
methods that are currently used are based on obtaining generic measurements to test whether
a sampled window is a potential object or not, and further pass the proposed output object
to a more sophisticated detector to differentiate between a specific object and the surrounding
background. This method constitutes the basis of the use of CNNs for automatic polyp detection
and localization [44–47]. This involves finding the exact position of a polyp within an image,
despite challenges in terms of size, shape, texture, and color, in addition to challenges with the
camera’s viewpoint, light conditions, and reflection, as well as other significant obstacles for
polyp localization during a colonoscopy. The accuracy provided by a CNN in this regard could
help to reduce the polyp miss-detection rate and improve the diagnostic accuracy and quality
of colonoscopies.

3. Object tracking: This function relies on how robust the representation of the target’s appearance
is against challenges, such as viewpoint changes, illumination changes, or occlusions. The CNN
architecture is built to discriminate object patches from their surrounding background using all of
the available low-level cues. Consequently, the CNN architecture is able to classify image frames,
including distinguishing polyp parts from normal non-polyp image frames. Thus, it can be used
to improve a colonoscopy’s diagnostic performance [48,54].

4. Visual saliency detection: This technique aims to localize important regions or cues in an image.
This function could help to identify specific changes that could confirm a clinical diagnosis.
Another related feature is known as sparse representation, which comprises the ability to perform
sparse representation tasks (improving image quality by producing new versions, including
image denoising, super-resolution, and compressive sensing). These functions are essential to
increasing the accuracy and discriminatory capabilities of the CNN architecture. An example is
the reconstruction of images and the ultra-magnification of a tissue type and nuclear features
followed by a machine-learning analysis and segmentation [49,50,52,53].
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Table 1. Summary of research assessing the role of convolutional neural networks (CNNs) in polyp classification, localization, and detection.

Author (Year) * Study Goal/Research Question Method Used/
Dataset Links/Other Links Main Findings Accuracy Method Used University. Institute,

City (Country) **

Komeda et al.
(2017) [42]

Can a computer-aided diagnosis
(CAD) based on CNN enable
classification and diagnosis of
colonic polyps?

Convolutional neural network (CNN)
with a computer-aided diagnosis
(CAD) system and artificial intelligence
used to study endoscopic images.

The decision by the CNN was correct
in 7 of 10 cases.

The system may be useful for
rapid diagnosis of colorectal
polyp classification.
Further studies are needed to
confirm the effectiveness of a
CNN-CAD system in routine
colonoscopy.

Kindai University
Faculty of Medicine,

Osaka-Sayama
(Japan).

Ribeiro et al.
(2016) [43]

Explore databases’ deep learning
for the automated classification of
colonic polyps.

Distinct architectures “off-the-shelf”,
pretrained CNNs tested on an
8-HD-endoscopic image.
1200 images extracted from
colonoscopy videos.

CNNs trained from scratch can be
highly relevant for automated
classification of colonic polyps.

Not tested.
The results were compared with
some commonly used features of
colonic polyp classifications.

University of Salzburg,
Salzburg, (Austria).

Urban et al.
(2018) [44]

Test the ability of computer-assisted
image analysis with CNN to
improve polyp detection.

CNN tested 20 colonoscopy videos, a
total of 5 h.S.A.AS
Video available at: http://www.igb.uci.
edu/colonoscopy/AI_for_GI.html
Supplementarymaterial at https:
//doi.org/10.1053/j.gastro.2018.06.037.

Four expert reviewers of the videos
identified eight additional polyps
without CNN assistance that had not
been removed and identified, and an
additional 17 polyps with CNN
assistance.

The CNN identified polyps with
an area under the receiver
operating characteristic curve of
0.991 and an accuracy of 96.4%.
The CNN had a false positive rate
of 7%.

University of
California, California
(The United States).

Qadir et al.
(2019) [45]

Improve the overall performance of
CNN-based polyp detection on
colonoscopy images.

The method comprises two stages: a
region of interest proposed by CNN
detector, and a false positive reduction
unit.

The bidirectional temporal information
in the system design helped in
estimating polyp positions and
predicting false positives (improved
sensitivity and precision).

Specificity improved compared to
convolutional false positive
learning methods.

University of Oslo,
Oslo (Norway).

Billah et al.
(2017) [46]

Can an automated system support
in gastrointestinal polyp detection?

CNN combined with a linear support
vector machine (SVM).
Most of the data were collected from
the Department of Electronics,
University of Alcala, at http://www.
depeca.uah.es/colonoscopy-dataset/.
Also, Endoscopic Vision Challenge at
http://polyp.grand-challenge.org.
databases.

The computer-aided polyp detection
reduced the rate of missing polyps and
assisted in finding colonic regions to
pay attention to.

The proposed system
outperforms the state-of-the-art
methods, gaining accuracy of
98.6%, sensitivity of 98.8%, and
specificity of 98.5%.

Mawlana Bhashani
Science & Technology
University, Tangall
(Bangladesh).

Zhang et al.
(2017) [47]

Developing a fully automatic
algorithm to detect and classify
hyperplastic and adenomatous
colorectal polyps.

A novel transfer learning application is
proposed utilizing features learned
from big non-medical data sets with
1.4–2.5 million images using deep
convolutional neural network.

The method identified polyp images
from non-polyp images in the
beginning, followed by predicting the
polyp histology.
Automated algorithms can assist
endoscopists in identifying polyps that
are adenomatous but have been
incorrectly judged as hyperplasia.

Compared with visual inspection
by endoscopists, the results of the
study show that the method has
similar precision (87.3% versus
86.4%), but a higher recall rate
(87.6% versus 77.0%), and a
higher accuracy (85.9%
versus 74.3%).

The Chinese
University of Hong
Kong, Shatin
(Hong Kong).

http://www.igb.uci.edu/colonoscopy/AI_for_GI.html
http://www.igb.uci.edu/colonoscopy/AI_for_GI.html
https://doi.org/10.1053/j.gastro.2018.06.037
https://doi.org/10.1053/j.gastro.2018.06.037
http://www.depeca.uah.es/colonoscopy-dataset/
http://www.depeca.uah.es/colonoscopy-dataset/
http://polyp.grand-challenge.org.databases
http://polyp.grand-challenge.org.databases


Medicina 2019, 55, 473 7 of 13

Table 1. Cont.

Author (Year) * Study Goal/Research Question Method Used/
Dataset Links/Other Links Main Findings Accuracy Method Used University. Institute,

City (Country) **

Blanes-Vidal
et al. (2019) [48]

Examine two proposed innovative
science algorithms to improve
acquisition and analysis of data
obtained from capsule endoscopy
on colorectal polyps

Data from the Danish National
Screening Program colorectal capsule
endoscopy (CCE) and colonoscopy and
histopathology of all polyps were used.
The algorithm system developed
matched CCE and colonoscopy polyps.
The deep CNN enabled autonomous
detection and localization of polyps.

The system was able to objectively
quantify similarities between CCE and
colonoscopy polyps.

Compared to previous methods,
the new algorithm showed an
accuracy >96%, sensitivity of
97%, and specificity of 93%.

University of
Southern Denmark,
Odense, (Denmark).

Haj-Hassan et al.
(2017) [49]

Can CNN predict tissue types
related to colorectal cancer
progression?

CNN and multispectral biopsy images
of 30 patients with colorectal cancer
images at three different
histopathological stages.

CNN has demonstrated the ability to
detect colorectal cancer types of tissues
with accuracy.

The accuracy was 99.2%,
outperforming existing
approaches based on traditional
features extraction and
classification techniques.

University of Lorraine,
Metz, Lorraine
(France).

Kainz et al.
(2017) [50]

Assess the ability of deep learning
for segmentation of glands and
classification to differentiate
between benign and malignant
tissues of the colon.

Deep neural-based approach designed
for segmentation and classification of
glands in colonic tissues into benign or
malignant.
Dataset publicly available at
http://www.warwick.ac.uk/bialab/
GlasContest.
Trained models of the deep convolution
net available at http://github.com/
pkainz/glandsegmentation-models.
Input data and evaluation scripts are
available at http://www2.warwick.ac.
uk/fac/sci/dcs/research/tia/glascontest.

The model demonstrated the ability to
differentiate between benign and
malignant colonic tissues with high
accuracy.

The segmentation performance
and tissue classification accuracy
has been 98% and 95%,
respectively.

University of Zurich,
ETH Zurich, Zurich
(Switzerland).

Mahmood and
Durr (2018) [51]

Present a method using
CNN-conditional random field to
reconstruct topography of colonic
mucosa from convolutional
colonoscopy images.

The authors trained the unary and
pairwise functions of conditional
random field integrated in a CNN
system and using data generated from
endoscopic images.

The estimated depth maps can be used
in reconstructing the topography of
colonic mucosa.

Not tested.
The system can be integrated into
existing endoscopy system and
the algorithm enables detection,
segmentation, and classification
of polyps.

Johns Hopkins
University, Baltimore,
MD, USA.

Sirinlukunwattana
et al. (2016) [52]

Detection and classification of
histopathology images of colorectal
cancerous tissues among locality
sensitive deep learning.

A spatiality constrained convolutional
neural network (SC-CNN) was used to
perform nucleus detection, and for
classification a novel neighboring
ensemble predictor (NEP) coupled
with CNN was proposed.

A large dataset of images of colorectal
adenocarcinoma cells (20,000
annotated-nuclei belonging to four
different patients).

The method produced the highest
average F1 score, as compared to
other recently published
approaches.

University of Warwick
(The United
Kingdom).

http://www.warwick.ac.uk/bialab/GlasContest
http://www.warwick.ac.uk/bialab/GlasContest
http://github.com/pkainz/glandsegmentation-models
http://github.com/pkainz/glandsegmentation-models
http://www2.warwick.ac.uk/fac/sci/dcs/research/tia/glascontest
http://www2.warwick.ac.uk/fac/sci/dcs/research/tia/glascontest
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Table 1. Cont.

Author (Year) * Study Goal/Research Question Method Used/
Dataset Links/Other Links Main Findings Accuracy Method Used University. Institute,

City (Country) **

Men et al.
(2017) [53]

Propose a novel deep dilated
convolutional neural network (DD
CNN)-based method for fast and
consistent auto-segmentation in
colorectal cancer.

Deep dilated convolutional neural
network (DD CNN).

Deep dilated convolutional neural
networks (DD CNN) can be used with
accuracy and efficiency to contour and
streamline radiotherapy.

The proposal outperformed
U-Net for all segmentations.
The average Dice similarity
coefficient (DSC) was 3.8% higher
than that of U-Net.

National Cancer
Center Chinese
Academy of Medical
Sciences and Peking
Union Medical
College, Beijing
(China).

Shin et al.
(2016) [54]

Apply a region-based CNN
architecture in automatic detection
of polyps in the images obtained
from colonoscopy examinations.

A deep-CNN model was used in the
detection system. Image augmentation
strategies were tested for training deep
networks. Two post-learning methods
were integrated to detect false positives
and enable reliable polyp detection.

The system improved detection
performance of colonic polyps. Not measured.

Norwegian University
of Science and
Technology,
Trondheim, (Norway)

* Only full papers published in peer-reviewed journals were included. Conference proceedings and abstracts were not included. ** The University of the first author was stated.
Abbreviations: CAD = computer-aided diagnosis; CNN = convolutional neural network; DD CNN = deep dilated convolutional neural networks; DSC = Dice similarity coefficient;
SVM = support vector machine (see Appendix A).



Medicina 2019, 55, 473 9 of 13

5. Clinical Applications of CNNs in Colonic Polyps

Table 1 summarizes the role of convolutional neural networks (CNNs) in polyp classification,
localization, and detection. Thirteen studies were identified. These studies were created, as per the first
author, by universities from the United States [44,51], Norway [45,54], Austria [43], Bangladesh [46],
China [53], Denmark [48], France [49], Hong Kong [47], Japan [42], Switzerland [50], and the United
Kingdom [52]. All studies used a convolutional neural network and were published in the year 2016
(n = 2), 2017 (n = 6), 2018 (n = 3), and 2019 (n = 2). The clinical applications that use a CNN for the
early detection of CRC can be grouped into the following: (i) identification and classification of colonic
polyps [42–48,54], (ii) prediction of tissue type and sequestration of glands [49], (iii) differentiation
between benign and malignant lesions [50], (iv) histological classification of histopathological images of
CRC by a CNN [52], (v) segmentation of CRC [53], and (vi) topography reconstruction of colonic mucosa
from CNN images [51]. The CNNs that were used in the studies included the VGG-VD, the CNN-F
(fast CNN), the CNN-M (medium CNN), the CNN-S (slow CNN), AlexNet, and GoogLeNet—one
of the largest and most complex architectures. A study by Ribero et al. [43] showed that the features
of “off-the-shelf” CNNs may be well-suited to the automatic classification of colonic polyps, even
with a limited amount of data. These findings in relation to the classification of colonic polyps have
been confirmed by other studies [42,44–48,54]. The sensitivity and accuracy of CNNs in the studies
varied. One CNN identified polyps with an area under the receiver operating characteristic curve
of 0.991, with an accuracy of 96.4% and false positive results at the rate of 7% [44]. Another study
compared a visual inspection by an endoscopist and the use of a CNN, and showed that the precision
was similar (87.3% vs. 86.4%, respectively), but the recall rate when the CNN was used was higher
(87.6% vs. 77.0%, respectively), and the accuracy rate was higher with the CNN (85.9% vs. 74.3%,
respectively) [47]. The study by Blanes-Vidal et al. compared the results from a new algorithm with
those from previously reported methods and showed an accuracy of >96%, a sensitivity of 97%, and a
specificity of 93% [48]. The study by Haj-Hassan et al. presented a method with an accuracy of 99.2%
and results that showed that the method outperformed existing approaches based on traditional feature
extraction and classification techniques [49]. The segmentation performance and tissue classification in
the study by Kainz et al. were 98% and 95%, respectively [50]. Table 1 summarizes the findings on
accuracy in other studies.

Recent reports, such as Kim et al. in 2015, have shown that women aged over 65 years have higher
colon cancer mortality rates as compared to age-matched men, and that these women usually have
aggressive cancer that affects the right (proximal) colon. Several factors may be responsible for the
higher rates of proximal colon cancer in women. One of these is socio-cultural barriers that prevent
women from enrolling in screening programs and receiving an early diagnosis. A second factor could
be related to the higher incidence of colon cancer in the proximal colon because of difficulties with
detection and the higher rates of missed lesions during colonoscopies. A third factor could be related
to the fact that individuals with cancer of the proximal colon, particularly the cecum, are less likely to
present with bleeding from the rectum or abdominal pain, thus making them unlikely to seek medical
attention until the late stages of the disease [55]. With these challenges in mind, it is important to
explore strategies that enhance screening for cancer affecting the right colon. It appears that the use of
a CNN, together with a colonoscopy, may increase detection rates.

6. Future Directions

More work is required to improve the accuracy, sensitivity, and specificity of results obtained
from CNN models for the detection and classification of colorectal polyps. The next steps should also
address the following fundamental questions:

First, how much can the use of CNN architecture improve colonoscopy outcomes and quality
metrices? It is expected that we will obtain an appropriate answer to this question over the next few
years. In the meantime, we can improve the CNN architecture and compare the results obtained using
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CNN models with results obtained using other techniques developed in artificial intelligence that
could help colonoscopists to enhance their diagnostic abilities and make better clinical decisions.

Second, will the use of a CNN architecture in colonoscopy help to reduce the rates of proximal
CRC, which have currently not been reduced compared to distal CRC? This is a challenging area, and
we hope to reduce these rates through the use of CNN technology. Studies that focus on examining
this question should be given priority.

Third, will the use of a CNN architecture with colonoscopy procedures help to reduce CRC
incidence and/or mortality? This is a central question that should be answered. We also need to assess
the impact that an integration of a CNN and a colonoscopy has on reducing complications/limitations
associated with the use of a colonoscopy only.

7. Conclusions

The use of a CNN architecture along with colonoscopy procedures is expected to improve
colonoscopists’ performance, diagnostic accuracy and skills in polyp detection, classification, and
segregation. These changes could result in a higher ADR and ultimately reduce CRC incidence and
mortality. Although the use of CNNs over the last seven to eight years has shown promise, particularly
with respect to enhancing the diagnostic capabilities of colonoscopists, the reported sensitivities,
specificities, and accuracies of the CNNs in the literature vary significantly. Therefore, validation of
reported results in a large multicenter trial is needed to improve the efficacy and specificity of CNN
systems. Therefore, the use of CNNs seems to have had a significant impact in colonoscopy practice
and gastrointestinal training programs. Considering the reported challenges with the detection of
aggressive cancers affecting the ascending (proximal) colon in females, we believe that the use of
CNNs to enhance the CRC detection rates could help to resolve this issue and possibly reduce the CRC
mortality in these patients.
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