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Abstract: In this paper, we present microwave filters that are based on 6-nm-thick ferroelectric thin
films of hafnium oxide doped with zirconium (HfZrO), which are tunable continuously in targeted
bands of interest within the frequency range 0.1–16 GHz, when the applied direct current (DC) voltage
is swept between 0 V and 4 V. Here, we exploit the orthorhombic polar phase in HfO2 through a careful
doping using zirconium in an Atomic Layer Deposition (ALD) process, in order to guarantee phase
stabilization at room temperature. Polarization versus voltage characterization has been carried out,
showing a remanent polarization (Pr) of ~0.8 µC/cm2 and the coercive voltage at ~2.6 V. The average
roughness has been found to be 0.2 nm for HfZrO films with a thickness of 6 nm. The uniform
topography, without holes, and the low surface roughness demonstrate that the composition and the
structure of the film are relatively constant in volume. Three filter configurations (low-pass, high-pass,
and band-pass) have been designed, modelled, fabricated, and fully characterized in microwaves,
showing a frequency shift of the minimum of the reflection coefficient between 90 MHz and 4.4 GHz,
with a minimum insertion loss of approximately 6.9 dB in high-pass configuration.
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1. Introduction

Hafnium oxides (HfO2) have been gathering momentum in the very last years, thanks to their
versatility in being exploited for low-power electronics. One of the most appealing characteristics
of HfO2 is represented by its electrical permittivity, which can be increased while using structural
phase transformations [1]. HfO2 in its most stable phase, i.e., the monoclinic phase, has the lowest
permittivity (εr ≈ 18). HfO2 exhibits a much higher permittivity in other phases, such as cubic (εr ≈ 27)
or tetragonal (εr ≈ 70), but these phases are stable at temperatures higher than 1700 ◦C. The increasing
of the permittivity of HfO2 is of outmost importance in decreasing the effective oxide thickness (EOT)
and, thus, the leakage current, in CMOS transistors when billions of them are integrated in a single
silicon (Si) chip. The solution to decrease the temperature in order to obtain a phase transition is the
doping of very thin films of HfO2. The cubic phase was attained by doping the HfO2 with yttrium
(Y) [1], while the tetragonal phase was obtained by doping with Si [2]. However, the doping with ZrO2

of HfO2 that was grown by atomic layer deposition (ALD) [3,4] has demonstrated the possibility of
achieving the tetragonal phase of HfO2 at room temperature. The realization of a high permittivity
depends on the concentration of dopants, the annealing temperature, and the growth method; this way,
the value of the permittivity of the doped HfO2 could be increased by two–three times from εr ≈ 18 in
the monoclinic phase.
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The experience gained during years of studies in the enhancement of HfO2 permittivity is the
basis of the discovery of the orthorhombic phase that confers ferroelectric properties to HfO2. The same
dopants were used as above, but in different growth conditions, since the orthorhombic phase requires
very strict control of dopant concentration, temperature, and mechanical strain [5,6]. Cubic and
tetragonal, as well as orthorhombic polymorphs of HfO2, can be stabilized by using different dopants,
annealing procedures and layer thicknesses. This was demonstrated by ab-initio studies [7] and many
experiments reported in the review paper [8].

Nowadays, the most used HfO2-based ferroelectric is the one doped with zirconium (Zr), termed
as HfZrO. Can we further enhance the electrical permittivity of HfO2-based ferroelectrics? The answer
is positive, since, in any ferroelectric, there is a strong dependency of electrical permittivity on the
applied voltage, this property being used extensively in the case of high-frequency devices for tuning
their main characteristics [9]. We have recently shown that, in a very large band (1–8 GHz), there is an
increase of 27% of the permittivity of HfZrO when a DC bias voltage is swept in the range 0–5 V [10].
Based on these results, the aim of this paper is to show that we can tune the reflection (|S11| or |S22|) and
transmission (|S21| or |S12|) coefficients of a low-pass filter (LPF), a high-pass filter (HPF), and a band-pass
filter (BPF) when the applied DC voltage is tuned in the range 0–4 V. These circuits are of outmost
importance in many areas of wireless communications where filters are ubiquitous components [11].
In detail, there are some key characteristics of HfZrO thin films that make them a target material for
(potential) high-performance tunable filters. First, the proposed ferroelectric requires low values of DC
bias voltage in order to modulate its dielectric constant. The nanoscale thickness (in the order of some
nm) ensures a very large critical (coercive) electric field Ec. A direct consequence of the latter property is
the following: large values of Ec entail that small values of an external DC bias voltage (i.e., in the range
±5 V) are enough to tune ferroelectric’s permittivity. This represents a noteworthy advancement with
respect to ‘classic’ ferroelectrics, like perovskites (PZTs), as tunable microwave circuits that are based on
them need bias values in the order of tens of volts. Second, a full CMOS compatibility is guaranteed,
which allows large-scale fabrication. Third, high values of the dielectric constant represent an advantage
in designing high-frequency devices with compact dimensions, thanks to a reduction of the guided
wavelength. Besides this, the exploitation of ALD techniques gives a further improvement in the overall
fabrication process, since it provides precise control of ferroelectric’s thickness, a high homogeneity in
terms of surface roughness, and the possibility of using large-area substrates, an undoubtable benefit
when testing components for extensive measurements.

2. Materials and Methods

The key of the proposed tunable microwave filters is represented by the voltage- and frequency-
dependent dielectric constant of the HfZrO thin film. However, the extraction of the permittivity of
HfZrO in microwaves, as a function of the applied DC voltage bias, is a non-trivial problem. ‘Traditional’
methods that are used to analyse multilayer interdigital capacitors (IDCs) or coplanar waveguide (CPW)
lines (like single layer reduction or microstrip dual resonator) inevitably fail, since the nanometric scale
thickness of the HfZrO ferroelectric thin film makes it impossible to apply analytical methods. Hence,
starting from the results that were published in [10,12], via a fitting procedure exploiting electromagnetic
(EM) simulations and experiments we can derive the following equation, which expresses the dependence
of the relative permittivity ε(V) of the 6-nm-thick HfZrO on the applied voltage, at an assigned frequency:

ε(V) = [αV + εeff(0)/(εeff,bulk)1⁄2]2 + εeff(0), (1)

where 0 < α < 1 V−1 (which depends on the given frequency) is a characteristic constant of HfZrO,
whereas εeff(0) is the effective permittivity at 0 V of the HfZrO/bulk substrate, and εeff,bulk is the effective
permittivity of the sole bulk substrate. In terms of electric fields:

ε(V) = [α(Ea − Ec)t + εeff(0)/(εeff,bulk)1⁄2]2 + εeff(0), (2)
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where t is the thickness of the HfZrO thin film, Ea is the external applied DC electric field, and Ec

is the coercive field (i.e., 1–2 MV/cm for HfZrO). Equation (2) is derived in a straightforward way
from Equation (1), while taking into account that the DC voltage that is applied to the HfZrO thin
film is physically determined by both the external contribution of Ea (which can be estimated also by
static EM simulations [10,12]) and the intrinsic contribution of Ec, in order to describe the hysteretic
behaviour of the permittivity. These simple relations fit well with the experimental results, if one knows
εeff(0) and εeff,bulk (at the desired frequency) that can be easily obtained by either theoretical/simulation
results or measurements of scattering parameters. To our knowledge, this approach is the only one
feasible for characterizing the high-frequency permittivity of ferroelectric thin films, as other methods
take into account either thicker ferroelectrics in vertical capacitor-like configurations or very low
frequencies [13,14].

The substrate used for the three filters is a 6-nm-thick Zr-doped HfO2 thin film grown by ALD technique
on a 4-inch wafer of 525-µm-thick high-resistivity (HR) Si. An Oxford Instruments OpAL ALD reactor was
used for the growing of ferroelectric thin films while using Tetrakis(dimethylamino)hafnium (TDMAH,
99.99+%-Hf, <0.2%-Zr, Strem Chemicals. Inc., Newburyport, MA, USA) and Tetrakis(dimethylamino)
zirconium (TDMAZ, 99.99+%-Zr, Strem Chemicals. Inc., Newburyport, MA, USA) as metal organic
precursors. Ultra-pure water was used as the oxidant, and ultra-high purity nitrogen (Nitrogen 6.0,
99.9999 vol.%) was used as the purge and carrier gas. Prior to the ALD process, the silicon wafer
was subjected to surface cleaning treatment by exposure to UV-ozone for 15 min. at 75 ◦C, while
using an UV-Ozone cleaner (Novascan Technologies Inc., Ames, IA, USA). The ferroelectric HfO2 films
were grown by sequentially mixing the two precursors on the silicon wafer surface, in a ratio of 2:1,
followed by their oxidation to produce a homogeneous binary oxide. The binary oxide films grown
were indexed: HfZrO. The deposition was done with 56 ALD cycles at 200 ◦C. The film thickness,
as measured by X-ray reflectivity (XRR), was found to be around 6 nm. The Ti (10 nm)/Au (360 nm)
top metallic circuits (LPF/HPF/BPF) were deposited while using an Electron Beam Evaporation System
(Temescal FC2000, Ferrotec, Bedford, NH, USA), and they were photolithographically configured
using a standard lift-off process. Due to the low thickness of the HfZrO film, the Energy Dispersive
X-ray spectroscopy (EDX) technique can be considered for identifying and quantifying elemental
compositions. Figure 1 shows the EDX analysis spectrum of the 6-nm-thick HfZrO film. From the EDX
measurements, the film composition was estimated to be HfZrO as Hf0.73Zr0.27O1.85.
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Grazing incidence X-ray diffraction (GIXRD) and piezo-response force microscopy (PFM) measurements
were used in order to validate the ferroelectricity of the HfZrO thin film. GIXRD measurements
were performed while using a high-resolution X-ray diffractometer that employs Cu Kα1 radiation
(λ = 1.54 Å). The incidence angle was set to 0.35 degrees. Figure 2a shows the GIXRD spectra of the
HfZrO thin film in the wide 2θ range of 20–65◦, and indicates the coexistence of several phases in
Zr-doped HfO2 thin films. Due to the polycrystalline nature of HfZrO layers deposited by the ALD
technique, the mixed composition of orientations and phases, as well as the very small films thickness
up to ~10 nm, the structural analysis of HfZrO thin films is not an easy task. In addition, even the
GIXRD measurements cannot clearly distinguish between the orthorhombic and tetragonal structures
of HfO2 due to the structural similarities of the orthorhombic and tetragonal phases (similarities in their
lattice structures) [5]. The most intense diffraction peak is assigned as the mixture of (011) of the t-phase
and (111) of the o-phase, formed by the presence of overlapping reflections that are associated with the
tetragonal (P42/nmc) and the orthorhombic polar phase (Pca21) [6]. The formation of the orthorhombic
polar phase in Zr-doped HfO2 thin films is confirmed by the presence of the two diffraction peaks
near 2θ = 30.5◦ and 55◦ assigned to (111)o and (220)o reflections. The GIXRD spectrum also indicates
an inhibition of m-phase HfO2 that was induced by Zr doping, by presence of the significantly lower
monoclinic (111)m reflections, expected around 28◦ at 2θ angle. The inhibition of the monoclinic
reflections and the presence of the orthorhombic polar and tetragonal phases indicate that the film has
a polycrystalline structure in which the ferroelectric phase is dominant [15]. The absence of peaks due
to the Si substrate, in GXRD measurement, can be obtained by changing the orientation of the silicon
wafer in the X-ray field, so the signal on the Si substrate is suppressed. PFM measurements were
also carried out on the HfZrO thin films to further demonstrate ferroelectricity. For the manipulation
of the ferroelectric domains, the atomic force microscopy (AFM) tip was held at 0 V and a DC bias
between −10 V and 10 V was applied to the substrate during scanning. The local mechanical response
was determined by applying an alternating current (AC) bias to the AFM tip, while the substrate
was held at 0 V. Figure 2b displays the topography image together with the corresponding images of
the amplitude and phase signals, which show the intensity of the local mechanical response, and the
phase shift between the response and the excitation, respectively. The PFM measurements demonstrate
that the HfZrO film exhibits an easy switching of polarization along the poling direction, with clear
boundaries between upward and downward domains being observed in phase and amplitude images.
The phase shift differs by approximately 180◦ between the successively written areas, showing that the
fabricated HfZrO thin film is indeed ferroelectric.

In addition to PFM investigations, average roughness measurements were performed on 2 µm ×
2 µm areas. The average roughness was found to be 0.2 nm for HfZrO films with a thickness of 6 nm.
The uniform topography, without holes, and the low surface roughness, give information about the
composition and structure of the film, which are relatively constant in volume [16].

Perhaps the most recognizable electrical characterization of a ferroelectric is the hysteresis loop.
In order to test the ferroelectric behaviour of the HfZrO thin film, we obtained the polarization versus
voltage (P–V) loop. During the initial electric field cycling, the remanent polarization (Pr) was found
at ~0.8 µC/cm2 and the coercive voltage at ~2.6 V. A well-known phenomenon in ferroelectrics is the
wake-up effect, which does not appear in the case when HfZrO is grown directly on Si (as in our case)
even if the HfZrO has a thickness of 1 nm [17].

We stress here that the ferroelectric phase is assigned to the orthorhombic polar phase (o-phase)
corresponding to the Pca21 space group [18], but other phases are generally present inside the hafnium
oxide after the growth process, due to stabilization problems. At room temperature, the stable form of
the HfO2-based compounds is a monoclinic phase (P21/c, m-phase), whereas, at high-temperatures and
pressures, the tetragonal (P42/nmc, t-phase) and the cubic (Fm3m, c-phase) phases are dominant [19].
Nevertheless, for hafnium oxide films up to 10–15 nm in thickness, the transition temperatures of the
monoclinic to the tetragonal phase are significantly lowered [20]. In addition, the tetragonal and cubic
phases can be stabilized at room temperature via doping [21]. Since 2011, when ferroelectricity in
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Si-doped HfO2 thin films was first reported [5], it has been shown that many other dopants, such as Y,
Al, Zr, Gd, Yb, Sr, and La, can induce ferroelectricity in the HfO2 thin films [22]. Through a suitable
combination of doping, stress and/or electric field the tetragonal P42/nmc phase can make a transition
into the polar orthorhombic Pca21 phase [23]. Moreover, a remarkable feature is that, as the thickness
increases (>10 nm), the ferroelectricity in HfO2-based compounds disappears. Hf-based ferroelectrics
only have nanoscale ferroelectricity, where other ferroelectrics lose it [24].
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The proposed ferroelectric filter needs fulfill some basic requirements: (i) low-voltage tunability;
(ii) CMOS compatibility; (iii) compact dimensions; and, (iv) ease of fabrication, as mentioned in the
Introduction. Moreover, a reconfigurability is envisaged to switch among the low-pass, the high-pass
and the band-pass topologies. We describe the strategies adopted for each of the above constraints
hereinafter. For the low-voltage tunability, as discussed in the Introduction we exploited the ferroelectric
properties of HfZrO, which also confer CMOS compatibility and ease of integration, as a single mask is
required to deposit the metal layer onto the HRSi/HfZrO substrate. The filters’ key sub-components
are the inductors and the IDCs, with the latter working as variable capacitors (varactors) due to the
underneath ferroelectric layer. For the reconfigurability, we chose to implement a BPF made of an LPF
in series with an HPF. Between them, Single Pole Double Throw (SPDT) switches (to be integrated in the
future) will allow the reconfiguration by selecting the desired filter (i.e., the appropriate input-output
ports). The last requirement, perhaps the most critical one, is represented by the compact dimensions.
For this purpose, the adopted strategy was to start with an equivalent circuit model (using AWR
Microwave Office®) for each of the three filters and based on lumped elements. The next step was the
translation of the three circuits into their 3D EM versions in CPW technology for ease of integration in
order to take all the potential parasitic effects and EM couplings occurring in microwaves up to 20
GHz into account (using CST Microwave Studio®). Each basic filter (LPF and HPF) was implemented
by a T-network; then, as already stated, the BPF was formed by connecting the LPF (made by two
series inductances and a shunt varactor) to the HPF (made by two series varactors and a shunt
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inductor). As a major result, the BPF has much lower dimensions (3.19 mm × 3.47 mm) than the
working wavelength. The optical images of the fabricated filters and the test structures are shown in
Figure 3a–d. One can clearly distinguish the architectures of the three filters in Figure 3a–c, which are
made of sub-components in CPW technology for ease-of-embedding in integrated circuits. One can also
notice big interdigital adjustable capacitors for independent DC bias of the varactors, RF-decoupled by
λg/4-long lines (λg is the guided wavelength at 10 GHz, i.e., the reference central frequency for the
BPF). These capacitors have a capacitance of about 1 pF for the LPF and 0.3 pF for the HPF. Figure 3d
displays the test structures of the filters’ key sub-components, i.e., the inductor for the LPF, the IDC,
and the inductor for the HPF. In detail, the two series inductors of the LPF have a theoretical inductance
of 0.79 nH, whereas the shunt inductor of the HPF has a theoretical inductance of 0.3 nH, in order to
have the desired band-pass filtering in the X band (8.2–12.4 GHz). The gold has a thickness of 360 nm.
Each IDC has 30 digits, which are 100 µm long and 2.5 µm wide, with a spacing of 2.5 µm between two
adjacent digits. The overall IDC is only 147.5 µm wide.
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3. Results and Discussion

The microwave measurements were made on-wafer at room temperature using a vector network
analyser (VNA) Anritsu-37397D connected to a Karl-Süss PM5 probe station. The DC bias was provided
by a DC source and the above mentioned big interdigital adjustable capacitors, in order to separate the
DC bias from the high-frequency excitation signal.
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3.1. Extraction of Relative Permittivity and Microwave Characteristics of HfZrO-Based IDCs

The extracted curve for ε(V) at 10 GHz using Equations (1) and (2) is shown in Figure 4, which
was obtained by means of the Bianco–Parodi method described in [10] applied to two CPW lines
of different lengths, designed on a HRSi/HfZrO substrate, and fabricated in the same run together
with the structures that are presented in this work. Hence, this figure represents the value of the
bias-dependent permittivity of HfZrO at a specific frequency, irrespective of the microwave device
making use of a ferroelectric HfZrO thin film.
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Figure 4. Extracted relative permittivity of the 6-nm-thick HfZrO ferroelectric at 10 GHz, as a function
of the applied DC bias voltage in the range 0–4 V.

Figure 5 displays the measurements for a single IDC in CPW configuration in terms of its
capacitance CIDC and phase φIDC (the latter as extracted from the transmission parameter |S21| or |S12|,
which gives the proof in microwaves of the ferroelectricity of HfZrO) for three reference frequencies,
i.e., 2.5 GHz and 5.5 GHz (associated to ISM—industrial, scientific, and medical—applications), and 10
GHz. We see that, at the frequency of 2.5 GHz, the sweeping of the DC voltage from 0.5 V up to 4 V
increases the capacitance from 0.38 pF to 0.58 pF, whereas the phase decreases from 48.7◦ to 34.7◦, i.e., a
phase shift of 14◦. Increasing the frequency to 10 GHz and sweeping the DC voltage in the same range,
the capacitance increases from 0.28 pF to 0.33 pF, while the phase decreases from 11.76◦ to 5.86◦, i.e., a
phase shift of about 6◦. This trend for CIDC and φIDC is consistent with the ferroelectric nature of the
HfZrO thin film: when applying an external DC electric field Ea, the hysteric behaviour of the relative
permittivity ε is such that it reaches its maximum εmax for Ea,max , 0 V/m [14] or, equivalently, for an
applied DC bias voltage Vmax , 0 V. In the case of HfZrO, εmax ≈ 60 at Vmax ≈ ±5 V. At the same time,
the estimation of the capacitance of an IDC structure on a multi-layer substrate is quite cumbersome
from a mathematical point of view, but, as expected, an increase of relative permittivity leads to an
increase of the overall capacitance [25,26]. Also, the relation between CIDC and φIDC is of the type φIDC
= arctg(1/ωCIDC) (where ω is the angular frequency); hence, an increase of the capacitance with the DC
bias corresponds to a decrease of the phase. Table 1 summarises the main variations of CIDC, RIDC
(extracted IDC’s resistance) and φIDC at frequencies of interest. From Table 1 one can notice that CIDC
can be increased for each frequency between 20% and 53% (with respect to its minimum value at 0.5 V),
the results for the symmetric case—negative bias values—being very similar; this represents the key of
the tunability characteristics of the proposed filter. At the same time, losses also increase with the DC
bias (due to the increase of RIDC), which entails a higher insertion loss. However, as demonstrated
in [10], the effective loss tangent of a 6-nm-thick HfZrO thin film decreases with frequency (and
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increases with bias). Nevertheless, it exhibits small variations with the applied DC voltage, which
entails a lowering of the dielectric losses in the ferroelectric. Furthermore, a reduction of the skin depth
is observed in metals when increasing the frequency, which also decreases the overall power losses of
the EM waves that propagate along the single IDC. Possible countermeasures to reduce RIDC could be:
(i) increase of the number of digits (using Electron Beam Lithography techniques); and, (ii) increase
of gold thickness. These issues will be investigated in successive fabrication batches, as a trade-off

between CIDC and RIDC is needed. Besides this, it is worth noting that a peculiar characteristic of any
ferroelectric is its hysteretic nature. From the microwave point of view, when measuring the phase
of the single IDC in the band of interest, the curve does not follow the same path when decreasing
(or changing the polarity of) the applied DC voltage. In detail, when returning from ±4 V to 0 V,
the reference (initial) state at 0 V was not re-established exactly or, in other words, a (temporary) change
of the initial state has to be taken into account, together with a discharge process (with a recovery
time in the order of a couple of minutes) that is necessary to re-align the ferroelectric dipoles in the
unbiased situation.
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Figure 5. Measured capacitance (left vertical axis) and phase (right vertical axis) of the single interdigital
capacitor at three reference frequencies (2.5 GHz, 5.5 GHz, and 10 GHz) for an applied DC bias voltage
in the range 0–4 V.

Table 1. Values of CIDC (pF), RIDC (Ω), and φIDC (deg) at different frequencies for two values of the DC
bias voltage.

Frequency (GHz)
CIDC (pF) RIDC (Ω) φIDC (deg)

0.5 V 4 V 0.5 V 4 V 0.5 V 4 V

2.5 0.38 0.58 76.43 85.53 48.69 34.76
5.5 0.34 0.45 65.69 73.13 26.94 17.29
8 0.30 0.38 59.51 65.70 17.27 10.14
10 0.28 0.33 55.2 60.46 11.76 5.86
12 0.26 0.31 51.67 56.19 7.05 2.05

3.2. Microwave Measurements of the Three HfZrO-Based Filters

Finally, the three filters were measured in the frequency range 0.1–16 GHz. Here, we stress that all
three filters are deeply sub-wavelength (with overall dimension of about λ0/20 × λ0/10 for LPF and HPF,
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and of about λ0/9 × λ0/9 for BPF—where λ0 is the free-space wavelength at 10 GHz), which means that
they exhibit higher losses than off-the-shelf bulk components or, in other words, miniaturized filters
have the drawback of high losses which often require a post-amplification stage. Table 2 summarises
the main performance for each one of the three filters in terms of |S11| and |S21|, whereas Figure 6
displays the frequency shift ∆f (in GHz) for |S11| of each filter in its reference band, as a function of the
voltage difference ∆V = Vi − Vunbiased (in volts), where i = 1, 2, 3, 4, 5 and Vunbiased = 0 V (unbiased case).
The reference band is calculated when considering the frequency range in which |S11| is less than (or
equal to) −6 dB, whereas the insertion loss (IL) is calculated as IL (dB) = −log10|S21|. The reference band
for each filter was expected to cover partially (LPF) or entirely (HPF and BPF) the X band and, as one
can notice from Table 2, this requirement is fully complied with. Table 2 also shows the minimum value
of |S11| in the reference band and the best value of the IL in the X band (ILBEST,X band). The IL exhibits
high values due to the lossy nature of the three filters (as discussed before), especially for the BPF.
Nevertheless, in the case of the BPF, the X band maximum rejection (defined as the difference between
the maximum value of the IL and the IL at the edges of the X band, i.e., at 8.2 and 12.4 GHz) has a rather
good value of more than 10.8 dB. Regarding Figure 6, it shows that the frequency shift for |S11| reaches
almost 4.5 GHz at 3 V for the LPF, more than 1 GHz at 3 V for the HPF and more than 2.5 GHz at 4 V
for the BPF. This frequency shift is the main effect that is given by the HfZrO ferroelectric thin film,
since a change of maximum 8% of the effective permittivity (equivalent to a change of about 65% of the
relative permittivity) allows for changing the phase of the microwave signal when passing through the
filter (together with a moderate change of the characteristic impedance at filter’s ports, hence slightly
improving or decreasing the matching to 50 Ω). When considering the performance of the three filters
in terms of |S21| (|S12|), the most significant results were obtained for the HPF. In Figure 7, we show
the transmission coefficient at 3 V (to which corresponds the maximum value of ∆f for the HPF in
Figure 6, solid red curve): in this case, the rejection with respect to the central frequency in the X band
(i.e., 10 GHz) is about 8.7 dB at 6 GHz, 13.2 dB at 4 GHz, and 24 dB at 2 GHz. Taking the previous
discussion about the losses in the filter into account, it was expected to not have excellent values of
steepness and rejection; these issues being presently under study in successive fabrication batches,
including different dopants besides Zr.
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4. Conclusions

In this paper, we have presented three ferroelectric-based microwave filters with low-voltage
tunable characteristics, which allow for controlling the frequency shift of the reflection coefficient
and the insertion loss in a wide frequency range, covering the band from 0.1 GHz up to 16 GHz.
First, a simple yet effective mathematical relation has been derived in order to accurately predict
the voltage-dependent behaviour of the relative permittivity of HfZrO ferroelectric thin films at a
desired frequency, while taking its geometrical and physical characteristics into account. Subsequently,
the fabricated 6-nm-thick HfZrO ferroelectric layer has been exploited for the design, fabrication,
and experimental verification of a low-pass, a high-pass, and a band-pass filter embedding HfZrO-based
varactors. In spite of the low value of the maximum DC bias applied (i.e., not exceeding 4 V), very
promising tuning properties have been observed for all the filters under test, with a maximum frequency
shift of almost 4.5 GHz at 3 V for the low-pass filter. These results further open the path towards
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