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Proper ciliary basal body positioning within a cell is key for cilia functioning. Centriole
and basal body positioning depends on signaling pathways such as the planar cell
polarity pathway (PCP) governed by Frizzled (Fz-PCP). There have been described two
PCP pathways controlled by different protein complexes, the Frizzled-PCP and the Fat-
PCP pathway. Centriole planar polarization in non-dividing cells is a dynamic process
that depends on the Fz-PCP pathway to properly occur during development from flies
to humans. However, the function of the Ft-PCP pathway in centrioles polarization
is elusive. Here, we present a descriptive initial analysis of centrioles polarization in
Fat-PCP loss of function (LOF) conditions. We found that Fat (Ft) and Dachsous
(Ds) LOF showed a marked centrioles polarization defect similar to what we have
previously reported in Fz-PCP alterations. Altogether, our data suggest that centriole
planar polarization in Drosophila wings depends on both Ft-PCP and Fz-PCP pathways.
Further analyses in single and double mutant conditions will be required to address the
functional connection between PCP and centriole polarization in flies.
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INTRODUCTION

Cilium is an organelle projected at the cell surface with several crucial functions during
development and in adult organs. Cells use their cilia to communicate with the environment or to
physically interact with the surrounding media (Satir and Christensen, 2007; Goetz and Anderson,
2010; Ishikawa and Marshall, 2011; Malicki and Johnson, 2017). An example of signaling associated
with cilia is its vastly known function on Sonic hedgehog signaling (Briscoe and Therond, 2013).
On the other hand, a mechanical function for cilia could be found in the choroid plexus lining the
brain ventricles, where the beating of the cilium at their apical membranes generates the proper
directional fluid flow of the cerebrospinal fluid (CSF) (Brooks and Wallingford, 2014). Based on
these two types of cilia functions (signaling and/or mechanical), many genetic disorders or diseases
underlying cilia miss-functioning have been described. These diseases are included and named as
ciliopathies, and most of them are initiated during early development (Hildebrandt et al., 2011;
Novarino et al., 2011; Braun and Hildebrandt, 2017; Reiter and Leroux, 2017).
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Structurally, cilia consist of membrane surrounding a
cytoskeletal structure known as the axoneme, which is anchored
to the basal bodies. In ciliopathies, cilium miss-functioning
is usually associated to defective assembly or placement in a
group of cells (Hildebrandt et al., 2011; Braun and Hildebrandt,
2017). Cilia assembly is controlled by structural proteins
linked to the cytoskeleton like tubulin but also to trafficking
related proteins and organelles like endosomes (Bernabe-Rubio
and Alonso, 2017; Mirvis et al., 2018). Cilia positioning
is also associated to the cytoskeleton, but in this case, it
depends on the cell polarity pathways controlling the three-
dimensional distribution of organelles and plasma membrane
composition at the single cell level. In polarized epithelial
cells, cilia are projected from the apical membrane and in
some specialized tissues are restricted to sub-areas at that
apical membrane, named translational polarity, and/or their
basal bodies orient their basal foot to the same direction,
named rotational polarity (Carvajal-Gonzalez et al., 2016a;
Adler and Wallingford, 2017).

This positioning of cilia needs also to be coordinated within
the tissue to produce a global response like coordinated ciliary
beating. A key pathway involved in coordinating cells during
tissue development is the Planar cell polarity (PCP) pathway,
a conserved pathway from Drosophila to humans. PCP is
established and maintained by two signaling cascades, the
Frizzled PCP (Fz-PCP) and the Fat PCP (Ft-PCP) pathways.
Fz-PCP pathway is governed by two protein complexes,
the Frizzled/Disheveled/Flamingo/Diego (Fz/Dsh/Fmi/Dgo)
complex and Vang/Prickle/Flamingo (Vang/Pk/Fmi) complex
(Goodrich and Strutt, 2011; Adler, 2012; Peng and Axelrod,
2012; Singh and Mlodzik, 2012; Carvajal-Gonzalez and Mlodzik,
2014; Devenport, 2014). The Ft-PCP pathway is based on
the interaction between Fat (Ft) and Dachsous (Ds). The
interaction across adjacent membranes of these proto-cadherins
is coordinated by the Golgi resident kinase Four-jointed
(Fj) (Zeidler et al., 1999, 2000; Matakatsu and Blair, 2004,
2006; Simon, 2004; Brittle et al., 2010, 2012; Simon et al.,
2010; Mao et al., 2011). Fz-PCP has been shown to control
the orientation of the cilia by controlling the docking of the
basal body including the mother and daughter centrioles.
This connection between Fz-PCP and basal bodies/centriole
positioning is a well-conserved function in different organs
across species. On the contrary, the function of Ft-PCP in ciliary
basal bodies/centriole positioning is not clarified yet. It has been
shown that in Fat4 knock-out mice, hair cells are mis-orientated
throughout the cochlea when looking at stereocilia (Saburi
et al., 2008), however, the kinocilium basal body positioning
was not assessed.

We have recently found that centriole positioning was also
controlled by the Fz-PCP pathway in Drosophila epithelial cells
where cilia are absent (Carvajal-Gonzalez et al., 2016a,b). In
Drosophila pupal wings, we were able to show that centrioles
polarization (off-centered movement of centrioles at the apical
planes) was a dynamic process that occurs during trichomes
formation, and that this polarization was abnormal when
Fz-PCP signaling was defective using loss or gain of function
experimental conditions (Carvajal-Gonzalez et al., 2016a,b).

Since Ft-PCP is also important during morphogenesis
in Drosophila pupal wings, here we decided to test the
connection between Ft-PCP and centriole positioning in
this model system.

MATERIALS AND METHODS

Fly Strains
To analyze the role of Ft-PCP in centriole polarization in
Drosophila pupal wings we first tested all the available RNAi
lines targeting the known components of the Fat-PCP pathway
including, Fat (Ft), Dachsous (Ds), Dachs and Four jointed
(Fj). All culture and cross of fly lines were performed on
standard medium and maintained at indicated temperatures
(25 or 29◦C). Following fly lines were used in this study: Ft-
IR (9396/GD and 108863/KK VDRC stocks), Ds-IR (36219/DG
and 4316/GD VDRC stocks), Dachs-IR (12555/GD; 32142/GD
and 102504/GD VDRC stocks), Fj-IR (6774/GD VDRC stock).
GAL4/UAS system was used to direct UAS-RNAi constructs to
decapentaplegic (dpp) wing compartment, a stripe between L3 and
L4. In our experimental conditions, we found that only two lines
(Ft and Ds) produced robust PCP phenotypes (Figures 1A,B and
Supplementary Figure S1F). These phenotypes in adult wings
corresponded to hair mis-orientation in the proximal part of the
wing near the L3 vein (Figures 1A,B). None of the tested lines for
Fj generates PCP phenotypes under our experimental conditions
(Supplementary Figures S1D,E) and out of the three lines tested
for Dachs (Supplementary Figures S1A–C), only 1 line showed
hair mis-orientation phenotypes but not in all the wings analyzed
(Supplementary Figure S1C).

Adult Wing Analyses
For adult trichomes analyses, wings were removed, washed in
PBS 0.1% Triton X-100 (PBS-t) and mounted on a slide in 80%
glycerol in PBS. Adult wings were imaged on a BX51 direct
microscope (Olympus). Images acquisition was performed with
a camera (DP72, Olympus) and CellD software (Olympus).

Immunohistochemistry
Fly pupae at white stage were collected and cultured at
29◦C for 25 or 28.5 h. Wings were dissected in PBS-
t and fixed for 1 h with 4% paraformaldehyde (PFA).
Pupae were washed in PBS-t three times for 5 min and
blocked in PBS-t with 2% bovine serum albumin (BSA)
for 45 min. Dissected pupae were incubated overnight with
primary antibody at room temperature in PBS-t-BSA. After
incubation, samples were washed five times in PBS-t and
incubated in fluorescent phalloidin and fluorescent secondary
antibodies for 90 min, both diluted in PBS-t-BSA. Five additional
washes were performed in PBS-t, and pupal wings were
detached from the pupal cage and mounted on slides with
medium for fluorescence (Vectashield, Vector Laboratories).
To stain the cellular membrane was used anti-Fmi (from
DSHB). Secondary antibody conjugated with the fluorophore
Alexa-405 (Invitrogen) and Alexa 594-phalloidin (Invitrogen)
were used at 1:200.
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FIGURE 1 | Ft-PCP pathway LOF conditions affect centriole polarity. (A,B) In adult wings, single knock-down for Ft or Ds using dpp>ft-IR or dpp>ds-IR generates
hair mis-orientation phenotypes and rounded wing shape. Both phenotypes have been previously observed in Ft and Ds mutants. (C,D) In dpp>ft-IR or dpp>ds-IR
pupal wing hair mis-orientation phenotype are also presented in the dpp domain (actin-based hair labeled with phalloidin in red, Sas4 coupled to GFP in green to
mark centrioles, Fmi in blue for cell junctions). (E–H) Cells with WT orientation of hairs showed proper centriole localization at the distal side of the cell (E,G). On the
other hand, neighbor cells knocked-down for Ft or Ds with reversed polarity (reversed hair orientation) did not localize centrioles to the distal side of the cell (F,H).
(I–L) Centriole distribution visualization in density maps showed that both, dpp>ds-IR and dpp>ft-IR, centriole positioning is affected when compare to WT areas of
the same wings. (M,N) Quantification of centriole polarization using the ABP method (M) or the Q method (N) showed that cells knocked-down for Ft or Ds failed to
polarized centriole to the level of WT cells. Statistical analyses among experimental groups: t-test. Scale bars in (A,B) represent 25 mm Scale bars in (C,D)
represent 10 µm.

Image Acquisition and Processing
To orientate pupal wings, the distal part was always pointed to
the right side. Images were acquired using FV 1000 confocal
microscope (Olympus). After acquisition, images were processed
using Fiji, to generate the cell borders mask (Tissue Analyzer
plugin), and Adobe Photoshop CC 2015 to create the color-coded
mask based on the phenotype.

Heat (Density) Maps
We used density maps in order to visualize relative centriole
positioning from a set of cells. Briefly, we modeled each
cell to a regular hexagon with its area being the pixel
numbers of the cell, and then we normalized all the modeled
hexagon cells to the same size. Afterward, we normalized
the position of the centriole relative to the centroid of its
cell to the model cell. We have found that every cell in
the Drosophila pupal wing has two centrioles but in many
cases these two centrioles are too close to be separated, many

times they are sitting one on top of the other. Our method
compute each centriole individually. Finally, we represented
the centriole density in the set of cells, so each pixel in the
density map represents the probability of finding a centriole in
that set of cells.

ABP Method
Average Basal Body Position (ABP) for each sample was
calculated following Hashimoto et al. (2010) protocol. Briefly,
the score of each cell represented the normalized position of
the centriole along the anterior-posterior axis (being − 1.0 the
minimal anterior coordinate of the cell, 0 the cell centroid and
1.0 the maximal posterior coordinate of the cell). Then, the ABP
score was calculated as the average value of the cells in an image.

Q Method
Each centriole was assigned to a specific Quartile (Q) depending
on their relative position to the anterior-posterior axis of the
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cell that crosses the cell centroid (Taniguchi et al., 2011). If the
centriole was located between −π/4 and π/4, then it was assigned
to Q1. If the centriole was located between π/4 and 3π/4, it
was assigned to Q2. In the case of being located between −π/4
and −3π/4, then it was assigned to Q3, and finally the rest of
centrioles were assigned to Q4.

Statistical Analyses
Data were analyzed using t-test (GraphPad Prism) for Q
and ABP methods.

RESULTS

We have previously described that centrioles polarization is
a dynamic process that occurred during hair formation in
Drosophila pupal wings. In wild type (WT) conditions, centrioles
move from centered positions at the most apical part of pupal
wing epithelial cells and as the actin-based hair is forming
centrioles move off center toward the base of the hairs (Carvajal-
Gonzalez et al., 2016b; Garrido-Jimenez et al., 2018). To analyze
the polarization of centrioles in Ft-PCP deficient conditions, we
combined hair staining with phalloidin to assess those wings with
well-formed hairs, while using GFP-Sas4 fluorescent expression
to visualize centrioles and immunolabeled Fmi to delimit each
epithelial cell (Figures 1C–H for higher magnifications). To
visualize the centriole population distribution, we employed
a heat (density) map for a WT or its RNAi neighbor field
(Figures 1I–L). To properly quantify centriole polarization,
we used two different standard methods, the ABP method
and the Q method. Briefly, the ABP method measures the
anterior or posterior positions of centrioles relative to the
center of the cell (visualized from the top). On the other
hand, the Q method quantify the distribution of centrioles in
45 degrees’ quartiles (Q1, Q2, Q3, and Q4). In regions with
hair mis-orientation phenotypes generated by knock-down of
Ft or Ds we found that centrioles fail to properly polarize
toward the distal side at the apical planes, as shown in density
maps for Ds or Ft knocked-down cells compared to near
WT cells (Figures 1I–L). Looking at the Q1-4 values, similar
percentages of centrioles are found in each of them in Ft-
IR and Ds-IR conditions. In contrast above 60% of centrioles
are found in Q1 for WT cells (Figure 1N). In addition, the
ABP quantification in Ft-IR and Ds-IR conditions showed that
centriole remained at more centered position in the cell when
compared to centriole polarization in WT areas of the same wings
(Figure 1M). Altogether, these results support the hypothesis
that centriole polarization is also controlled by the Fat and
Dachsous PCP pathway.

DISCUSSION

This article together with the previously published data on
cilia and PCP in vertebrates pushes forward the idea that
PCP is a well-conserved regulator of centriole positioning. It
also highlighted for the first time the importance of Ft-PCP

FIGURE 2 | Centriole positioning illustration in WT and Fz-PCP or Ft-PCP
deficient conditions. Schematic representation of the phenotypes described.
In WT Drosophila wing epithelial cells aged to 28.5 APF (after puparium
formation) centrioles migrate to base of the actin-hairs. Under the same
experimental conditions, in Ft-PCP LOF conditions centrioles failed in this
polarized movement. This phenotype resembled the one found in Fz-PCP
LOF conditions already published (Carvajal-Gonzalez et al., 2016b).

in centriole positioning independently of cell division. In
vertebrates, there are four Fat homologs (Fat1–4), two Ds
homologs (Ds1 and Ds2), and one Fj ortholog (Fjx1) (Rock
et al., 2005). Fat4 knock-out mice have been described to
have dilated tubules and cysts formation in their kidneys.
This phenotype is connected to randomization of spindle
orientation affecting oriented cell division, which is important
for tubule elongation and single lumen formation (Saburi
et al., 2008). In addition, it has been shown that PCP
proteins such as Fat4 and Vangl2 localize to the base
of cilia in cultured cells. Interestingly, Fat4 is localized
to the primary cilium. Furthermore, Dchs1 knock-out
mice showed mild defects in early uroteric bud branching
morphogenesis, resulting in kidneys that are reduced in size
(Mao et al., 2011).

Moreover, over-expression of the Sple isoform of pk in
developing wings has recently been reported to reverse PCP
orientation, resulting in actin hair formation being moved to
the proximal cellular vertex without affecting Vang or Dsh
localization (Ayukawa et al., 2014; Olofsson et al., 2014). We
have previously published that Pk over-expression in Drosophila
pupal wings cause centriole positioning defects concomitant with
reversed actin-based hair formation (Carvajal-Gonzalez et al.,
2016a,b). In addition, Sple-OE was shown to modulate coupling
between the Fz-PCP and Ft-PCP pathway (Merkel et al., 2014).
As a whole, we can envision a system where centriole positioning
is a global output controlled by both PCP pathways (Figure 2).
Hence, this new role for Ft-PCP could be linked to Fz-PCP
rather than independent of it. Future experiments are required
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to confirm or rule out this long-standing conflict about the
interdependency of these two PCP pathways.
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