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Essential but partially redundant roles for
POU4F1/Brn-3a and POU4F2/Brn-3b transcription
factors in the developing heart

Lauren J Maskell1, Kashif Qamar1, Aram A Babakr1, Thomas A Hawkins2, Richard J Heads3 and Vishwanie S Budhram-Mahadeo*,1

Congenital heart defects contribute to embryonic or neonatal lethality but due to the complexity of cardiac development, the
molecular changes associated with such defects are not fully understood. Here, we report that transcription factors (TFs) Brn-3a
(POU4F1) and Brn-3b (POU4F2) are important for normal cardiac development. Brn-3a directly represses Brn-3b promoter in
cardiomyocytes and consequently Brn-3a knockout (KO) mutant hearts express increased Brn-3b mRNA during mid-gestation, which
is linked to hyperplastic growth associated with elevated cyclin D1, a known Brn-3b target gene. However, during late gestation,
Brn-3b can cooperate with p53 to enhance transcription of pro-apoptotic genes e.g. Bax, thereby increasing apoptosis and contribute
to morphological defects such as non-compaction, ventricular wall/septal thinning and increased crypts/fissures, which may cause
lethality of Brn-3a KO mutants soon after birth. Despite this, early embryonic lethality in e9.5 double KO (Brn-3a− /− : Brn-3b− /−)
mutants indicate essential functions with partial redundancy during early embryogenesis. High conservation between mammals and
zebrafish (ZF) Brn-3b (87%) or Brn-3a (76%) facilitated use of ZF embryos to study potential roles in developing heart. Double
morphant embryos targeted with morpholino oligonucleotides to both TFs develop significant cardiac defects (looping abnormalities
and valve defects) suggesting essential roles for Brn-3a and Brn-3b in developing hearts.
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The heart is the first functional organ to develop during
embryogenesis and is essential for viability of the organism
since congenital cardiac defects are among the most common
causes of foetal and neonatal mortality.1,2 The developing
heart arises from the cardiac mesoderm to form a primitive
heart tube, which undergoes a complex and highly regulated
programme including expansion, differentiation, apoptosis
and remodelling (e.g., looping and septation) to form the fully
functional four-chambered mammalian heart.3 Such pro-
cesses are tightly controlled by cellular genes expressed at
different stages of heart development4–9 and deregulation of
this process can contribute to cardiac defects and embryonic
lethality.6,9–11

Tissue-specific DNA binding transcription factors (TFs) are
essential regulators of gene expression, and cell fate and
mediate their effects by activating or repressing the rate of
target gene transcription byRNA polymerase II enzyme.12 TFs
play fundamental roles in controlling key aspects of heart
development, for example, Nkx 2.513 and dHAND are required
for myocardial differentiation14 and Sox4, NF-ATc and Msx1/2
for valve development.15–17 More recently, POU4F1 (Brn-3a)
and POU4F2 (Brn-3b) TFs have been identified in developing
hearts but their roles are not fully known.18,19

Brn-3a and Brn-3b belong to the POU (Pit-Oct-Unc)
homeodomain TFs, characterised by the highly conserved
POU DNA-binding domain. High homology between species
(76% conservation between zebrafish (ZF) and human Brn-3a
and 87% for Brn-3b) suggest important and preserved

functions for these proteins. Although originally isolated from
neuronal cells, Brn-3a and Brn-3b are expressed in diverse
tissues, including the heart.18–26 These related but distinct
proteins are encoded by different genes27,28 but share495%
homology in the POU domain and therefore recognise and
bind to similar DNA elements in target gene promoters.19,29–32

However, these TFs can have complex effects on gene
expression and cell fate since they can elicit similar effects on
some target genes e.g. activation of the Hsp27 gene
promoter19,33–35 but have antagonistic effects on others e.g.
apoptotic genes. In this regard, others e.g. apoptotic genes.
Brn-3a promotes neuronal survival and differentiation by
activating neuronal genes (α-internexin, neurofilament, SNAP-
-25) or anti-apoptotic genes (e.g., Bcl-2/Bcl-XL),

36–38 which
are repressed or unaffected by Brn-3b.39–42 Conversely, Brn-
3b drives cell proliferation by activating transcription of cell
cycle genes, for example, cyclin D1 and CDK4.43,44 Moreover,
Brn-3a and Brn-3b have opposite effects on apoptotic genes
when co-expressed with the p53 TF. This tumour suppressor
protein, which can mediates diverse cellular effects, including
cell cycle arrest and apoptosis by regulating distinct target
genes and its on cell fate effects are dependent upon
interactions with cellular proteins such as Brn-3a and Brn-3b
which interact with p53 via the conserved POU domain45,46

but differentially regulate p53 gene expression.47,48 For
example, Brn-3a represses transcription of pro-apoptotic
genes, Bax and Noxa by p5324,46,49 but cooperates with p53
to stimulate p21cip1/waf1 cell cycle inhibitor.23,24,45,49 In
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contrast, Brn-3b on its own, promotes cell proliferation but if
co-expressed with p53 it cooperates with p53 to transactivate
pro-apoptotic genes such as Bax, thereby increasing
apoptosis.18,46

Since relative levels of Brn-3a and Brn-3b TFs can alter p53
effects on cell fate in relation to survival and apoptosis this will
be relevant in the heart, which express these TFs under
different conditions. For instance, both Brn-3a and Brn-3b are
increased in adult mouse hearts following coronary artery
ligation but show distinct localisation in relation to the site of
injury and p53 expression18 with Brn-3a primarily expressed in
surviving cardiomyocytes distal to the injury, whereas Brn-3b
increases throughout the heart but is co-localised with p53
expression at the site of injury. Brn-3b co-expression with p53
correlates with increased pro-apoptotic Bax18 and may be
necessary for maximal activation of Bax and Noxa in injured
cardiomyocytes because shRNA to target Brn-3b is sufficient

to prevent increased transcription following simulated ischae-
mia/reoxygenation in primary neonatal rat ventricular myo-
cytes (NRVM),18 despite p53 expression being unchanged.
Farooqui-Kabir et al.19 also demonstrated a complex

relationship between Brn-3a and Brn-3b in the developing
heart since increased Brn-3b mRNA in Brn-3a knockout (KO)
mouse hearts during mid-gestation (e14.5) correlated with
hyperplastic valve cushions and septum. Cardiac effects
during late gestation have not been analysed to date but
interestingly, all homozygous Brn-3a KO mutants die by p0.5-
p1 (day post birth) and this was attributed to impaired suckling,
caused by selective loss of neurons in the trigeminal ganglia
and brainstem.50 However, nutritional deficits are unlikely to
cause such complete lethality in KO mutants so soon after
birth. Therefore we investigated if loss of Brn-3a and
increased Brn-3b in mutant hearts may contribute to lethality
after birth.
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Figure 1 (a) Results of quantitative (q)RT-PCR used to analyse mRNA encoding Brn-3a or Brn-3b in mouse hearts taken from different embryonic (E) or postnatal (P) hearts.
Values shown were adjusted for total RNA variability using the GAPDH housekeeping gene and similar changes were seen with other housekeeping genes, B2M and ACTN (not
shown). Data represents mean and S.D. from values from 44 individual hearts. (ii) Representative DAB immunostaining images showing protein localisation of Brn-3a (top
panels) or Brn-3b (bottom panels) in sections of foetal (e18.5) WT mouse hearts. (b) (i) qRT-PCR data showing Brn-3b mRNA levels in hearts taken from Brn-3a KO-mutant
embryos and age-matched WT controls at embryonic day, e14.5, e16.5 or e18.5. Data represents the mean and S.E.⩾ 5 independent hearts of each genotype at each time point.
**Represents statistical significance, as determined by t-test with Po0.05. (ii) Representative images of e16.5 embryonic heart sections taken from WTor Brn-3a KO embryos
following DAB immunostaining for Brn-3b protein. (c) Results of reporter assays to analyse Brn-3b promoter activity in NRVM cultures when co-transfected with Brn-3a and
compared with Brn-3b or the empty vector control (LTR). The firefly luciferase reporter gene activity is shown as RLU and variation in transfection efficiency was adjusted using
internal control, TK renilla. Values represent the mean and S.E. from three independent experiments and **Indicates statistically significant differences o0.05. RLU, relative
luciferase unit; WT, wild-type
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In this study, we showed that reciprocal expression
between Brn-3a and Brn-3b in the developing heart may
result from Brn-3a repressing Brn-3b promoter specifically in
cardiomyocytes. Loss of Brn-3a and upregulation of Brn-3b
mRNA in KO hearts correlates with increased transcription of
known Brn-3b target genes, cyclin D1 and Bax, although p53
remained unchanged. Mutant hearts also displayed increased
apoptosis linked to compaction defects and ventricular wall/
septal thinning just before birth. Importantly, Brn-3a and
Brn-3b may partially compensate for each other during
embryonic development because double KO-mutant mice
display early embryonic lethality. Studies in ZF embryos
showed that reducing both Brn-3a and Brn-3b using
morpholino oligonucleotides (MO) caused striking cardiac
abnormalities including failure to loop and inflow tract
defects. These results suggest complex and important roles
for these TFs in controlling normal cardiac development and
function.

Results

Brn-3a represses Brn-3b in cardiomyocytes. qRT-PCR
analysis using cDNA prepared from RNA from wild-type (WT)
hearts showed that high Brn-3a mRNA correlated with low
Brn-3b either in mid-gestation or postnatal hearts, whereas
reduced Brn-3a was associated with increased Brn-3b

mRNA in foetal hearts (e17.5) figure 1a(i). Immunostaining
also confirmed Brn-3a and Brn-3b protein localisation in
e18.5 WT heart sections (Figure 1a(ii)), with strong staining in
the ventricular myocardium.
Analysis of cDNA from WT and KO hearts at different

embryonic times showed increased Brn-3b mRNA in Brn-3a
KO hearts at e14.5,19 which remained elevated at e16.5 but
was reduced in mutant hearts at e18.5, compared with
age-matched WT controls (Figure 1b(i)). No significant
difference was observed for Brn-3b in Brn-3a+/− heterozygote
and WT hearts (data not shown). Immunostaining also
confirmed increased Brn-3b protein in e16.5 Brn-3a KO hearts
(Figure 1b(ii)).
Since the Brn-3b promoter sequence contains octamer

binding sites recognised by Brn-3a or Brn-3b itself,51 we
tested if Brn-3a normally repress Brn-3b in cardiomyocytes to
account for reciprocal expression in WT hearts and increased
Brn-3b in Brn-3a KO hearts. Therefore, co-transfection studies
were carried out in primary cultures of NRVM using the Brn-3b
promoter reporter construct and expression vectors for Brn-
3a, Brn-3b or empty vector (see Materials and Methods
section). After 48 h, dual-luciferase assays were used to
analyse promoter activity. Figure 1c shows that Brn-3a
significantly reduced Brn-3b promoter activity in NRVM
cultures, compared with LTR control, while Brn-3b had no
effect on its own promoter, suggesting that Brn-3a represses
Brn-3b in cardiomyocytes.

Heart Dimensions
WT hearts 
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Width (mm)
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RV wall (μm)
168.7

+/-22.7
127

+/-70.8 0.017*
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Figure 2 (a) Representative H+E-stained heart sections from e18.5 embryos taken from either (i) WTor (ii) Brn-3a KO mutants. Images were taken at × 2.5 or × 5 (box). (b)
Cardiac dimensions were measured in heart sections taken from Brn-3a KO or WT control hearts at e18.5 which were stained with H&E then scanned using the whole-slide imaging
function on The Hamamatsu Nanozoomer. Images were analysed using the NDP view 2 software to measure heart width (across left and right ventricles), length (base to apex), right
or left ventricular wall thickness (RV or LV wall) and septal thickness. Values shown represent the mean and S.E. of measurements from at least 5 independent hearts. H+E,
haematoxylin and eosin; IVS, interventricular septum; LV, left ventricle; RV, right ventricle; Wt, wild-type
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Morphological changes in Brn-3a KO-mutant hearts
during late gestation linked to cardiomyocyte apoptosis.
Since increased Brn-3b in Brn-3a KO hearts was associated
with hyperplastic growth at e14.5,19 we analysed mutant
hearts at later developmental stages to determine if cardiac
defects may contribute to neonatal death. Analysis of e18.5
heart sections stained with haematoxylin and eosin (H&E)
showed evidence for reduced myocardial compaction,
increased trabeculation and appearance of myocardial
crypts/fissures in Brn-3a KO hearts when compared with
age-matched WT controls (Figure 2a). Measurements of
heart dimensions in multiple, independent e18.5 sections
identified changes in heart length (base to apex) but not width
(across both ventricles) in mutant hearts compared with age-
matched WT controls (Figure 2b). Mutant hearts also showed
significant reduction in ventricular wall and septal thickness,
suggesting that loss of Brn-3a and/or increased Brn-3b
affected heart size.

Increased Brn-3b target genes, cyclin D1 and Bax, in
Brn-3a KO hearts. Known Brn-3b target genes such as
cyclin D1 and Bax can profoundly alter cell fate if ectopically
expressed, so we next tested if increased Brn-3b in Brn-3a

KO hearts affected the expression of such target genes.
Therefore cyclin D1 and Bax mRNA were quantified using
qRT-PCR and protein localisation was assessed by immu-
nostaining heart sections from Brn-3a KO-mutant and age-
matched WT hearts. Since mRNA transactivation generally
precedes increases in functional protein required to drive
cellular changes, qRT-PCR was used to quantify mRNA
levels at e16.5, while immunostaining for protein localisation
was done on e17.5 heart sections.
Results of qRT-PCR showed significantly increased cyclin

D1 mRNA in Brn-3a KO hearts, compared with WT
controls (Figure 3a(i)), while immunostaining demonstrated
widespread increases in cyclin D1 protein within the
ventricular myocardium of Brn-3a KO heart sections
(Figure 3a(ii)) compared with lower and more restricted
expression in WT hearts (Figure 3a(iii)).
Similar studies were carried out to analyse for changes in

pro-apoptotic Bax and Noxa, which can be co-regulated by
Brn-3b and p53. qRT-PCR results showed increased expres-
sion of both genes in Brn-3a KO hearts at e16.5 but only Bax
mRNA changes reached statistical significance when com-
pared with WT controls (Figure 3b(i)). Since p53 expression
was similar between Brn-3a KO andWT hearts (Figure 3b (ii)),
elevated Bax mRNA may be driven by on increased Brn-3b.
Immunostaining confirmed increased Bax protein in Brn-3a
KO hearts, with marked localisation around the trabeculated
myocardium (Figure 3b(iii)).
We next assessed for apoptotic changes in mutant hearts

using TUNEL (terminal deoxynucleotidyl transferase dUTP
nick end-labelling) staining on heart sections from e17.5
Brn-3a KO or WT embryos. Figure 3c(i) shows very few
TUNEL-positive cells inWT hearts, whereas Brn-3a KOhearts
displayed larger numbers of TUNEL-positive cells in the
ventricular wall and septum (Figure 3c(ii)), suggesting that
large numbers of cells were undergoing apoptosis in mutant
hearts.

Loss of both Brn-3a and Brn-3b causes early embryonic
lethality in mice. To investigate potential compensation
between Brn-3a and Brn-3b in the developing heart, we
attempted to generate double KO mutants by crossing
heterozygous (Brn-3a− /+ X Brn-3b–/+) mice. Since Brn-3a
KO mutants died soon after birth, double mutants were not
expected to survive after birth, so genotyping was carried out
on litters at different embryonic ages. No double mutants
were recovered during mid-gestation (e14.5), hence subse-
quent studies analysed litters at earlier times i.e. e9.5 and

Figure 3 (a): (i) Results of qRT-PCR showing changes in cyclin D1 mRNA levels in e16.5 WTor Brn-3a KO hearts. Values were adjusted with the housekeeping gene,GAPDH
and represent the mean and S.E. of 3–4 independent samples. *Indicate statistical significant changes using t-test with P⩽ 0.05. (ii) Representative immunostaining images of
cyclin D1 protein in heart sections from e17.5 Brn-3aKO embryos or WT controls. The main heart images were taken at × 2.5 magnification, whereas boxed sections are shown at
higher magnification (×10). (b): (i) Results of qRT-PCR showing levels of mRNA encoding Bax or Noxa in WT (black bar) or Brn-3a KO (grey bar) in e16.5 hearts. Values were
adjusted with the house keeping gene, GAPDH, which was amplified using the same cDNA samples and represent the mean and S.E. of 3–4 independent samples.
*Indicates statistically significant changes (oP= 0.05), using t-test. (ii) Results of qRT-PCR showing changes in Brn-3b mRNA or p53 in hearts taken from WT (black bar) or
Brn-3a KO (stippled bars) at e16.5. Values were adjusted with the house keeping gene,GAPDH and represent the mean and S.E. of 3–4 independent samples. (iii) Representative
images of heart sections from e17.5 Brn-3aKO or WT control embryos, immunostained for Bax protein. Whole-heart images were taken at × 2.5 magnification, whereas boxed
sections are shown at higher magnification (×10). (c) Representative images showing TUNEL staining in e17.5 hearts taken from (i) WT controls or (ii) Brn-3a KO embryos. Dark
brown staining indicates cells with TUNEL positivity. Whole-heart images were taken at × 2.5 magnification, whereas boxed sections are shown at higher magnification (×10)
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Figure 3 Continued.
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e8.5. Genotyping results showed that double heterozygote
and single KO embryos were found at the expected
Mendelian ratio but no double KO(− /− : − /− ) mutants were
recovered and only one mutant lacking three alleles
(+/− : − /− ) survived at these ages (Table 1). It is noteworthy
that litter sizes from het/het crosses at e9.5 were also smaller
than average (4–6 embryos), suggesting that double homo-
zygous or triple allele mutants may be lost during early
embryogenesis. These data suggest that embryonic devel-
opment fails if both Brn-3a and Brn-3b proteins are lost and
indicate essential and partially overlapping roles for these
TFs during early embryogenesis.

Analysing Brn-3a and Brn-3b expression in zebrafish
(ZF) heart. Since double KO mouse embryos were not
recoverable, we were unable to analyse for cardiac abnorm-
alities. However high homology between ZF and mammalian
Brn-3a and Brn-3b lead us to investigate suitability of ZF as a
model to study these TFs. qRT-PCR results showed
increasing levels of Brn-3a mRNA (i) and Brn-3b mRNA (ii)
in ZF embryo at 24–72 hpf (Figure 4a). Western blot analysis
confirmed expression of single Brn-3a or Brn-3b protein
isoforms in adult ZF heart extracts, compared with two
isoforms seen in mouse hearts (positive control) (Figure 4b).
Similar results were obtained using protein extracts from
whole-ZF embryos (not shown). These results indicate
suitability of the antibodies for analysis of these
proteins in ZF.
Whole-mount co-immunofluorescent staining was next

undertaken to analyse protein localisation in ZF embryos
(24, 48 and 72 hpf) using either Brn-3a or Brn-3b Ab and
tropomyosin Ab to identify cardiomyocytes. Both proteinswere
expressed in the developing heart with low levels at detected
24 hpf (not shown), which increases significantly by 48 and 72
hpf. Co-localisation with tropomyosin indicate expression in
the ventricle, (Figure 4c) but expression was also seen around
the pericardial lining. Colorimetric staining of serial sections
from 72 hpf ZF embryos showed expression of Brn-3a and
Brn-3b in similar regions as tropomyosin in the heart
(Figure 4d) thereby confirming that the ZF is a relevant model
for analysing Brn-3a and Brn-3b during heart development.

Reducing both Brn-3a and Brn-3b in ZF embryos resulted
in cardiac defects. Both Brn-3a and Brn-3b are encoded by
single genes in the ZF genome, so MO designed to reduce
protein expression were injected into fertilised embryos.52–55

Preliminary studies to optimise dose and time of treatment
showed that combining 2ng Brn-3a and 2ng Brn-3b (4 ng
total) was sufficient to reduce both proteins in double
morphants, when compared to non-silencing (NS) mor-
phants, without loss of viability as determined by the invariant
protein γ-tubulin (Figure 5a). Therefore Brn-3a and Brn-3b
MO were injected either alone or together into fertilised eggs
and compared with single MO injected embryos or NS MO,
used as control for non-specific or off target effects
(see Materials and Methods section).
Effects on early heart development were visualised in the

transparent, live embryos using light microscopy. Represen-
tative images of hearts from ZF embryos at 48 hpf (Figure 5b)
showed striking changes in cardiac morphology in double
morphants injected with Brn-3a and Brn-3b MO by 48 h, with
failure to loop resulting in linear heart morphology when
compared with control (NS) MO or single MO (Brn-3a or Brn-
3b only). These effects were also seen when similar
experiments were undertaken using transgenic CMLC2-GFP
ZF model where GFP expression in the heart allows for easy
visualisation (Figure 5c). Contractile dysfunction in double
morphants hearts was also demonstrated by observation of
retrograde blood flow seen as blood vacillating between the
chambers52 (Supplementary Video Data File S1). By 72 hpf,
double morphants also displayed inflow tract defects, which
was significantly narrower than NS control or single mor-
phants (Figure 5d). These findings strongly suggest that Brn-
3a and Brn-3b have important roles, with some overlap, during
early cardiac development.

Discussion

Normal heart development is governed by a complex and
tightly regulated programme of gene expression that must be
orchestrated in a strict temporal/spatial manner to control
diverse cellular processes. TFs such as NKX2.5, HAND2 and
GATA4 can regulate genes required for normal cardiac
development1 and loss of such TFs can cause embryonic
lethality or contribute to congenital cardiac defects.56–59

Importantly, TFs act as part of a multi-protein transcription
initiation complex, so interactions between different TFs can
significantly affect cell fate. For example, NKX2.5 interacts
with GATA4 to drive cardiac progenitor cell specification but
cooperateswith HAND2 to promote heart development at later
stages.56,60

We report on potentially novel and important functions for
the related but distinct proteins, Brn-3a and Brn-3b, in the
developing heart, which may affect gene expression and cell
fate directly or indirectly by interacting with regulators such as
p53. A reciprocal relationship between Brn-3a and Brn-3b in
the developing mouse heart may result from Brn-3a repres-
sing Brn-3b gene promoter specifically in cardiomyocytes. De-
repression upon loss of Brn-3a will also explain increased Brn-
3b observed in Brn-3a KO hearts during mid-gestation.
However, such reciprocal effects are unique to the heart
because sensory neurons from Brn-3a KO mice express

Table 1 Genotype of embryo (n= 43) from Brn-3a+/− Bm-3b+/− cross

Brn-3b
genotype

Brn-3a
genotype

No of
embryos

% of Total
(43)

+/+ +/+ 5 11
+/− +/− 12 29
+/− +/+ 10 23
+/+ +/− 8 18
− /− +/+ 3 7
+/+ − /− 4 10
+/− − /− 1 2
− /− +/− 0 0
− /− − /− 0 0

Summary of the genotypes of embryos that were obtained from crosses
between Brn-3a+/−and Brn-3b+/− heterozygote mice. Embryos were analysed
at E9.5 with the day of the plug considered as e0.5. Genotyping was carried out
by PCR using unique sets of primers. The number of each genotype was
expressed as percentage of the total embryos recovered
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reduced Brn-3b,61 suggesting a complex and tissue-specific
relationship between these related TFs.
Brn-3a KO hearts express increased cyclin D1 mRNA and

show widespread protein expression throughout the ventri-
cular walls when compared with more restricted expression in
WT hearts. Cyclin D1 is a known Brn-3b target gene,43 so
increased expression in mutant hearts may reflect the
functional effects of elevated Brn-3b but will also contribute
to hyperplastic growth reported in Brn-3a KO hearts, during
mid-gestation.19 Cyclin D proteins drive cell cycle progression
and support myocardial proliferation during cardiac develop-
ment but are downregulated as cells undergo terminal
differentiation,43 and sustained expression in post-mitotic
cells (cardiomyocytes and neurons) correlate with induction
of apoptosis, possibly linked to mitotic crisis.62,63 Elevated

cyclin D1 is also implicated in cardiac pathologies including
cardiac hypertrophy and cardiomyopathies,64,65 so whether
increased cyclin D1 in Brn-3a KO hearts is merely a
‘bystander’ effect or instrumental in driving mitotic crisis and
cardiomyocyte apoptosis/ myopathies at later stages remains
to be established.
Interestingly, while Brn-3b is maximally expressed in e18.5

WT hearts, mRNA levels are significantly reduced in age-
matched Brn-3a KO hearts. Although such changes could
result from active downregulation, it is more likely linked to loss
of cardiomyocytes that normally express Brn-3b in Brn-3a KO
hearts as evidenced by morphological changes such as
ventricular wall and septal thinning, reduced myocardial
compaction, increased trabeculation and presence of myo-
cardial crypts/fissures66 in mutant hearts. Such changes could

24 hr 48 hr    72 hr
0

1

2

3

4

5

6

Developmental  time point

ZF-Brn3a mRNA

zf
B

rn
-3

a/
G

A
PD

H
 m

R
N

A
 

24 hr 48 hr 72 hr
0

5

10

15

20

25
ZF-Brn-3b mRNA

Developmental  time point

ZF M
Adult heart

< Brn-3b(l) 

< Brn-3b(s) 
25 kDa> 

46 kDa> 

25 kDa> 
< Brn-3a 

58 kDa> 
< γ-tubulin 

MW
Marker

A

x40

Brn-3a

V V
A

x40

Brn-3bTM

A

x40

V

Control

αα-Tropomyosin (TM)

V A

TM / Brn-3a/Bright Field

V A
V

A

α-Tropomyosin

V
A

TM / Brn-3b/ Bright Field

P P

Brn-3a

V A

(i) Brn3b 

V A

P

(ii)

zf
B

rn
-3

b/
zf

G
ap

dh
 m

R
N

A

a b

c d

(i) (ii)

Figure 4 (a) Results of qRT-PCR showing (i) Brn-3a and (ii) Brn-3b mRNA levels in the developing zebrafish at 24, 48 and 72 hpf. cDNA from total RNA was amplified using
primers to ZF Brn-3a and Brn-3b and a variation in mRNA levels was corrected using ZF GAPDH. Values were expressed as fold induction relative to expression at 24 h (set at 1).
(b) Representative western blot analysis showing single protein band for both Brn-3a and Brn-3b in extracts from adult ZF compared with adult mouse heart (M), used as a
positive control. MW markers indicate the protein size and gamma (γ) tubulin was used to control for variation in total protein. (c) Representative images showing whole-mount
immunostaining for (i) Brn-3a or (ii) Brn-3b (green; top panels) in ZF hearts at 72 hpf. Co-staining with tropomyosin (red; middle panels) indicate cardiomyocytes in the developing
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arise from induction of pro-apoptotic Bax and increased
apoptosis (TUNEL staining) caused by loss of Brn-3a and/or
enhanced Brn-3b because Brn-3a inhibits p53-mediated
activation of pro-apoptotic genes,23,24,45,49,67 while Brn-3b
cooperates with p53 to induce pro-apoptotic genes, for
example, Bax and Noxa, thereby increasing apoptosis. In
fact, Brn-3b appears to be required for maximal induction of
Bax by p53 because sensory neurons from Brn-3b KO-mutant
mice are highly resistant to apoptotic stimuli and express
reduced Bax despite p53 expression being intact.46,68

Similarly, silencing Brn-3b is sufficient to block induction of
pro-apoptotic Bax in neonatal cardiomyocytes although p53
was unchanged.18

Therefore Brn-3a may promote cardiomyocyte differentia-
tion during cardiac development by suppressing Brn-3b while
blocking p53-mediated apoptosis and cooperating with p53 to
increase p21cip1/waf1 cell cycle inhibitor.24,49,67 Loss of Brn-3a
and concomitant increased Brn-3b will drive cell proliferation
duringmid-gestation but promote apoptosis in cardiomyocytes
at later stages when p53 is increased,18,46,49 thereby
contributing to morphological changes but may also account
for reduced Brn-3b seen in e18.5 Brn-3a KO hearts. There-
fore, the balance of Brn-3a and Brn-3b will be important for
normal cardiac development.
Despite antagonistic effects on some target genes, Brn-3a

and Brn-3b may partially compensate for each other during
early embryonic development because although Brn-3a KO
embryos survive until birth, attempts to generate double KO
mutants from Brn-3a+/−: Brn-3b+/− heterozygote crosses
resulted in early embryonic lethality of double mutants
(oe9.5) and triple allele mutant (Brn-3a− /− : Brn-3b+/− ).
Such compensatory effects have been observed for the
related Msx1 and Msx2 homeobox TFs during heart morpho-
genesis, since double mutants develop gross malformation in
the atrioventricular valves not seen in single mutants.69 Such
compensation arises if the TFs have similar effects on key
target genes and since both Brn-3a and Brn-3b transactivate
the small heat shock protein, HSP27, which is required for
cardiomyocyte differentiation;19,33–35 it is likely that this and
other as yet unknown target genes, co-regulated by Brn-3a
and Brn-3b, will be essential for survival during early
embryogenesis.
While early lethality of double KO embryos precluded further

studies to investigate for heart defects in mouse models, the
ZF provided a useful model to analyse potential roles for these
TFs during early embryogenesis because of very high
homology between mammalian and ZF Brn-3b and Brn-3a
proteins (87% and 76%, respectively). Moreover, since Brn-3a
and Brn-3b are encoded by single genes in the ZF genome
(chromosome 6 and 1, respectively), morpholinos have been
designed for injection into externally fertilised eggs to reduce
protein expression.70 Furthermore, during early development,
ZF embryos extract oxygen and nutrients by diffusion so can
survive with cardiac defects,71 which can be visualised in real-
time in live embryos due to the transparency of early embryos.
More importantly, although ZF embryos develop a two-
chambered heart compared with four-chambered vertebrate
hearts, fundamental processes remained similar, for example,
cardiac development in both ZF and higher vertebrates is
initiated from the lateral plate mesoderm and hearts undergo

rightward looping to align the atria and ventricular cham-
bers.72,73 Moreover, such processes are driven by conserved
TFs such as Nkx2.5 /GATA4, which are essential for
mammalian and ZF cardiac development.74–76

Furthermore, ZFs are suitable for studying Brn-3a and
Brn-3b because mRNA transcripts are readily detected in
embryonic ZF extracts, whereas western blotting with protein
extracts from adult ZF hearts detects single bands for ZF Brn-
3a and Brn-3b proteins compared with two isoforms of each
protein detected in mouse hearts. Whole-mount immunostain-
ing also demonstrate protein expression in developing ZF
heart as early as 24 hpf, the earliest time point studied. By 48–
72 hpf, Brn-3a or Brn-3b protein showed clear co-localisation
with tropomyosin in ventricular myocardium but also in cells
lining the heart, possibly epicardial or pericardial cells.
Reducing both Brn-3a and Brn-3b with morpholino oligonu-
cleotides cause marked looping defects in double morphant
hearts by 48 hpf, with the resultant linear heart showing
contractile dysfunction and AV valve defects seen as retro-
grade blood flow,52 while narrowing and constriction of the
inflow tract in double morphants by 72 hpf also support
functional cardiac defects in double morphants hearts.
Although results in ZF hearts must be interpreted with caution,
such changes can contribute to congenital cardiac abnorm-
alities in mammalian hearts as demonstrated by looping
abnormalities and growth retardation in Nkx2.5 KO mice that
caused early lethality in mutants.77,78

Data from mouse and ZF studies strongly support key roles
for Brn-3a and Brn-3b with limited redundancy during cardiac
development and warrant further investigations to identify
potential roles for these regulators in the developing heart.
Moreover, loss of Brn-3a and increased Brn-3b which is
associated with cardiomyocyte apoptosis may cause cardiac
insufficiency and post-birth lethality in Brn-3a KO mutants,
thereby providing a more convincing explanation for complete
loss of mutants within 0.5 days after birth rather than
behavioural and suckling defects, proposed by earlier
studies.50,61 Such changes may also be relevant in the context
of human diseases where loss of ventricular cardiomyocytes
and hyper-trabeculation are associated with congenital heart
defects or cardiomyopathy, for example, left ventricular non-
compaction syndrome,79–82 indicating potential roles for these
regulators in human diseases.

Materials and Methods

General laboratory reagents- Merck (Nottingham, UK); Sigma (Dorset, UK) unless
otherwise stated. Tissue culture reagents/plastics: Gibco/Life Technologies (Paisley,
UK); Nunc (Paisley, UK); Greiner (Stonehouse, Gloucester, UK) or Corning (Scientific
Laboratory Supplies, Nottingham, UK). Primary antibodies were sourced as follows:
rabbit-Brn-3b pAb (Abcam, Cambridge, UK); goat-Brn-3b pAB and goat-actin pAb
(Santa Cruz Biotechnology Inc, Dallas, TX, USA); β-tubulin mAb, (Merck Millipore,
Darmstad, Germany); all secondary Ab (Dako, Cambridgeshire, UK): rabbit pAb Bax,
(Cell Signalling, Danvers, MA, USA). Brn-3b promoter was cloned in the pGL3
luciferase.

Animals
Mouse models: Studies using mouse models were undertaken in accordance
with Home Office guidelines (Animals Scientific Procedures Act 1986) and approved
by local Ethics Review Board. C57BL/6J strain was used for studies, with outbred
C57BL6 mice obtained from Harlan UK and Brn-3a heterozygote mice used to
generate litters with Brn-3a KO mutants, hets and age-matched WT. Hearts from
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older embryos were dissected and either snap frozen for subsequent RNA
extraction or fixed in 4% paraformaldehyde (PFA) (pH7.4) and embedded in paraffin
wax for subsequent sectioning.

ZF (Danio rerio) models: Adult ZF were maintained according to standard
protocols and all experiments using ZF were performed in compliance with Home
Office guidelines (Animals Scientific Procedures Act 1986) and approved by local
Ethics Review Board. The transgenic CMLC2-GFP ZF model, in which CMLC2
promoter drives expression of GFP in cardiomyocytes was also used for the studies
to identify structural changes in the developing heart.

Histological analysis and immunostaining. H&E staining was under-
taken to assess for morphological changes in WT and Brn-3a KO hearts. 5–10 μm
paraffin-embedded heart sections were dewaxed and rehydrated followed by H&E
staining, using the SAKURA Tissue-Tek DRS 2000 autostainer. Sections were
imaged using Hamamatsu Nanozoomer whole-slide imaging function and analysed
using the NDP view 2 software (Hamamatsu, Japan).
TUNEL staining was used to analyse for apoptotic cells in WT and Brn-3a KO

embryonic heart sections. The DeadEnd Colorimetric TUNEL System (Promega,
Southampton, UK) was used according to the manufacturer’s protocol.
Immunostaining was carried out to assess for gene expression changes in WTand

Brn-3a KO embryonic heart sections, using established protocols. Briefly, paraffin-
embedded heart sections were dewaxed and rehydrated before antigen retrieval
(microwave for 10 min in 0.01 M sodium citrate (pH 6.0)). For colorimetric
immunostaining using 3,3'-diaminobenzidine (DAB), endogenous peroxidases were
blocked by incubating slides in 0.3% hydrogen peroxide solution (30 min, RT). For all
immunostaining, sections were incubated with blocking solution (0.1% TBS/T / 10%
goat serum; 30 min, RT), followed by incubation with primary antibody (Ab°) either
overnight at 4 °C or 1–2 h at RT. Negative control (second Ab° only) was included in
each immunostaining experiment. All slides were maintained in a sealed humidified
chamber to prevent drying. Washes (4 ×5 min) were undertaken using phosphate-
buffered saline+1% triton X-100 (PBST). Appropriate diluted secondary Ab was
incubated for 1 h, RT. Colorimetric detection was carried out using DAB substrate
(Vectastain Elite ABC Kit (Vectorlabs, Peterborough, UK), according to the
manufacturer’s protocol. After immunostaining, all slides were dehydrated in a
graded ethanol series, washed twice in Xylene, then mounted and imaged using the
NDP Nanozoomer.

Co-transfection and luciferase activity. NRVM cultures were prepared
as previously described18 and were maintained in 4 : 1 of Dulbecco’s Modified
Eagle’s Medium (DMEM)/medium 199 supplemented with 1% foetal calf serum
(FCS) and 1% pen/ strep. To analyse effects of Brn-3a on Brn-3b promoter activity,
cells were co-transfected with the Brn-3b reporter construct and Brn-3a expression
vector or empty vector control (LTR) into cardiomyocytes using Lipofectin-integrin
targeting peptide–DNA (LID) protocol as previously described.83 Cells were
harvested after 24 h and promoter activity measured using dual-luciferase reporter
kit (Promega, Southampton, UK) and TD-20/20 luminometer (Turner Designs,
Madison, USA). The internal control, TK renilla was used to adjust for differences in
transfection efficiency and values were expressed as relative luciferase unit adjusted
with renilla luciferase activity. Statistical analysis was performed using Microsoft
Excel or GraphPad Prism 6 (San Diego, CA, USA).

RNA extraction, cDNA synthesis and quantitative reverse
transcriptase PCR. Snap-frozen whole hearts were homogenised in liquid
nitrogen before resuspending in TRIZOL Reagent (Invitrogen, Paisley, Paisley, UK)
and processed according to the manufacturer’s protocol. DNAse1 treatment was
performed using RNAse-free DNAse 1 (Promega) after which phenol–chloroform
extraction and ethanol precipitation was performed. RNA was quantified (NanoDrop
1000 spectrophotometer, Thermo Fisher Scientific, Paisley, UK) and cDNA
synthesis (20–50 μl reaction) was carried out using RNA Superscript II Reverse
Transcriptase (Invitrogen). Real-time quantitative reverse transcriptase PCR (qRT-
PCR) was carried out on the Opticon 2 DNA engine thermal cycler (BioRad, UK)
using SYBR chemistry (SYBR Green master mix (Qiagen, Manchester, UK)).
Reactions were carried out using 1–2 μl of cDNA and unique primers for each gene.
GAPDH housekeeping genes were used to correct for variability between samples
and relative mRNA levels were calculated using ΔΔCT method (25). Mean± S.D.
of 43 independent samples were used for statistical analysis using appropriate
packages including Student's t-test (significance P o0.05).

Morpholinos injection. Studies were carried out using ZF models. Fertilised
eggs were incubated and WT embryos were collected at 24, 48 and 72 hpf.
Antisense morpholinos sequences designed to block translation and thereby reduce
Brn-3a and Brn-3b protein expression were as follows: Brn-3b- 5′-AGACATCA
TCATCATATTTGCGACC-3′; Brn-3a - 5′-AG CGTCTCATCCAGACTGGCGAAGA-3′.
Standard Control oligo was used as a non-specific control. All morpholinos were
obtained from Gene Tools, LLC (www.gene-tools.com). During preliminary studies,
1 ng, 2 ng and 4 ng of the control, Brn-3a and Brn-3b (mix) morpholinos were
injected into fertilised embryos and effects on embryonic viability were analysed at
different times (24, 48, 72 h) and the morphological and functional effects on the
heart were analysed using live image capture, for example, Zeiss Axiovert 135 live
imaging scope (Jena, Germany) with motorised stage Hamamatsu Orca R2
monochrome camera (Hamamatsu, Japan).

Whole-mount ZF immunofluorescent staining. For whole-mount
immunostaining, ZF embryos taken at appropriate ages were fixed in 4% PFA for
1 h at room temperature then washed (4 × 5 min) in PBST with 1% triton
X-100 (PSBT). While still in PBST, embryos were carefully dechorionated, then
permeabilized in ice-cold acetone for 8 min. Following washes (4 × 5 min in PBST),
the embryos were incubated in blocking buffer (PBS-T+10% FCS) for 1 h (RT) after
which the buffer was changed and then repeated for another 1 h. Embryos were
then incubated for 3 days at 4 °C in primary antibodies diluted in blocking buffer
(1:200 and 1:500 for Brn-3a and Brn-3b rabbit polyclonal Ab; 1:500 of tropomyosin
mAb and 1:200 of α-actinin mAb) with gentle rotation. Embryos were washed
(3 × 1 h) in blocking buffer followed by 3 × 10 min in PBS. Fluorescent-tagged
secondary antibodies (AlexaFluor 555 for tropomyosin or α-actinin mAb or
AlexaFluor 488 for Brn-3a or Brn-3b rabbit pAb) were diluted 1:2000 in blocking
buffer and incubated with embryos for 3 days at 4 °C, under sealed darkened
conditions with gentle rotation. Embryos were then washed (3 × 10 min in PBST),
mounted in 1% low melting point agarose on glass bottom culture dishes (MatTek,
Peterborough, UK) and stored at 4 °C in the dark until confocal imaging could be
undertaken (Leica TCS SPE inverted confocal microscope (×20 magnification)).
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