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Summary

The unmet clinical need for effective treatments in ovarian cancer has yet to be addressed using monoclonal antibodies (mAbs), which have
largely failed to overcome tumour-associated immunosuppression, restrict cancer growth, and significantly improve survival. In recent years,
experimental mAb design has moved away from solely targeting ovarian tumours and instead sought to modulate the wider tumour microenvir-
onment (TME). Tumourassociated macrophages (TAMs) may represent an attractive therapeutic target for mAbs in ovarian cancer due to their
high abundance and close proximity to tumour cells and their active involvement in facilitating several pro-tumoural processes. Moreover, the
expression of several antibody crystallisable fragment (Fc) receptors and broad phenotypic plasticity of TAMs provide opportunities to modulate
TAM polarisation using mAbs to promote anti-tumoural phenotypes. In this review, we discuss the role of TAMs in ovarian cancer TME and the
emerging strategies to target the contributions of these cells in tumour progression through the rationale design of mAbs.
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Introduction including tumour-associated macrophages (TAMs), mes-
enchymal stromal cells (MSCs), fibroblasts and adipocytes
are frequently sustained within the cavity by an abnormal
build-up of soluble factor-rich fluid, known as peritoneal
ascites [3]. Thus, an urgent need exists to better understand
this unique TME, as well as develop novel therapies which
specifically target its constituents. This review focuses on the
therapeutic possibilities associated with targeting TAMs using
monoclonal antibody (mAb) approaches.

Ovarian cancer has the highest mortality rate among gynae-
cological malignancies [1]. This poor patient prognosis may
be promoted by features such as rapid peritoneal metas-
tasis of tumours, as well as tumour resistance to both cur-
rent therapies and anti-tumour immunity [2]. These features
are aided by the unique tumour microenvironment (TME) in
the tumour mass and intraperitoneal space of patients [2]. In
addition to cancer cells, a milieu of tumour-supportive cells
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Monoclonal antibodies and the challenges of
developing therapies for ovarian cancer

Over the past 30 years, mAb therapies have become widely
used in cancer treatment, offering significant advantages rela-
tive to conventional chemotherapy and radiotherapy, including
high specificity and affinity for a single epitope target, which
limits off-target effects [4]. Therapeutic antibodies can be
exploited to directly block tumorigenic signalling [4]. They
can also engage immune effector molecules or cells via their
crystallisable fragment (Fc) regions to trigger cytotoxic ef-
fector functions and amplify anti-tumour immune responses
[4]. Moreover, the last decade has witnessed a rapid expan-
sion of mAbs targeting the inhibition of immune checkpoints,
known as immune checkpoint blockade (ICB) [5]. Immune
checkpoints are frequently co-opted by tumours to suppress
anti-tumour immunity [5]. For example, programmed death-
ligand 1 (PD-L1) can engage programmed cell death protein
1 (PD-1) on T cells to induce their functional exhaustion, and
therefore ICB offers a powerful tool to unleash suppressed
anti-tumour immune responses in patients [6].

Despite significant successes in other tumour types, mAb
therapies in ovarian cancer frequently report disappointing
clinical trial results (Table 1). In recent years, experimental
mADb therapies have moved away from solely targeting
ovarian tumours and instead have sought to also modu-
late the wider TME. For example, the sole mAD licensed in
the UK for the treatment of ovarian cancer is Bevacizumab
(Avastin), which targets vascular endothelial growth factor
A (VEGF-A), a molecule abundantly secreted by TAMs and
fibroblasts to drive neo-angiogenesis and ascites formation
[7]. There is now a growing interest in targeting TAMs and
TAM-derived factors with mAbs.

TAMs in ovarian cancer

Macrophages are highly abundant mononuclear phagocytic
cells present in almost every human tissue [31].

Macrophages are both important for inflammatory re-
actions and homeostatic functions. Monocyte-derived
macrophages (MDMs) rapidly increase in number during in-
flammatory events such as infection, to aid the restoration
of homeostasis through the promotion of pathogen clear-
ance and subsequently tissue repair [32]. Moreover, tissue-
resident macrophage (TRM) populations, constituted by both
self-renewing pre-natal derived macrophages and short-lived
adult-derived MDMs, promote the maintenance of homeo-
static tissue function in the absence of inflammation [31, 33].
For example, TRMs are key in the regulation of vascular in-
tegrity, folliculogenesis, and ovulation in the ovaries [34, 35].

TAMs frequently constitute a highly abundant popula-
tion within TMEs, typified in ovarian cancer, where they can
account for over 50% of all cells in peritoneal tumours and
ascites [36]. Initially, macrophages were thought to be strictly
anti-tumoural, capable of phagocytosing malignant cells and
amplifying anti-tumour immunity [37]. However, although
TAM density may constitute a positive prognostic factor in
colorectal cancer, in most other malignancies it is negatively
associated with patient outcomes [38-43].

In ovarian cancer, total TAM density exhibits no prog-
nostic significance [44, 45]. However, stratification of pa-
tients according to specific macrophage subsets based on
traditional M1 and M2 polarity has revealed paradoxical

associations with survival. The M1/M2 model represents a
highly simplified description of macrophage phenotypes, de-
fined as pro-inflammatory and immunostimulatory (M1) and
immunosuppressive and pro-repair (M2) phenotypes [46]
(Figure 1). One study found that tumour density of TAMs
expressing M2 marker CD163 negatively correlated with pa-
tient overall survival (OS) [47]. Furthermore, a recent study
that examined a subset of M1 (human leukocyte antigen DR
(HLA-DR) and inducible nitric oxide synthase (iNOS)) and
M2 (CD163 and VEGF-A) markers found that a high M1/M2
ratio was associated with improved survival, when present
intra-tumourally, but not in the tumour stroma [48].

In vivo, especially in TMEs, the binary M1/M2 model
has proven oversimplified, with a spectrum model possibly
offering a more accurate representation of macrophage po-
larisation [46]. By this model, polarisation can produce a
broader range of distinct M1 and M2 macrophage subsets,
such as M2a-d, as well as a range of subsets with chimeric
M1/M2 features (Figure 1). TAMs can exhibit this M1/M2
chimerism and consequently are frequently referred to as M1-
and M2-like [49]. In most tumour types, including ovarian
cancer, M2-like TAMs predominate [50-52]. M2-like de-
notes a population-level phenotype that is skewed towards
immunosuppressive and pro-repair functions, but which also
exhibits some M1 properties that confer inflammatory pro-
tumoural effects [51, 53]. Consequently, in the ovarian TME,
both pro- and anti-inflammatory TAM activity has been
demonstrated to support pro-tumoural processes, including
tumour growth, metastasis, neo-angiogenesis, therapy resist-
ance, and immunosuppression (Figure 2) [51, 54-57].

A substantial investigation has been undertaken into the
complex interactions of TAMs with ovarian tumours, to
identify specific subsets and TAM-derived molecules which
promote tumour progression and therefore may represent
novel targets for experimental mAb therapies. Specifically, a
prevalent aim amongst TAM-targeting mAbs is to shift the
prevailing TAM phenotype away from M2-like immuno-
suppressive towards immunostimulatory M1-like properties
(Figure 1).

Depletion of TAMs via mAbs

In view of the extensive pro-tumoural activity displayed by
TAMs in ovarian cancer, several mAb therapies have sought
to deplete their presence in the TME.

Firstly, C-C motif chemokine ligand 2 (CCL2) drives re-
cruitment of monocytes expressing C-C motif chemokine
receptor 2 (CCR2) from the blood into the ovarian TME,
with densities of intra-tumoural TAMs and cell expressing
CCL2 positively correlating [58, 59]. CCL2 is frequently
highly abundant in the tumour parenchyma, stroma, and
ascites and is secreted by both tumour cells and supporting
cells such as TAMs themselves, to drive a positive recruitment
feedback loop [58, 59]. Secondly, colony-stimulating factor
1 (CSF-1) is a haematopoietic growth factor that binds to
colony-stimulating factor 1 receptor (CSF-1R) expressed on
monocytes and macrophages [60]. In addition to acting as a
chemokine for monocytes, CSF-1 also promotes their survival
and differentiation into TAMs, generating a phenotype that is
skewed towards M2-associated immunosuppressive activity,
in the absence of additional signals [50]. In ovarian cancer,
high levels of CSF-1 in the serum and ascites are associated
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Fig. 1 Phenotypic polarization of macrophages and TAMs in ovarian cancer. (a) In vitro polarization of human macrophages by different stimuli can
generate phenotypically distinct subsets. These include pro-inflammatory and immunostimulatory M1, and a range of M2-associated subsets

(M2a-d), each exhibiting enrichment for a specific M2-associated anti-inflammatory and pro-repair activity. However, these polarisation states are
increasingly being regarded as a spectrum, with chimeric M1/M2 subsets more commonly being identified in vivo. This M1/M2 polarization spectrum

is exhibited in TMEs, with TAMs frequently being categorised into M1-like and M2-like TAMs. The TME in ovarian cancer drives macrophage polarisation
towards the M2 end of the spectrum, resulting in predominance of M2-like macrophages. These TAMs are characterised by primarily M2-associated
immunosuppressive and pro-repair function, as well as by M1-associated pro-tumoural inflammatory functions. Amongst mAb therapies targeting TAMs
in ovarian cancer, a prevalent aim is to shift the prevailing TAM phenotype towards M1-like TAMSs, which primarily exhibit M1-associated anti-tumoural
immunostimulatory function. NO, nitric oxide; ROS, reactive oxygen species; TLR, toll-like receptor; MMP matrix metalloproteinases; MHC Il, major
histocompatibility complex class II; IL-1RA, interleukin-1 receptor antagonist; TGFf, transforming growth factor-§; EGF, epidermal growth factor.

with poorer patient outcomes [61, 62]. In one cohort of pa-
tients, co-expression of CSF-1 and CSF-1R in ovarian meta-
static lesions was associated with decreased progression-free
survival (PFS) [63].

mAbs targeted against CCL2 and CSF-1R to reduce TAM
recruitment and/or survival have been investigated in phase
I clinical trials involving ovarian cancer patients (Figure 3)
(NCT02526017) [64]. With respect to anti-CCL2 mAbs, in
an ovarian cancer xenograft mouse model, the anti-human
CCL2 IgG1 human mAb Carlumab was found to enhance the
efficacy of chemotherapies paclitaxel and carboplatin [65]. In
a phase I clinical trial involving eight patients with ovarian

cancer of the 44 enrolled, Carlumab was well tolerated; how-
ever, it did not induce any patient objective responses (ORs)
[64]. Carlumab proceeded to a Phase II study in castration-
resistant prostate cancer, where again no ORs were observed,
leading to its discontinuation [66].

Several reasons have been cited for the lack of efficacy of
anti-CCL2 mAbs. Firstly, clinical trials suggest a failure to
durably neutralise CCL2 levels in patient sera [66]. Secondly,
in the event of a successful CCR2/CCL2 blockade, this would
indiscriminately inhibit the contribution of MDMs to the
TAM pool only. Consequently, it would firstly impede the
development of potential anti-tumoural MDM TAM subsets
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Fig. 2 Pro-and anti-tumoural functions of tumour-associated macrophages (TAMSs) in ovarian cancer. The pro- and anti-tumoural processes promoted by
TAMs in ovarian cancer and the cell surface receptors and ligands and secreted factors that mediate these activities. Treg, regulatory T cell; Teff, effector
T cell; NK, natural killer cell; DC, dendritic cell; NO, nitric oxide; ROS, reactive oxygen species; UPAR, urokinase plasminogen activator surface receptor;
uPA, urokinase plasminogen activator; MMPE matrix metalloproteinases; PDGF, platelet-derived growth factor; IGF-1, insulin-like growth factor 1; Mac1,
macrophage-1 antigen; ILT, Ig-like transcript; TGF, transforming growth factorg; MHC I, major histocompatibility complex class II.

and secondly, would have a minimal effect on pro-tumoural
TRM subsets. For example, in a syngeneic ovarian cancer
mouse model, whilst CD163+ Tim4+ TRMs were found to be
indispensable for tumour progression, Ccr2~ mice exhibited
unperturbed disease [55].

In ovarian cancer preclinical models, CSF-1/CSF-1-R
blockade has only been investigated via small-molecule in-
hibitors as opposed to mAbs. However, in a syngeneic ovarian
cancer mouse model, a combination of CSF-1 inhibition with
chemotherapy docetaxel reduced tumour lung metastasis
[67]. Crucially both TAM abundance and TME expression of
M2-associated TAM genes ARG1, MRC1, and IL10 were re-
duced, concurrent with an increase in CD8+ T cell tumour in-
filtration, suggesting a preferential targeting of M2-associated
immunosuppressive TAM subsets.

However, across cancer types, clinical trials investigating
anti-CSF-1R  mAbs have reported disappointing results.
Although multiple experimental mAbs have shown evidence

of target specificity, characterised by increased serum CSF-1
and reductions in M2-associated CD163+, CD206+, and
CSF-1R+ TAMs, insufficient anti-tumour activity has been
displayed [68, 69]. Despite possible preferential M2-like
macrophage depletion, CSF1/CSF1-R blockade still appears
too indiscriminate in terms of TAM inhibition. Due to the
spectral nature of TAM polarisation, M1-associated func-
tions which can support anti-tumour immunity may also be
collaterally lost (Figure 2). In a Lewis lung carcinoma (LLC)
mouse model, CSF-1/CSF-1R blockade was found to deplete
intra-tumoural NK cells and increase tumour metastasis, due
to a loss of the TAM-derived NK survival factor IL-15 [70].
Consequently, emerging strategies have targeted subset-
level TAM depletion. This approach has proven efficacious
in preclinical models, with depletion of the murine CD163+
Tim4+ TRM subset via anti-CD163 mAb-coated cytotoxic
liposomes found to reduce ovarian tumour burden in mice
[55]. Although TAM markers can vary between mouse and
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human, a recent study identified a human TAM population
homologous to murine Tim4+ TAMs, characterised by com-
plement receptor of the immunoglobulin superfamily (CRIg)
expression [71]. This provides hope that clinical investigation
of such a targeted approach may soon be possible (Figure 3).

mAbs targeting the role of TAMs in tumour
metastasis

One of the key factors in the poor prognoses of ovarian
cancer patients is the propensity of tumours to undergo peri-
toneal metastasis early in tumourigenesis. Ovarian peritoneal
metastasis is a complex, multi-step process and mAb targets
for this process are currently limited. However, one emerging
target is IL-6, which activates signal transducer and activator
of transcription 3 (STAT3) signalling within tumour cells [9].
STAT3 activation has been demonstrated to contribute to
each step in the metastatic cascade and be promoted by TAMs
(Figure 2). Firstly, TAM-secreted IL-6 promotes epithelial-
mesenchymal transition (EMT) in cancer cells to induce their
shedding from the primary tumour [51, 72, 73] (Figure 2).
Subsequently, cancer cells migrate across the intraperitoneal
space as multi-cellular spheroids containing supporting cells
such as TAMs and fibroblasts [54, 74]. Following spheroid
implantation into the cavity wall, TAM-induction of STAT3
activation promotes spheroid disaggregation and spreading

to further sites [72]. IL-6/STAT3 activation also induces
cancer stem cell (CSC) formation in metastatic lesions, which
promotes therapeutic resistance [55, 75].

IL-6 expression in ovarian cancer patient tumours and
serum both increase with disease stage, whilst high tumour
IL-6 levels inversely correlate with patient survival [9, 75].
Moreover, expression of M2-associated TAM marker CD163
is associated with both ascites levels of IL-6 and reduced pa-
tient relapse-free survival (RFS), whilst TAMs have been iden-
tified as the highest secretors of IL-6 in the TME [51, 76].

Siltuximab (Sylvant) and Tocilizumab (Actemra) are IgG1
mAbs targeted against IL-6 and IL-6 receptor (IL-6R), re-
spectively, to induce a blockade of IL-6-mediated STAT3 acti-
vation (Figure 3) [77]. In ovarian cancer patients, both mAbs
have shown good tolerability profiles and effective IL-6/
IL-6R blockade, characterised by decreased serum C-reactive
protein (CRP) and STAT3 activation and increased serum
IL-6 and soluble IL-6R [8-10]. However, despite reducing
serum levels of IL-6 regulated cytokines involved in the meta-
static cascade, such as C-X-C motif chemokine ligand 12
(CXCL12), VEGF-A and CCL2, Siltuximab has hitherto not
shown clear efficacy in its two-phase II trials [8, 9] (Table
1). However, in both trials, ovarian cancer patient numbers
were low, and some level of activity was still shown; with
one partial response (PR) and seven patients displaying stable
disease (SD), from 18 ovarian cancer patients in one trial [9].
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Moreover, all recruited patients had a late-stage disease and
therefore it is possible that the anti-metastatic effects of IL-6/
IL-6R blockade would be stronger in combination with a
cytotoxic therapy such as chemotherapy, to prevent the out-
growth of new metastatic lesions following chemotherapy-
induced tumour regression. Accordingly, in the sole phase I
trial of Tocilizumab in ovarian cancer patients, the mAb was
investigated in combination with chemotherapies carboplatin
and doxorubicin and displayed evidence of a survival benefit,
with three complete responses (CRs), eight PRs, and six SD
out of 21 patients on the trial (Table 1) [10]. These findings
underline the merit of assessing IL-6/IL-6R blockade in larger,
randomised studies, especially in combination with cytotoxic
therapies.

mAbs targeting the role of TAMs in tumour
neo-angiogenesis

A key requirement for the development of both the primary
and metastatic tumours is the establishment of access to the
circulatory system via neo-angiogenesis. TAMs potently pro-
mote neo-angiogenesis, displaying enrichment at sites with
high angiogenic requirements, including hypoxic tumour
nests, nascent peritoneal tumours, and perivascular regions
[54, 56, 58,78, 79] (Figure 2). A key neo-angiogenic factor is
VEGEF-A which binds to vascular endothelial growth factor
receptors 1, 2 (VEGFR 1,2) on endothelial cells, triggering
vessel development [80]. VEGF-A is highly upregulated
in ovarian cancer on tumour cells, MSCs and TAMs, with
high patient VEGF-A serum levels associated with increased
micro-vessel density and ascites levels and decreased survival
[54, 81-85]. Moreover, depletion of peritoneal TAMs in a
syngeneic ovarian cancer mouse model was found to reduce
ascites formation and peritoneal metastasis, concurrent with
a reduction of ascitic VEGF-A [86].

The IgG1 mADb Bevacizumab blockades VEGF-A/VEGFR-
mediated neo-angiogenesis through binding to VEGF-A
(Figure 3) [87]. Bevacizumab is the only mAb licensed in the
UK for the treatment of ovarian cancer [7]. It is currently
recommended as maintenance therapy following first-line
chemotherapy, to inhibit tumour recurrence [88]. However,
eventually most patients develop resistance to Bevacizumab
treatment [89, 90].

TAMs may play a significant role in this resistance. In a
murine model of Bevacizumab-resistant ovarian cancer, tu-
mours exhibited restored response when treated with a TAM-
depleting anti-CSF-1 mAb [91]. Specifically, VEGF-A/VEGFR
blockade is considered to enhance tumour hypoxia, which in-
duces chemoattraction of pro-angiogenic TAM subsets to re-
store neo-angiogenesis [92]. A key chemoattraction pathway
may be via angiopoietin-2 (Ang2) engagement of its re-
ceptor Tie2 on TAMs. In ovarian cancer patients, Tie2+ TAM
density positively correlates with micro-vessel density [56].
This underlines the limitations of therapeutically targeting a
single pro-tumoural mediator, such as VEGF-A, due to redun-
dancy within the TME. Consequently, experimental strategies
have sought to concurrently neutralise both the VEGF-A/
VEGFR and Ang2/Tie2 pathways (Figure 3). For example, in
a VEGF-A/VEGFR blockade-resistant syngeneic pancreatic
cancer mouse model, concurrent mAb targeting of Ang2 sup-
pressed re-vascularisation and tumour progression [93].

The potential utility of combination therapy for targeting
neo-angiogenesis has been indicated clinically. Firstly, in a
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Phase III trial, peptide-Fc fusion protein Trebananib, which
targets Ang2, as well as additional Tie2 ligand, Angl, was
found to enhance PFS in ovarian cancer patients (Table 1)
[23]. Secondly, a bispecific Ang2/VEGF-A-targeting mAb,
Vanucizumab, underwent a Phase I trial in ovarian cancer pa-
tients and demonstrated potential clinical activity, with 20%
of patients displaying an OR (Figure 3) [94].

Due to the redundancy of neo-angiogenesis pathways and
the centrality of TAMs in driving them, a more durable thera-
peutic strategy may be to specifically target pro-angiogenic
TAM subsets via mAbs (Figures 2 and 3). This could be
achieved through identification of a surface marker selectively
expressed on a TAM subset co-expressing VEGF-A and Tie2,
to achieve selective depletion, without inhibiting potential
anti-tumoural TAM subsets. For example, Tie2+ TAMs iso-
lated from ovarian cancer patient ascites express high levels
of CDS52, the target of licensed IgG1 mAb Alemtuzumab
(Lemtrada) [79]. In a syngeneic ovarian cancer mouse model,
anti-CD52 treatment was demonstrated to restrict tumour
neo-angiogenesis and growth, substantiating the potential
clinical utility of subset-level TAM-targeting. Consequently,
Alemtuzumab entered Phase I investigation in ovarian cancer
patients, but disappointingly the study was terminated due to
poor patient enrolment (NCT00637390).

mAbs to trigger Fc-mediated functions of
TAMs

Instead of inhibiting the pro-tumoural activity of TAMs, spe-
cific mAbs have sought to promote the anti-tumour function
of TAMs.

One such approach is through an antibody’s simultan-
eous engagement of tumour-associated antigens (TAAs) on
tumour cells and antibody Fc receptors on TAMs, to trigger
tumouricidal TAM effector function [95]. This can result in
the engulfment of tumour cells via antibody-dependent cel-
lular phagocytosis (ADCP) and paracrine tumour cell lysis
via antibody-dependent cellular cytotoxicity (ADCC) (Figure
3) [95]. All licensed full-length TAA-targeting mAbs are of
the IgG isotype [96]. Among IgGs, IgG1 isotype features the
highest affinity for all Fc-y receptors (FcyRs), whilst IgG2 has
a high affinity for FcyRIla-H131, which is mainly expressed
on macrophages [97]. Consequently, they have increasingly
been recognised to involve Fc-mediated TAM effector func-
tions as part of their mechanism of action [97].

Although TAA-targeting IgG mAbs have displayed efficacy
in solid tumours, clinical results in ovarian cancer have been
disappointing (Table 1). This disparity is illustrated by the
anti-human epidermal growth factor receptor 2 (HER2) IgG1
mADb Trastuzumab (Herceptin). HER2 is expressed in up to
66% of ovarian tumours and negatively correlates with OS
[98]. However, despite demonstrating anti-tumour efficacy
in a variety of preclinical ovarian cancer models, in a Phase
II trial in ovarian cancer patients with high tumour HER2
expression, only 7.3% responded to the treatment (Table 1)
[29,99-101].

One emerging strategy to enhance the efficacy of TAA-
targeting IgG mAbs is through mAb-mediated blockade
of ‘don’t eat me’ signals expressed on tumour cells, to en-
hance the contribution of TAM effector functions to their
mechanism of action. For example, tumour cell CD47 and
CD24 engage cognate receptors on TAMs, signal regulatory
protein-o. (SIRPa) and sialic acid-binding Ig-like lectin 10
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(Siglec-10), respectively, to trigger signalling cascades which
inhibit macrophage phagocytosis [102, 103] (Figure 3). CD47
expression is predictive of disease stage and prognosis in pa-
tients with ovarian cancer, whilst one study identified ovarian
tumours to express the highest level of CD24 of all cancer
types analysed, with its expression inversely correlating with
patient RFS [102, 104].

Pre-clinically, neutralising anti-CD47 and anti-CD24 mAbs
have demonstrated enhancement of non-specific macrophage
phagocytosis of ovarian cancer cells in vitro, as well as in-
hibition of tumour growth in murine ovarian cancer models
[102, 105]. In vitro, dual blockade of CD47 and CD24 ex-
hibited an additive effect on ovarian cancer cell phago-
cytosis [102]. Moreover, in other cancer types, anti-CD47
blockade has been demonstrated to enhance macrophage
ADCP of tumour cells in response to TAA-targeting IgG
mAbs, including Trastuzumab, anti-CD20 IgG1 Rituximab
(Rituxan), and anti-epidermal growth factor receptor (EGFR)
IgG1 Cetuximab (Erbitux) [106]. Furthermore, in a syngeneic
breast cancer mouse model, co-treatment with Trastuzumab
and anti-CD47 mAbs improved tumour control and was as-
sociated with macrophage pro-inflammatory polarisation and
cytotoxic gene expression in CD8+ T cells [107].

Neutralising anti-CD47 mAbs have recently begun early
phase clinical investigation across different cancer types.
Interim results from a Phase I/II trial of anti-CD47 IgG2 mAb
AO-176 demonstrated a good tolerability profile and possible
anti-tumour activity, with 1 PR and 7 SD from 27 patients
with advanced solid tumours (Table 1) [26].

Moreover, in view of the enhanced pre-clinical efficacy of
TAA-targeting mAbs when in combination with anti-CD47
mAbs, several trials are currently underway using this
regimen in non-ovarian solid tumours. For example, a phase
I study in colorectal cancer patients of anti-CD47 IgG4 mAb
HuSF9-G4 in combination with Cetuximab, reported stable
disease in 45% of patients, as well as increased macrophage
tumour infiltration [108]. It remains to be seen whether the
possible enhancement of TAM effector function offered by
such a combination therapy could overcome the efficacy
threshold that has hitherto eluded TAA-targeting IgGs in
ovarian cancer.

mAbs targeting the role of TAMs in tumour
immunomodulation

Ovarian cancer patients frequently exhibit evidence of im-
munogenic tumour recognition, such as CD8+ T cell tu-
mour infiltration; however immunosuppression within the
TME frequently prevents their effector function [57, 109].
TAMs play a major role in this immunosuppression (Figures
2 and 3). For example, TAMs display poor upregulation of
T cell co-stimulatory molecules CD80 and CD86 and an
IL-10"eL-12'v secretome (Figure 2) [50]. Furthermore, they
exhibit high expression of immune checkpoint ligand B7-H4,
which engages T cells to suppress their proliferation [110].
High B7-H4 expression by TAMs is associated with poorer
survival in patients, as well as a high density of regulatory T
cells (Tregs) [110]. TAMs have been demonstrated to drive
such high Treg densities through secretion of M2-associated
chemokine CCL22, and once recruited, Tregs amplify this im-
munosuppressive axis by triggering further TAM B7-H4 en-
richment and CD86 and IL-12 suppression [110, 111].
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Following the disappointing clinical results of TAM de-
pletion strategies and the difficulty of selective TAM subset
depletion, recent strategies have instead sought to exploit
TAM plasticity through targeting these immunosuppressive
subsets by repolarisation towards an immunostimulatory,
anti-tumoural phenotype (Figure 1 and 2). Among
TAM repolarisation strategies, mAbs targeting the TAM
co-stimulatory molecule CD40 has been the focus of clin-
ical investigation in ovarian cancer. During type I immune
responses to pathogens, CD40 agonism by Th1 cell CD40
ligand (CD40L) drives macrophages to a hyper-inflammatory
phenotype [112]. Agonistic anti-CD40 mAbs aim to recapitu-
late this hyper-inflammatory state in TAMs (Figure 3).

Pre-clinically, anti-CD40 mAbs have predominantly
been investigated in other malignant diseases; however, in
an ovarian cancer xenograft mouse model, a recombinant
CD40L inhibited tumour growth [113]. As monother-
apies, anti-CD40 mAbs have demonstrated evidence of pro-
moting a macrophage-driven shift in the immune landscape
of tumours. In a syngeneic pancreatic cancer mouse model,
anti-CD40 mAD treatment resulted in the intra-tumoural mi-
gration of hyperinflammatory monocytes and macrophages,
which mediated tumour regression [114]. Moreover, in a
Phase I trial, anti-CD40 IgG2 mAb Selicrelumab induced a
CR in a patient with metastatic melanoma, which was sus-
tained 9 years after therapy initiation [115]. The patient ex-
hibited a pro-inflammatory shift in the TME post-treatment,
including tumour necrosis factor (TNF) upregulation and
downregulation of M2-associated CSF1R. However, a Phase
I/IT trial of ABBV-428, a bispecific mAb targeting CD40 (as
an agonist) and tumour cell marker mesothelin, was not able
to replicate these promising anti-tumoural effects in ovarian
cancer patients [25].

Such clinical results have generally shifted the outlook on
anti-CD40 mAbs towards combined treatment regimens with
cytotoxic therapies. Firstly, chemotherapy promotes the release
of TAAs during a process known as ‘immunogenic cell death’,
which facilitates the generation of de novo T cell immunity
[116]. This can be sustained as a memory T cell response in
combination with anti-CD40 repolarisation in a syngeneic
pancreatic cancer mouse model, for which anti-CD40 mono-
therapy is insufficient [117]. In a Phase I trial of Selicrelumab
in combination with paclitaxel and carboplatin in patients
with advanced solid tumours, including ovarian cancer, pre-
liminary evidence of anti-tumour activity was observed, with
20% of patients displaying PRs [118].

Secondly, evidence has emerged that TAM-mediated im-
munosuppression underpins the lack of efficacy displayed by
ovarian cancer patients in response to ICB, and therefore ICB
in combination with anti-CD40 treatment has been advanced
as a potentially efficacious strategy (Figure 3) [57]. Despite
revolutionising therapeutic approaches in cancer types such
as melanoma, ovarian cancer is one of the few malignancies in
which ICB displays minimal activity [119]. One study found
that ovarian cancer patient CD8+ T cells were responsive to
anti-PD-1 activation at primary tumours only [57]. At meta-
static sites, CD163+ TAMs were inversely associated with
CD8+ T cell effector function and patient OS.

Clinically, a Phase I trial using anti-CD40 I[gG2 mAb CDX-
1140 with anti-PD-1 IgG4 mAb Pembrolizumab (Keytruda) is
currently recruiting ovarian cancer patients (NCT03329950).
This will provide the first insight into whether anti-CD40
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mediated TAM repolarisation can skew the ovarian TME im-
mune landscape towards ICB efficacy (Figure 3).

IgE antibodies can exert macrophage-
mediated anti-tumour activity by both tumour
killing and pro-inflammatory activation

Currently, all licensed full-length mAbs are of the IgG isotype
[96]. IgE antibodies can induce a rapid and potent skewing
of the immune landscape in both allergy and parasite clear-
ance, by distinct mechanisms to those of IgG isotypes [120,
121]. IgE antibodies exhibit unique features, relative to IgG,
which may be of utility in cancer treatment via mAbs. Whilst
the high-affinity IgG receptor, FcyRI, exhibits a K for IgG
of 10%-10° M-!, the high-affinity IgE receptor, Fc € receptor
I (FceRI), exhibits a substantially higher affinity for IgE (K
= 10'°-10"" M-') [122, 123]. This strong interaction may
trigger rapid IgE engagement by circulating FceRI-expressing
immune cells, such as monocytes, to traffic IgE efficiently
to the TME [121, 124]. Moreover, comparatively fewer Fc
receptor:antibody molecules are required to be cross-linked
by antigen for effector cell activation [125]. Furthermore, IgE
is not subject to inhibition via an inhibitory receptor or an-
other isotype subclass as IgG is via FcyRIIb and IgG4, respect-
ively [126, 127]. Accordingly, there is growing evidence for
the role of IgE antibodies in anti-tumour immunosurveillance,
including an inverse association between serum IgE levels and
the risk of gynaecological cancers including ovarian cancer
[128]. Consequently, it is hypothesised that these features can
be harnessed by IgE isotype mAbs to engage a unique anti-
tumour immune axis in cancer patients.

Amongseveral developed IgE mAbs targeting TAAs, MOv18
IgE, represents the first-in-class to enter clinical testing, in an
ongoing phase I trial involving predominantly ovarian cancer
patients (NCT02546921). MOv18 IgE is targeted against
TAA, folate receptor a (FRa), which is overexpressed in 82%
of serous epithelial ovarian cancers and inversely correlated
with patient OS and disease-free interval (DFI) [129, 130].

In pre-clinical models, MOv18 IgE exerted anti-tumoural
effects via Fc engagement of monocytes and macrophages
in a two-armed mechanism, comprising tumour killing and
crucially, pro-inflammatory polarisation [131]. In an ovarian
cancer patient-derived xenograft (PDX) mouse model,
MOv18 IgE produced superior mouse survival compared
with the equivalent IgG1 [132]. This survival benefit was ab-
rogated following depletion of monocytes from the human
PBMC infusion. Furthermore, in a syngeneic rat lung me-
tastases model, rat MOv18 IgE restricted lung metastases
growth compared with its IgG2b equivalent [133]. This effect
was associated with enhanced intra-tumoural macrophage
migration.

In vitro interrogation of tumour cell killing determined
that MOv18 IgE predominantly induces cancer cell ADCC
by monocytes, as well as ADCP, when monocytes are 1L-4-
stimulated to induce expression of low-affinity IgE receptor,
CD23 [132]. In comparison, the equivalent IgG1 mediated
ADCP only, suggesting alternative and potentially synergistic
killing mechanisms between IgE and IgG1 (Figure 3).

Consistently, iz vitro and in vivo studies have found that
cross-linking of TAA-bound IgE initiates a TNF-a/CCL2-
mediated monocyte and macrophage pro-inflammatory re-
cruitment feedback loop, to potentiate tumour killing and
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drive pro-inflammatory polarisation [133-135]. Exploration
of this phenotypic shift found that cross-linking of MOv18
IgE on human monocytes by ovarian cancer cells, induced a
pro-inflammatory secretome (TNF-a, CCL2, IL-10, CXCL-
10, IL-1B, IL-6, and IL-23) [134]. Consistently, monocytes
also upregulated co-stimulatory molecules CD80, CD86,
and CD40, whereas M2-associated scavenger receptors,
CD163, CD206, and MerTK, were downregulated. High
tumour expression of this secreted signature was associated
with improved ovarian cancer patient survival. Accordingly,
this pro-inflammatory activation was found to enable
repolarisation of anti-inflammatory human MDM subsets,
MO (unpolarised) and M2 (IL-4 polarised), following in vitro
cross-linking of the TAA-specific IgE mAb SF-25 [135].

Collectively, TAA-targeting IgE mAbs may drive a unique
monocyte and macrophage polarisation signature, which
combined with an alternative tumour killing mechanism and
superior in vivo anti-tumour activity, may permit sustained
efficacy, which has hitherto eluded TAA-targeting IgG mAbs
in ovarian cancer. Recent interim results from the Phase I clin-
ical trial of MOv18 IgE have demonstrated the therapy to be
well tolerated and, although preliminary, anti-tumour activity
was displayed by one patient [136].

Conclusion

High frequency, broad Fc receptor expression, extensive po-
tential pro-tumoural activities and strong phenotypic plasti-
city, render TAMSs and their associated functions as attractive
mAD targets to meet the unmet clinical need in ovarian cancer
(Figure 3). Antibodies designed to broadly deplete TAMs,
such as CCL2/CCR2 and CSF-1/CSF1-R neutralising mAbs
have performed poorly in the clinic as single agents, char-
acterised by both a lack of effect on specific pro-tumoural
subsets and collateral inhibition of anti-tumour TAM activity.
Moreover, depletion of TAMs has been observed to trigger
compensatory recruitment of other innate immune cells, such
as myeloid-derived suppressor cells (MDSCs), to maintain an
immunosuppressive TME in the absence of TAMs [137].

Consequently, instead of viewing TAMs as a deleterious
population for removal, recent experimental mAb strategies
have frequently sought to exploit their extensive plasticity and
immunoregulatory function via phenotypic repolarisation, to
mediate a TAM-driven shift in the TME towards anti-tumour
immunostimulation (Figures 1 and 3). These include agonistic
anti-CD40 and IgE isotype mAbs. TAM repolarisation could
be of significant interest in ovarian cancer, where immunosup-
pressive TAM subsets which restrict anti-tumour immunity
are frequently present. Both therapies have demonstrated
promising preclinical activity, as well as early signs of clinical
responses. In addition to potentially alleviating immunosup-
pression, a population-level TAM repolarisation could collat-
erally inhibit wider pro-tumoural TAM activity and therefore
may synergise with other promising mAb candidates, such as
neutralising anti-IL6 and anti-VEGF-A, which inhibit TAM’s
role in metastasis and neo-angiogenesis, respectively (Figures
2 and 3).

Overall, mAb-mediated TAM repolarisation may facilitate
a therapeutic window in which the ovarian TME is biased
towards anti-tumour activity. Clinical exploitation of this
opportunity therefore may best be achieved through com-
bination with established cytotoxic therapies. For example,
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potential synergistic anti-tumour activity between TAM
repolarisation and both tumour-targeting chemotherapy and
adaptive immunity-targeting ICB have begun to emerge.

Further investigation of these mAb candidates and possible
combination regimens is warranted in larger clinical studies,
to determine whether therapeutic targeting of TAMs may
represent a viable pathway for efficacy, which has generally
eluded mAbs in ovarian cancer.
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