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ABSTRACT

Immuno-precipitation of protein–DNA complexes
followed by microarray hybridization is a powerful
and cost-effective technology for discovering
protein–DNA binding events at the genome scale.
It is still an unresolved challenge to comprehen-
sively, accurately and sensitively extract binding
event information from the produced data. We
have developed a novel strategy composed of an
information-preserving signal-smoothing proced-
ure, higher order derivative analysis and application
of the principle of maximum entropy to address
this challenge. Importantly, our method does not
require any input parameters to be specified by the
user. Using genome-scale binding data of two
Escherichia coli global transcription regulators for
which a relatively large number of experimentally
supported sites are known, we show that �90% of
known sites were resolved to within four probes, or
�88 bp. Over half of the sites were resolved to within
two probes, or �38 bp. Furthermore, we demon-
strate that our strategy delivers significant quan-
titative and qualitative performance gains over
available methods. Such accurate and sensitive
binding site resolution has important consequences
for accurately reconstructing transcriptional regula-
tory networks, for motif discovery, for furthering our
understanding of local and non-local factors in
protein–DNA interactions and for extending the use-
fulness horizon of the ChIP-chip platform.

INTRODUCTION

Protein–DNA interactions are fundamental for cellular
function. Comprehensive and accurate knowledge of
protein-binding locations on a chromosome is a prerequis-
ite for understanding transcriptional regulation, resolving

the role of proteins in structuring the bacterial nucleoid
and eukaryotic chromatin and revealing the dynamics of
protein binding or translocations. The biological signifi-
cance of in vivo protein–DNA interactions has been re-
markably enhanced by the advent of the combination of
chromatin immuno-precipitation with DNA microarrays
(ChIP-chip) (1). In this technological framework, the
DNA in proximity to binding events is obtained by
protein–DNA complex fragmentation and immuno-
precipitation. Hybridization of this DNA to a tiled
DNA microarray produces an enrichment signal at par-
ticular locations of the chromosome. The data from a
ChIP-chip experiment is information rich in that it is a
report on quasi-digital protein–DNA binding events, but
these binding event signals are shrouded in an analog
signal due to the fact that the DNA flanking the actual
binding event is also hybridized to the microarray.
Furthermore, probe-level noise inherent in the microarray
platform has a significant negative impact on the
signal-to-noise ratio. The challenge, then, in ChIP-chip
data analysis is to identify all protein–DNA binding
events and to do so with high accuracy.

A number of methods, discussed elsewhere (2), have
been developed to analyze ChIP-chip data sets. Many
methods only aim to identify the broad regions of enrich-
ment and not the precise location of binding events.
ChIP-chip is a high-throughput technology, and to fully
leverage its capabilities requires statistical significance cal-
culations to be included with binding event information.
Few methods provide this information. Furthermore, all
available methods require user-specified parameters—such
as window sizes and cutoff values—that are difficult
for users to optimally set. As yet, there is no available
method that identifies the locations of protein–DNA
binding events with high accuracy, is sensitive to weak
signals and to closely spaced binding events, can associ-
ate statistical significance values to the identified binding
events and learns needed parameters from each
individual ChIP-chip data set instead of requiring them
as user input.
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Higher order derivative analysis has a long history in
the analytical chemical sciences (3–6), having been applied
to a large number of spectroscopic techniques (7) whose
principal commonality is that their output is a curved
spectrum comprising a single peak or, more typically, a
number of overlapping peaks. Derivate analysis of
zero-order spectra is a powerful technique for identifying
weak peak signals from background noise and for
resolving essentially hidden peaks in a spectrum that is
composed of closely spaced peaks of different magnitudes.
The power of derivative analysis resides in the fact that
faint changes in the slope of a signal are revealed as
separate, easily identifiable peaks in the signal’s higher
derivatives. Herein, we report on the development of a
method for applying higher order derivative analysis
(i.e. employing derivatives greater than two) for the first
time to ChIP-chip data for the discovery of protein–DNA
binding events. We evaluate the method by applying it to
ChIP-chip data sets of two global regulators in Escherichia
coli, for which a large number of experimentally supported
binding sites (ESBSs) are known, and by comparison to
widely used methods. In so doing, we demonstrate an
approach, called DECODE (binding event discovery using
derivatives), which accurately and sensitively identifies
binding site locations without the need for user-specified
parameter settings and which delivers a significant quan-
titative and qualitative performance gain over available
methods.

MATERIALS AND METHODS

Defining ESBSs

We downloaded protein–DNA binding event data in the
form of a table from RegulonDB and extracted only those
entries involving the proteins Lrp and Fis. We then
retained only those interactions whose support for exist-
ence included ‘Binding of purified protein’.

Input data preparation

The data utilized in this work were from Nimblegen arrays
with 50 bp probes that are overlapped by 25 bp. There are
no issues that would preclude the use of other array plat-
forms, provided that the array data is prepared (as
described below) in a similar manner. The control
channel corresponds to the probe signal intensities when
only genomic DNA is hybridized to the array and the
experiment channel is the probe-signal intensities when
the immuno-precipitated DNA is hybridized to the
array. For an experimental replicate, then, the two
channel signals were normalized to have the same sum
of signal intensities—a correction necessary to reflect
that fact that the same amount of DNA was used for
each channel’s hybridization. All replicates’ control
channel signals were then quantile normalized together,
as were the experiment channel signals. Each replicate’s
experiment channel signal was then quantile normalized
with its corresponding control channel signal, and a final
enrichment signal formed from the ratio of the experiment
and control channel signals. The probe ratio values were
not logarithmically transformed.

Cross-replicate equalization

We equalized the baseline signal across all replicates by,
for each replicate in turn, histogramming the probe ratio
values (in bin sizes of 0.01) and identifying the bin value
corresponding to the histogram maximum—or the
average value of the background noise distribution. We
then computed a replicate-specific offset by subtracting
the histogram maximum bin value from 1.0. A replicate
enrichment signal was then baseline corrected by adding
the offset to all probe ratio values. The effect of this pro-
cedure was to make the value of 1.0 correspond to the
average background noise value in all replicates, making
them all directly comparable.

Potential binding region identification

Potential binding site regions were identified as those con-
tiguous regions at least 400 bp in length wherein all probes
had an enrichment value greater than 1.0. This cutoff
value corresponds to a region size that is much smaller
than the size of any positive signal that would be due to
immuno-precipitated DNA in any ChIP-chip experiment,
and so represents a very liberal criterion for identifying
regions that might contain a binding event.

Enrichment signal smoothing

The enrichment signal in potential binding site regions was
smoothed in a two-step manner. In step one, we removed
spikes in the raw signal using an approach based on
Poincaré maps (8,9). As suggested (9), we utilized
Chauvenet’s criterion and the median of the absolute de-
viations from the sample median to calculate the
Universal Threshold. Because ChIP-chip signals vary
over a greater range than the type of signal for which
the Poincaré map procedure was originally intended, we
modified the procedure to identify spikes in the enrich-
ment signal, s, of a potential binding site region using a
surrogate signal, s*. For each probe i in s, we computed
the value for probe i in s* as

s�i ¼
absðsi �miÞ

mi

where

mi ¼
ðsi�1+si+1Þ

2

By normalizing each probe value in this way, we effective-
ly removed the magnitude of the underlying signal while
retaining the spike behavior—rendering all probes directly
comparable. We then applied the Poincaré map procedure
to s* and, additionally, computed a weight, wi, for each
probe i:

wi ¼ expð�s�i Þ

A probe i was considered to be a spike if it was outside of
the ellipse of the Poincaré map procedure. We used the
weights, wi, to replace the signal value for each probe i
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considered to be a spike using the weighted average of it as
well as its two neighboring probes:

s0i¼
ðwi�1

�si�1+wi
�si+wi+1

�si+1Þ

ðwi�1+wi+wi+1Þ

Finally, we computed the percent change in the sum of the
values of the signals s and s0. By substituting s0 for s, the
entire spike-removal procedure could be iterated, which
we did until the percent change converged. In practice,
convergence corresponded to a percent change of �0.1%.
The second step of the smoothing procedure was

smoothed using the Savitzky–Golay filter (10) with a sym-
metric smoothing window whose of half-width was opti-
mally computed using a modification the Durbin-Watson
criterion (11). The output of the smoothing procedure was
a smoothed enrichment signal S.

Potential binding site identification

The first three derivatives of S were calculated using the
differential quotients derivative method—which simply
computes the derivative at a point as the average of the
slopes between it and its two adjacent neighboring points.
Negative second derivative regions greater than five
probes in length were then identified, and all positive-
to-negative zero crossings of the third derivative within
these regions were identified as local maxima positions.
The local maxima so identified were the locations of
apices of peaks that could be due to either bona fide
binding events or to noise. We defined the set of all such
apex locations as L.

Peak estimation

Peak estimation is the process of simultaneously
estimating the shape and size of the peaks at all of the
peak apex positions in L. We estimated these peaks
using two objective functions concurrently. First, we
required that the estimated peaks, when summed to
form a reconstructed signal R, minimized the difference,
D, between R and S. That is, we sought to estimate peaks
such that, when summed, reconstructed the original en-
richment signal as closely as possible. We computed D as

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
p

Sp � Rp

� �2s

where p is the index over all probes in S. Second, we
required that the estimated peaks maximize the entropy,
E, over all of the probes in S. (The definition of E and how
D and E were balanced are detailed below.) This second
requirement is known as the principle of maximum
entropy (12), and it states that the only justifiable (fre-
quency) distribution that can be constructed from incom-
plete information is the one that has maximum
uncertainty, subject to any constraints. As constraints,
we required estimated peaks to be unimodal and
symmetric.
It is necessary to explain how a binding region signal

was reconstructed before describing how the entropy of R

was calculated. The binding region probe values are real
numbers. We converted the probe values to integers by
multiplying them by a large integer (100) and then
rounding to integers. In so doing, reconstruction of the
binding region signal could be accomplished by incremen-
tally adding or subtracting ‘counts’ to probes in an
ongoing signal reconstruction. Since adding or subtracting
counts to a probe was done in the context of estimating
some peak, the counts had an explicitly attached peak
label l from the set L. Thus the counts for a probe had a
frequency distribution fl over the different peak labels.
The Shannon entropy for a probe p,

ep ¼ �
X
l2L

fl� logð flÞ

could then be computed. The total entropy for the all
probes in a region was then computed as

E ¼
X
p

ep

In regards to how the two mathematical objective func-
tions governing the peak-estimation process were utilized
simultaneously, counts were only added for a probe if D
decreased or D remained unchanged and E increased.

The two constraints were enforced in regards to how
counts could be added to estimate a peak. The first con-
straint was that probe values on either side of the peak
maximum had to be decreasing with increasing distance
from the peak maximum (to ensure a unimodal peak). The
second constraint was that the count values for the sym-
metric probes about the probe position of the peak
maximum had to be the same.

In a final step, the probe values were re-scaled by
division with the same large integer used above in order
to transform the probe intensity values back to real
numbers.

Identifying peaks due to noise

We first identified the complementary regions to the po-
tential binding site regions by identifying those regions
that were at least 400 bp in length wherein all probe
values were less than 1.0. (That is, we identified regions
whose signal was below the average background noise
level and so could confidently be assumed to not contain
binding events.) We then inverted these regions about the
probe value of 1.0 to create fake enrichment signals and
proceeded with our algorithm to identify peak apex pos-
itions and perform peak estimation. We termed the
identified peaks ‘noise peaks’, as they could assuredly be
assumed to not be due to bona fide binding events.

Peak significance values

From each ChIP-chip replicate, we fit a g distribution to
the distribution of the noise peak heights. The parameters
of the g distribution were then used to calculate the
P-value of peaks identified in the enrichment signal.
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Distinguishing binding events from noise

Once all peaks have been identified in all potential binding
event regions in a ChIP-chip replicate and their associated
P-values calculated, we applied the local false discovery
rate (FDR) (13) to distinguish binding event peaks from
noise peaks. We used a local FDR value of 0.01.

Comparison to other methods

We utilized the following algorithms for comparative
evaluation: Mpeak (14), Nimblegen’s windowed
threshold-detection algorithm that is a component of
their SignalMap software (15), MA2C (16), Chipotle
(17) and TAMALPAIS (18). All algorithms were run
with their default parameters. For TAMALPAIS, we
used T02P05 predictions. For the algorithms that only
predicted binding event regions, we used the center of
the regions as the location of their binding event
predictions.

RESULTS

We present as results the major aspects of our algorithm
and an evaluation of its ability to identify ESBS for the
global regulators Fis and Lrp in E. coli.

Algorithm

ChIP-chip experiments are usually performed using
multiple replicates, and it is common to average these rep-
licates to produce on enrichment signal that is then
analyzed for binding event information. We find that dif-
ferent replicates can reflect non-trivial differences in mo-
lecular binding activity and that averaging can abolish
strong enrichment signals or indicate binding event loca-
tions that are not supported by any individual replicate.
Because our method is designed for high-resolution
binding site identification, we did not average replicates
but instead analyzed each on its own (18). Replicates,
though, still need to be directly comparable. So, after
normalizing replicates, first individually and then alto-
gether, we computed and applied a baseline correction in
the form of an offset for each replicate such that an en-
richment signal of 1.0 corresponded to the average value
of the background noise distribution (i.e. mean value of
the non-enriched probes) (19).

The most prominent characteristic of ChIP-chip data is
the non-smooth variation of signal between adjacent
probes (Figure 1A). Derivative analysis is at the heart of
our method, but it cannot be applied directly to
unsmoothed data because it would indicate a derivative
change between essentially all adjacent probes and would
in effect be useless. The challenge, then, in applying de-
rivative analysis is to reveal the underlying smoothly
varying enrichment signal while simultaneously
minimizing the loss of binding event information con-
tained in the raw ChIP-chip signal. To address this
problem, we developed a procedure involving Poincaré
maps and the Savitzky–Golay smoothing filter that trans-
forms a raw enrichment signal into one that varies

smoothly over its entire domain while retaining subtle
features (Figure 1B).
Derivative analysis identifies the apex positions of the

constituent peaks underlying, and together composing, a
ChIP-chip signal spanning a contiguous stretch of a
chromosome. We utilized the second and third derivatives
to precisely locate local maxima in each replicate’s
smoothed enrichment signal (Figure 1C and D). As a

Figure 1. Identification and estimation of the protein-binding enrich-
ment peaks underlying a ChIP-chip signal. From an unprocessed signal
(A) that is de-noised and smoothed (B), the second (C) and third
(D) derivative are calculated and used to identify the locations of
underlying peaks. The maximum entropy principle is then applied to
estimate the underlying peaks (E), which are due to bona fide protein–
DNA binding events and to noise.
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result of this strategy, local maxima positions corres-
ponded to the apex positions of underlying peaks that
were due to both bona fide protein-binding events and to
noise. To discern between those maxima corresponding to
noise and those corresponding to binding events, it was
necessary to estimate the shape and size of the associated
underlying peaks. We applied the principle of maximum

entropy to resolve the shape and size of the underlying
peaks, subject to the constraints that the peaks be
unimodal and symmetric. The result of this step is the
resolution of a smoothed enrichment signal into its
underlying peaks (Figure 1E).

In order to quantify the probability that a peak is due to
noise and not immuno-precipitated DNA, it was necessary
to identify a large number of peaks that are with certainty
due to noise from which noise peak statistics could be
computed. Noise in this context is the background vari-
ation in signal that occurs among probes to which no
immuno-precipitated DNA is complementarily bound.
This noise is symmetrically distributed about the average
non-enriched probe value (19), and because of how we
baseline corrected each data replicate, this noise is sym-
metrically distributed about the enrichment signal value of
1.0. While probe values greater than 1.0 may be due in
part to immuno-precipitated DNA, we can be certain that
probe values less than 1.0 are due only to noise. We
located regions wherein all probe values were less than
1.0 and reflected these about the value 1.0. This reflection
effectively created false ‘enrichment signals’. We then
applied the peak-identification algorithm to these false en-
richment signals and, with the identified peaks, computed
null distribution statistics. This procedure is depicted in
Figure 2. From these statistics we computed a P-value for
every identified peak in a ChIP-chip replicate and used the
local FDR to identify the peaks corresponding to bona fide
binding events.

Performance evaluation of the algorithm

We have previously performed ChIP-chip analysis for the
global regulators Fis (20) and Lrp (21) in E. coli. We used
the large number of ESBS for these two DNA-binding
proteins that are contained in the EcoCyc (22) and
RegulonDB (23) databases to assess the sensitivity and
accuracy of our method and its performance relative to
other available methods.

We discriminated protein-binding events from noise
using the local FDR values, which as can be seen in
Figure 3A are strongly distributed toward the extreme
values that the local FDR can assume (i.e. 0.0 and 1.0).
These plots are for a representative single replicate, but are
qualitatively very similar to the results for all replicates.
The very clear split between peaks identified as being due
to noise and to immuno-precipitated DNA means that the
composition of the set of binding events is not very sensi-
tive to the exact value of the local FDR cutoff value. This
clear distinction implies that noise peaks have very differ-
ent characteristics than bona fide binding event peaks.
It also indicates that leveraging the symmetric nature of
the background variation in non-enriched probe signals
was an effective way to quantitatively discover these
differentiating characteristics. The plots also indicate
that peaks due to noise are much more numerous than
predicted binding event peaks, underscoring the noisy
nature of ChIP-chip data and the need for appropriate
measures of significance.

Figure 2. Learning the characteristics of noise peaks. (A) From a
ChIP-chip signal that has been baseline corrected such that the mean
background noise has a value of 1.0, regions wherein all probe values
less than 1.0 are identified. (B) These regions are inverted to give fake
‘enrichment signals’, to which the peak identification procedure shown
in Figure 1 is applied (C). (D) Distributions of noise peak characteris-
tics are then computed, from which significance values can be
calculated for the peaks identified in the real, non-inverted enrichment
signal.
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For each ESBS data set (i.e. Fis or Lrp), we evaluated
the accuracy of our method by tabulating the number of
ESBS that were identified as a function of distance from
the closest predicted binding site. Since we had multiple
replicates, we defined the distance to the closest predicted
binding site as the median distance between one of the
ESBS and the closest predicted binding site in each of
the replicates. The results for the Fis and Lrp data sets
are shown by the light-colored bars in Figure 3B. The
results show that, while a majority of the ESBS is pre-
dicted within a few probes, there were a large number of
sites whose closest predicted binding event was relatively
distant. We found that for these cases there was no
evidence in our ChIP-chip data for the existence of these

ESBS. A typical example is shown in Figure 4A, where the
arrows indicate the location of four Fis ESBS in the rnpB
promoter. (For the remainder of this study, we did not
utilize these cases in any further analysis involving
DECODE or other algorithms used for performance com-
parison.) We re-performed our accuracy assessment
without cases like these, and display the results depicted
by the black bars in Figure 3B. This reassessment signifi-
cantly improves the accuracy for both Fis and Lrp data,
especially the latter. Based on the results from these two
data sets, we calculated that our method accurately
identifies �90% of the ESBS within �88 bp. The
majority of predicted sites were within �38 bp of the
ESBS. In terms of the number of probes on our tiled

Figure 3. Evaluation of the algorithm using known binding sites. The algorithm was applied to ChIP-chip data sets of the global regulators Fis and
Lrp in E. coli, for which a relatively large number of experimentally supported sites are known. (A) The local FDR shows a wide and clear gap
between noise peaks and those likely due to protein–DNA binding events. (B) Histograms of the distance between predicted and all known binding
locations (light bars) and only those known binding sites for which the ChIP-chip data showed some enrichment (dark bars). (C) The cumulative
fraction of known sites identified as a function of the distance between known and predicted binding sites. (D) The enrichment value of the probe on
which ESBSs are located, showing that 17% and 25% are weak signals with <2-fold enrichment over background noise.
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array platform, these numbers correspond to four and two
probes, respectively.
Sensitivity was a key performance goal in the develop-

ment of our method, where sensitivity refers to the ability
to identify weak and closely spaced binding events.
Histograms of the median probe-enrichment values
(across all replicates) on which the ESBS were located
are shown in Figure 3D. The Fis histogram shows that
24% of the ESBS were on probes whose signal values were
less than twice the average background noise signal. That
a significant number of the ESBS with such weak signal
were identified attests to our method’s ability to work
close to the background noise level. To demonstrate the
ability to resolve closely spaced binding events, we show
two examples. Note that, in each example, for clarity we
show only the closest predicted binding events to the
ESBS. The ESBS for Fis in the osmE promoter are
shown in Figure 4B. While the larger peak is inaccurate
by four probes from predicting the leftmost binding site,
the smaller peak exactly identifies the probe of the two
rightmost binding events. Nonetheless, these are difficult
binding events to resolve since they occur on the shoulder
of a larger enrichment signal. The example in Figure 4C is
the Lrp enrichment peak at the invertible fim switch (24).

The left arrow identifies the Lrp binding site that is cata-
loged in RegulonDB and EcoCyc, and as can be seen the
underlying predicted peak exactly locates this non-obvious
binding site. The fim switch is a 314 bp, invertible DNA
element. The invertible nature of this stretch of DNA
means that it has two orientations in a population of
cells, and so the Lrp binding site will actually be located
in two chromosomal locations in a population. The
inverted position of the Lrp binding site is marked by
the starred arrow, which is also exactly located by a pre-
dicted peak.

To assess the performance of DECODE relative to other
methods that are available, we performed the same
analysis as above with widely used available methods.
This comparative analysis, as shown in Figure 5, reveals
that DECODE provides a marked improvement over all of
the available methods in both accuracy and comprehen-
siveness. Furthermore, the performance of DECODE does
not vary depending on the binding characteristics of the
protein of interest—in distinction to all of the other
methods. This performance difference is due to the fact
that Fis binding signals are rarely isolated, unimodal and
symmetric peaks [because of the Fis protein’s propensity
to oligimerize along the DNA into extended binding
regions (25)] and that the other methods do not handle
complicated enrichment signals as well as they do
unimodal enrichment signals. The latter result highlights
a strength of the derivative-based approach employed by
DECODE.

DISCUSSION

We have developed a method to address the difficult chal-
lenge of extracting all of the information about protein–
DNA interactions from a ChIP-chip data set. The
difficulties in this challenge are due to the chemistry-based
background hybridization noise inherent in the tiled array
platform, to the incompletely fragmented DNA that
flanks protein–DNA binding events that is also immuno-
precipitated, and to the ambiguity of defining a binding
event location due to the sometimes complicated biologic-
al interaction of proteins and DNA. These sources of dif-
ficulty together confuse the apex positions of enrichment
peaks of isolated binding events, obscure weak binding
event enrichment signals and mask closely spaced
binding events.

Our method contains a number of novel components.
Principal among these is the use of higher order derivative
analysis for identifying local maxima—which correspond
to underlying peaks—in a ChIP-chip signal. Second, we
developed an information-preserving smoothing proced-
ure that allowed us to apply derivative analysis to
ChIP-chip signals. Third, we applied the principle of
maximum entropy for discovering the underlying peaks,
as opposed to deconvolution using a functional form as in
most other approaches. Fourth, we leveraged the symmet-
ric nature of the background noise to learn noise peak
characteristics, allowing us to quantify the significance
of the underlying peaks and to discriminate peaks due to

Figure 4. Predicted binding events in ChIP enrichment regions. Arrows
mark the locations of ESBSs from literature. (A) The ChIP enrichment
signal shows little to no support for the existence of some experimen-
tally supported Fis binding sites reported in the literature (indicated by
arrows, for the rnpB promoter). The method is able to identify closely
spaced binding sites whose enrichment peaks overlap and/or occur on
the shoulder regions of larger enrichment signals. Only the closest pre-
dicted peaks to the ESBSs (indicated by the arrows) are shown. (B) Fis
binding at the osmE promoter and (C) Lrp binding in the fim switch.
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binding events from noise peaks while controlling for false
discovery rates.

This combination of novel components results in high
accuracy and sensitivity for a number of reasons. Our
strategy to resolve a signal into peaks—without identify-
ing whether the peaks are due to noise or to enrichment
from immuno-precipitated DNA—has two important
consequences. First, it allows us to use liberal thresholds
in delineating regions that ‘might’ contain binding events,
and so with high certainty we do not miss any weak bona
fide binding events. Second, it allows us to use significance
testing to discriminate noise peaks from enrichment peaks.
Furthermore, since our method is applied on a
per-replicate basis, peak identification is based on the
learned noise statistics of each individual experimental
replicate. Consequently, parameters are optimally
learned and set and are not required as input from the
user. Since multiple replicates are unnecessary, our
method is appropriate to use for exploratory ChIP-chip
experiments.

We evaluated our method using ChIP-chip data sets of
two DNA-binding proteins for which a relatively large
number of ESBS are known (Figure 4). We demonstrated
accuracy by showing that �90% of the sites could be
identified within four probes, and the majority could be

identified within two probes. We demonstrated sensitivity
by showing that 24% of the identified Fis ESBS were
located on probes whose enrichment signal was <2-fold
the background noise signal. We found that all of the
ESBS that we did not closely predict did not have
associated ChIP-chip signal enrichment to support the
claim of their existence. These results demonstrate that
our method was able to identify the local regions that
had even very weak signals. Furthermore, they call into
question a number of ‘experimentally validated’ binding
sites that are cataloged in the literature—although the
discrepancies could be due to different experimental
conditions.
We also evaluated our method through a performance

comparison involving widely used available methods
(Figure 5). We found that DECODE is distinguished from
the other methods both in its ability to accurately identify
binding events and to comprehensively identify all of
them. These accuracy and comprehensiveness characteris-
tics were very similar for both of the qualitatively different
ChIP-chip data sets utilized—stability not observed in the
other methods. An important characteristic of a binding
event discovery algorithm is that its performance does not
vary with the protein under study, for such performance
variance increases the uncertainty associated with all
results that such an algorithm produces.
The ability to resolve binding event locations with high

resolution and with associated statistical significance is
important for many reasons. First, in genomic regions
with a high density of genes or other sequence features,
accurate localization helps disambiguate to which features
the binding events are functionally related. Such accuracy
is critical for accurate transcriptional regulatory network
reconstruction, for instance. Second, it can dramatically
improve the signal-to-noise ratio for motif discovery by
identifying regions that are most likely to contain func-
tional motifs. Third, it facilitates studies aimed at dis-
covering principles of promoter architecture. Fourth, the
statistical significance that DECODE associates with each
predicted binding event (i.e. P-values) gives users the
ability to integrate binding event predictions with other
high-throughput data types (26). And fifth, the ability to
localize binding events with improved accuracy and sensi-
tivity will extend the usefulness horizon of the ChIP-chip
platform, especially given that bacterial genomes can now
be completely tiled with 1–5 bp resolution and that for
bacterial genomes ChIP-chip still has cost and usability
advantages over ChIP-seq.
A user of the DECODE software, which is freely available

upon request, must bear in mind some caveats when in-
terpreting the output. Our goal was to develop a method
that could discover where binding events were occurring,
with a minimum number of errors and localize the binding
event more accurately than is possible with other methods.
Realistically, though, one must recognize that defining a
binding location entails ambiguity that will be a function
of the size and overlap of the chip probes and of the nature
of the interaction between the particular protein of interest
and the DNA. So while some binding events can be
expected to occur on a predicted probe, it would be

Figure 5. Comparison of DECODE to widely used available methods.
The cumulative fraction of ESBSs identified as a function of the
distance to predicted binding sites for ChIP-chip data sets of the
E. coli global regulators (A) Fis and (B) Lrp.
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most appropriate to work with a narrow region around a
predicted binding event location.
The application regime of DECODE encompasses both the

resolution afforded by the chip tiling density and the range
of genomes to which it can be applied. Given the high
resolution and low cost of chip technology today, we did
not design the algorithm for low-resolution arrays.
Nonetheless, we demonstrated that our method is sensitive
to weak enrichment signals, and so would be advanta-
geous for discerning weak signals in low-resolution
arrays. For low-resolution arrays whereon probes are
widely spaced along the chromosome, the high-resolution
advantages of our method are likely to be muted. Our
method is not limited to bacterial genomes and would
be appropriate for eukaryotic genomes since there are
no genome-specific parameters in the software. The only
issue that will arise in applying the method to eukaryotic
genomes is the increased running time. Our method is
‘embarrassingly parallel’, though, so it could easily be
run simultaneously on different portions of a eukaryotic
Chip-chip data set.

CONCLUSIONS

In this work we have applied higher order derivative
analysis to ChIP-chip data for the first time, and in so
doing have extended the application regime of a
powerful analytical technique. We limited our method to
utilize only the third derivative, which may likely be the
useful derivative limit given the signal-to-noise ratio of
ChIP-chip data. Higher derivatives can be used for add-
itional information gain, such as for resolving closely
spaced binding events. Resolving more, and more closely
spaced, binding events requires that the enrichment signal
actually contain such discernable information, such as
could be provided by chips with highly overlapping
probes or by ChIP-seq (27,28). Chip-seq data is of a fun-
damentally different nature than ChIP-chip data, so ap-
plication of our method to ChIP-seq would require
changes to the raw data-processing aspect of our algo-
rithm. Otherwise, the core elements of our method
can be adapted to ChIP-seq data, and so could offer a
consistent framework for maximizing the information
gain from contemporary protein–DNA binding assay
technologies.
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