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Summary 
The unmet clinical need for effective treatments in ovarian cancer has yet to be addressed using monoclonal antibodies (mAbs), which have 
largely failed to overcome tumour-associated immunosuppression, restrict cancer growth, and significantly improve survival. In recent years, 
experimental mAb design has moved away from solely targeting ovarian tumours and instead sought to modulate the wider tumour microenvir-
onment (TME). Tumour-associated macrophages (TAMs) may represent an attractive therapeutic target for mAbs in ovarian cancer due to their 
high abundance and close proximity to tumour cells and their active involvement in facilitating several pro-tumoural processes. Moreover, the 
expression of several antibody crystallisable fragment (Fc) receptors and broad phenotypic plasticity of TAMs provide opportunities to modulate 
TAM polarisation using mAbs to promote anti-tumoural phenotypes. In this review, we discuss the role of TAMs in ovarian cancer TME and the 
emerging strategies to target the contributions of these cells in tumour progression through the rationale design of mAbs.
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chemokine ligand 2; CCR2, C–C motif chemokine receptor 2; CD40L, CD40 ligand; CR, complete responses; CRIg, complement receptor of the immunoglobulin 
superfamily; CSF-1, colony stimulating factor 1; CSF-1R, colony stimulating factor 1 receptor; CXCL12, C–X–C motif chemokine ligand 12; DFI, disease-free 
interval; EGFR, epidermal growth factor receptor; EMT, epithelial–mesenchymal transition; Fc, crystallisable fragment; FcγR, Fc-γ receptor; FcεR, Fc-ε receptor; 
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PFS, progression-free survival; PR, partial response; SD, stable disease; Siglec-10, sialic acid-binding Ig-like lectin 10; SIRPα, signal regulatory protein α; STAT3, 
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Introduction
Ovarian cancer has the highest mortality rate among gynae-
cological malignancies [1]. This poor patient prognosis may 
be promoted by features such as rapid peritoneal metas-
tasis of tumours, as well as tumour resistance to both cur-
rent therapies and anti-tumour immunity [2]. These features 
are aided by the unique tumour microenvironment (TME) in 
the tumour mass and intraperitoneal space of patients [2]. In 
addition to cancer cells, a milieu of tumour-supportive cells 

including tumour-associated macrophages (TAMs), mes-
enchymal stromal cells (MSCs), fibroblasts and adipocytes 
are frequently sustained within the cavity by an abnormal 
build-up of soluble factor-rich fluid, known as peritoneal 
ascites [3]. Thus, an urgent need exists to better understand 
this unique TME, as well as develop novel therapies which 
specifically target its constituents. This review focuses on the 
therapeutic possibilities associated with targeting TAMs using 
monoclonal antibody (mAb) approaches.
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Monoclonal antibodies and the challenges of 
developing therapies for ovarian cancer
Over the past 30 years, mAb therapies have become widely 
used in cancer treatment, offering significant advantages rela-
tive to conventional chemotherapy and radiotherapy, including 
high specificity and affinity for a single epitope target, which 
limits off-target effects [4]. Therapeutic antibodies can be 
exploited to directly block tumorigenic signalling [4]. They 
can also engage immune effector molecules or cells via their 
crystallisable fragment (Fc) regions to trigger cytotoxic ef-
fector functions and amplify anti-tumour immune responses 
[4]. Moreover, the last decade has witnessed a rapid expan-
sion of mAbs targeting the inhibition of immune checkpoints, 
known as immune checkpoint blockade (ICB) [5]. Immune 
checkpoints are frequently co-opted by tumours to suppress 
anti-tumour immunity [5]. For example, programmed death-
ligand 1 (PD-L1) can engage programmed cell death protein 
1 (PD-1) on T cells to induce their functional exhaustion, and 
therefore ICB offers a powerful tool to unleash suppressed 
anti-tumour immune responses in patients [6].

Despite significant successes in other tumour types, mAb 
therapies in ovarian cancer frequently report disappointing 
clinical trial results (Table 1). In recent years, experimental 
mAb therapies have moved away from solely targeting 
ovarian tumours and instead have sought to also modu-
late the wider TME. For example, the sole mAb licensed in 
the UK for the treatment of ovarian cancer is Bevacizumab 
(Avastin), which targets vascular endothelial growth factor 
A (VEGF-A), a molecule abundantly secreted by TAMs and 
fibroblasts to drive neo-angiogenesis and ascites formation 
[7]. There is now a growing interest in targeting TAMs and 
TAM-derived factors with mAbs.

TAMs in ovarian cancer
Macrophages are highly abundant mononuclear phagocytic 
cells present in almost every human tissue [31].

Macrophages are both important for inflammatory re-
actions and homeostatic functions. Monocyte-derived 
macrophages (MDMs) rapidly increase in number during in-
flammatory events such as infection, to aid the restoration 
of homeostasis through the promotion of pathogen clear-
ance and subsequently tissue repair [32]. Moreover, tissue-
resident macrophage (TRM) populations, constituted by both 
self-renewing pre-natal derived macrophages and short-lived 
adult-derived MDMs, promote the maintenance of homeo-
static tissue function in the absence of inflammation [31, 33]. 
For example, TRMs are key in the regulation of vascular in-
tegrity, folliculogenesis, and ovulation in the ovaries [34, 35].

TAMs frequently constitute a highly abundant popula-
tion within TMEs, typified in ovarian cancer, where they can 
account for over 50% of all cells in peritoneal tumours and 
ascites [36]. Initially, macrophages were thought to be strictly 
anti-tumoural, capable of phagocytosing malignant cells and 
amplifying anti-tumour immunity [37]. However, although 
TAM density may constitute a positive prognostic factor in 
colorectal cancer, in most other malignancies it is negatively 
associated with patient outcomes [38–43].

In ovarian cancer, total TAM density exhibits no prog-
nostic significance [44, 45]. However, stratification of pa-
tients according to specific macrophage subsets based on 
traditional M1 and M2 polarity has revealed paradoxical 

associations with survival. The M1/M2 model represents a 
highly simplified description of macrophage phenotypes, de-
fined as pro-inflammatory and immunostimulatory (M1) and 
immunosuppressive and pro-repair (M2) phenotypes [46] 
(Figure 1). One study found that tumour density of TAMs 
expressing M2 marker CD163 negatively correlated with pa-
tient overall survival (OS) [47]. Furthermore, a recent study 
that examined a subset of M1 (human leukocyte antigen DR 
(HLA-DR) and inducible nitric oxide synthase (iNOS)) and 
M2 (CD163 and VEGF-A) markers found that a high M1/M2 
ratio was associated with improved survival, when present 
intra-tumourally, but not in the tumour stroma [48].

In vivo, especially in TMEs, the binary M1/M2 model 
has proven oversimplified, with a spectrum model possibly 
offering a more accurate representation of macrophage po-
larisation [46]. By this model, polarisation can produce a 
broader range of distinct M1 and M2 macrophage subsets, 
such as M2a-d, as well as a range of subsets with chimeric 
M1/M2 features (Figure 1). TAMs can exhibit this M1/M2 
chimerism and consequently are frequently referred to as M1- 
and M2-like [49]. In most tumour types, including ovarian 
cancer, M2-like TAMs predominate [50–52]. M2-like de-
notes a population-level phenotype that is skewed towards 
immunosuppressive and pro-repair functions, but which also 
exhibits some M1 properties that confer inflammatory pro-
tumoural effects [51, 53]. Consequently, in the ovarian TME, 
both pro- and anti-inflammatory TAM activity has been 
demonstrated to support pro-tumoural processes, including 
tumour growth, metastasis, neo-angiogenesis, therapy resist-
ance, and immunosuppression (Figure 2) [51, 54–57].

A substantial investigation has been undertaken into the 
complex interactions of TAMs with ovarian tumours, to 
identify specific subsets and TAM-derived molecules which 
promote tumour progression and therefore may represent 
novel targets for experimental mAb therapies. Specifically, a 
prevalent aim amongst TAM-targeting mAbs is to shift the 
prevailing TAM phenotype away from M2-like immuno-
suppressive towards immunostimulatory M1-like properties 
(Figure 1).

Depletion of TAMs via mAbs
In view of the extensive pro-tumoural activity displayed by 
TAMs in ovarian cancer, several mAb therapies have sought 
to deplete their presence in the TME.

Firstly, C–C motif chemokine ligand 2 (CCL2) drives re-
cruitment of monocytes expressing C–C motif chemokine 
receptor 2 (CCR2) from the blood into the ovarian TME, 
with densities of intra-tumoural TAMs and cell expressing 
CCL2 positively correlating [58, 59]. CCL2 is frequently 
highly abundant in the tumour parenchyma, stroma, and 
ascites and is secreted by both tumour cells and supporting 
cells such as TAMs themselves, to drive a positive recruitment 
feedback loop [58, 59]. Secondly, colony-stimulating factor 
1 (CSF-1) is a haematopoietic growth factor that binds to 
colony-stimulating factor 1 receptor (CSF-1R) expressed on 
monocytes and macrophages [60]. In addition to acting as a 
chemokine for monocytes, CSF-1 also promotes their survival 
and differentiation into TAMs, generating a phenotype that is 
skewed towards M2-associated immunosuppressive activity, 
in the absence of additional signals [50]. In ovarian cancer, 
high levels of CSF-1 in the serum and ascites are associated 
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with poorer patient outcomes [61, 62]. In one cohort of pa-
tients, co-expression of CSF-1 and CSF-1R in ovarian meta-
static lesions was associated with decreased progression-free 
survival (PFS) [63].

mAbs targeted against CCL2 and CSF-1R to reduce TAM 
recruitment and/or survival have been investigated in phase 
I clinical trials involving ovarian cancer patients (Figure 3) 
(NCT02526017) [64]. With respect to anti-CCL2 mAbs, in 
an ovarian cancer xenograft mouse model, the anti-human 
CCL2 IgG1 human mAb Carlumab was found to enhance the 
efficacy of chemotherapies paclitaxel and carboplatin [65]. In 
a phase I clinical trial involving eight patients with ovarian 

cancer of the 44 enrolled, Carlumab was well tolerated; how-
ever, it did not induce any patient objective responses (ORs) 
[64]. Carlumab proceeded to a Phase II study in castration-
resistant prostate cancer, where again no ORs were observed, 
leading to its discontinuation [66].

Several reasons have been cited for the lack of efficacy of 
anti-CCL2 mAbs. Firstly, clinical trials suggest a failure to 
durably neutralise CCL2 levels in patient sera [66]. Secondly, 
in the event of a successful CCR2/CCL2 blockade, this would 
indiscriminately inhibit the contribution of MDMs to the 
TAM pool only. Consequently, it would firstly impede the 
development of potential anti-tumoural MDM TAM subsets 

Fig. 1 Phenotypic polarization of macrophages and TAMs in ovarian cancer. (a) In vitro polarization of human macrophages by different stimuli can 
generate phenotypically distinct subsets. These include pro-inflammatory and immunostimulatory M1, and a range of M2-associated subsets 
(M2a–d), each exhibiting enrichment for a specific M2-associated anti-inflammatory and pro-repair activity. However, these polarisation states are 
increasingly being regarded as a spectrum, with chimeric M1/M2 subsets more commonly being identified in vivo. This M1/M2 polarization spectrum 
is exhibited in TMEs, with TAMs frequently being categorised into M1-like and M2-like TAMs. The TME in ovarian cancer drives macrophage polarisation 
towards the M2 end of the spectrum, resulting in predominance of M2-like macrophages. These TAMs are characterised by primarily M2-associated 
immunosuppressive and pro-repair function, as well as by M1-associated pro-tumoural inflammatory functions. Amongst mAb therapies targeting TAMs 
in ovarian cancer, a prevalent aim is to shift the prevailing TAM phenotype towards M1-like TAMs, which primarily exhibit M1-associated anti-tumoural 
immunostimulatory function. NO, nitric oxide; ROS, reactive oxygen species; TLR, toll-like receptor; MMP, matrix metalloproteinases; MHC II, major 
histocompatibility complex class II; IL-1RA, interleukin-1 receptor antagonist; TGF-β, transforming growth factor-β; EGF, epidermal growth factor.



Osborn et al.12

and secondly, would have a minimal effect on pro-tumoural 
TRM subsets. For example, in a syngeneic ovarian cancer 
mouse model, whilst CD163+ Tim4+ TRMs were found to be 
indispensable for tumour progression, Ccr2−/− mice exhibited 
unperturbed disease [55].

In ovarian cancer preclinical models, CSF-1/CSF-1-R 
blockade has only been investigated via small-molecule in-
hibitors as opposed to mAbs. However, in a syngeneic ovarian 
cancer mouse model, a combination of CSF-1 inhibition with 
chemotherapy docetaxel reduced tumour lung metastasis 
[67]. Crucially both TAM abundance and TME expression of 
M2-associated TAM genes ARG1, MRC1, and IL10 were re-
duced, concurrent with an increase in CD8+ T cell tumour in-
filtration, suggesting a preferential targeting of M2-associated 
immunosuppressive TAM subsets.

However, across cancer types, clinical trials investigating 
anti-CSF-1R mAbs have reported disappointing results. 
Although multiple experimental mAbs have shown evidence 

of target specificity, characterised by increased serum CSF-1 
and reductions in M2-associated CD163+, CD206+, and 
CSF-1R+ TAMs, insufficient anti-tumour activity has been 
displayed [68, 69]. Despite possible preferential M2-like 
macrophage depletion, CSF1/CSF1-R blockade still appears 
too indiscriminate in terms of TAM inhibition. Due to the 
spectral nature of TAM polarisation, M1-associated func-
tions which can support anti-tumour immunity may also be 
collaterally lost (Figure 2). In a Lewis lung carcinoma (LLC) 
mouse model, CSF-1/CSF-1R blockade was found to deplete 
intra-tumoural NK cells and increase tumour metastasis, due 
to a loss of the TAM-derived NK survival factor IL-15 [70].

Consequently, emerging strategies have targeted subset-
level TAM depletion. This approach has proven efficacious 
in preclinical models, with depletion of the murine CD163+ 
Tim4+ TRM subset via anti-CD163 mAb-coated cytotoxic 
liposomes found to reduce ovarian tumour burden in mice 
[55]. Although TAM markers can vary between mouse and 

Fig. 2 Pro-and anti-tumoural functions of tumour-associated macrophages (TAMs) in ovarian cancer. The pro- and anti-tumoural processes promoted by 
TAMs in ovarian cancer and the cell surface receptors and ligands and secreted factors that mediate these activities. Treg, regulatory T cell; Teff, effector 
T cell; NK, natural killer cell; DC, dendritic cell; NO, nitric oxide; ROS, reactive oxygen species; uPAR, urokinase plasminogen activator surface receptor; 
uPA, urokinase plasminogen activator; MMP, matrix metalloproteinases; PDGF, platelet-derived growth factor; IGF-1, insulin-like growth factor 1; Mac1, 
macrophage-1 antigen; ILT, Ig-like transcript; TGF-β, transforming growth factor-β; MHC II, major histocompatibility complex class II.
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human, a recent study identified a human TAM population 
homologous to murine Tim4+ TAMs, characterised by com-
plement receptor of the immunoglobulin superfamily (CRIg) 
expression [71]. This provides hope that clinical investigation 
of such a targeted approach may soon be possible (Figure 3).

mAbs targeting the role of TAMs in tumour 
metastasis
One of the key factors in the poor prognoses of ovarian 
cancer patients is the propensity of tumours to undergo peri-
toneal metastasis early in tumourigenesis. Ovarian peritoneal 
metastasis is a complex, multi-step process and mAb targets 
for this process are currently limited. However, one emerging 
target is IL-6, which activates signal transducer and activator 
of transcription 3 (STAT3) signalling within tumour cells [9]. 
STAT3 activation has been demonstrated to contribute to 
each step in the metastatic cascade and be promoted by TAMs 
(Figure 2). Firstly, TAM-secreted IL-6 promotes epithelial–
mesenchymal transition (EMT) in cancer cells to induce their 
shedding from the primary tumour [51, 72, 73] (Figure 2). 
Subsequently, cancer cells migrate across the intraperitoneal 
space as multi-cellular spheroids containing supporting cells 
such as TAMs and fibroblasts [54, 74]. Following spheroid 
implantation into the cavity wall, TAM-induction of STAT3 
activation promotes spheroid disaggregation and spreading 

to further sites [72]. IL-6/STAT3 activation also induces 
cancer stem cell (CSC) formation in metastatic lesions, which 
promotes therapeutic resistance [55, 75].

IL-6 expression in ovarian cancer patient tumours and 
serum both increase with disease stage, whilst high tumour 
IL-6 levels inversely correlate with patient survival [9, 75]. 
Moreover, expression of M2-associated TAM marker CD163 
is associated with both ascites levels of IL-6 and reduced pa-
tient relapse-free survival (RFS), whilst TAMs have been iden-
tified as the highest secretors of IL-6 in the TME [51, 76].

Siltuximab (Sylvant) and Tocilizumab (Actemra) are IgG1 
mAbs targeted against IL-6 and IL-6 receptor (IL-6R), re-
spectively, to induce a blockade of IL-6-mediated STAT3 acti-
vation (Figure 3) [77]. In ovarian cancer patients, both mAbs 
have shown good tolerability profiles and effective IL-6/
IL-6R blockade, characterised by decreased serum C-reactive 
protein (CRP) and STAT3 activation and increased serum 
IL-6 and soluble IL-6R [8–10]. However, despite reducing 
serum levels of IL-6 regulated cytokines involved in the meta-
static cascade, such as C–X–C motif chemokine ligand 12 
(CXCL12), VEGF-A and CCL2, Siltuximab has hitherto not 
shown clear efficacy in its two-phase II trials [8, 9] (Table 
1). However, in both trials, ovarian cancer patient numbers 
were low, and some level of activity was still shown; with 
one partial response (PR) and seven patients displaying stable 
disease (SD), from 18 ovarian cancer patients in one trial [9]. 

Fig. 3 Therapeutic targeting of tumour-associated macrophages (TAMs) in ovarian cancer by monoclonal antibodies (mAbs). Summary of the mAb 
strategies which target ovarian cancer TAMs and their functions, and their mechanism of action. Teff, effector T cell; ADCC, antibody-dependent cellular 
cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; TAA, tumour-associated antigen; FRα, folate receptor alpha.



Osborn et al.14

Moreover, all recruited patients had a late-stage disease and 
therefore it is possible that the anti-metastatic effects of IL-6/
IL-6R blockade would be stronger in combination with a 
cytotoxic therapy such as chemotherapy, to prevent the out-
growth of new metastatic lesions following chemotherapy-
induced tumour regression. Accordingly, in the sole phase I 
trial of Tocilizumab in ovarian cancer patients, the mAb was 
investigated in combination with chemotherapies carboplatin 
and doxorubicin and displayed evidence of a survival benefit, 
with three complete responses (CRs), eight PRs, and six SD 
out of 21 patients on the trial (Table 1) [10]. These findings 
underline the merit of assessing IL-6/IL-6R blockade in larger, 
randomised studies, especially in combination with cytotoxic 
therapies.

mAbs targeting the role of TAMs in tumour 
neo-angiogenesis
A key requirement for the development of both the primary 
and metastatic tumours is the establishment of access to the 
circulatory system via neo-angiogenesis. TAMs potently pro-
mote neo-angiogenesis, displaying enrichment at sites with 
high angiogenic requirements, including hypoxic tumour 
nests, nascent peritoneal tumours, and perivascular regions 
[54, 56, 58, 78, 79] (Figure 2). A key neo-angiogenic factor is 
VEGF-A which binds to vascular endothelial growth factor 
receptors 1, 2 (VEGFR 1,2) on endothelial cells, triggering 
vessel development [80]. VEGF-A is highly upregulated 
in ovarian cancer on tumour cells, MSCs and TAMs, with 
high patient VEGF-A serum levels associated with increased 
micro-vessel density and ascites levels and decreased survival 
[54, 81–85]. Moreover, depletion of peritoneal TAMs in a 
syngeneic ovarian cancer mouse model was found to reduce 
ascites formation and peritoneal metastasis, concurrent with 
a reduction of ascitic VEGF-A [86].

The IgG1 mAb Bevacizumab blockades VEGF-A/VEGFR-
mediated neo-angiogenesis through binding to VEGF-A 
(Figure 3) [87]. Bevacizumab is the only mAb licensed in the 
UK for the treatment of ovarian cancer [7]. It is currently 
recommended as maintenance therapy following first-line 
chemotherapy, to inhibit tumour recurrence [88]. However, 
eventually most patients develop resistance to Bevacizumab 
treatment [89, 90].

TAMs may play a significant role in this resistance. In a 
murine model of Bevacizumab-resistant ovarian cancer, tu-
mours exhibited restored response when treated with a TAM-
depleting anti-CSF-1 mAb [91]. Specifically, VEGF-A/VEGFR 
blockade is considered to enhance tumour hypoxia, which in-
duces chemoattraction of pro-angiogenic TAM subsets to re-
store neo-angiogenesis [92]. A key chemoattraction pathway 
may be via angiopoietin-2 (Ang2) engagement of its re-
ceptor Tie2 on TAMs. In ovarian cancer patients, Tie2+ TAM 
density positively correlates with micro-vessel density [56]. 
This underlines the limitations of therapeutically targeting a 
single pro-tumoural mediator, such as VEGF-A, due to redun-
dancy within the TME. Consequently, experimental strategies 
have sought to concurrently neutralise both the VEGF-A/
VEGFR and Ang2/Tie2 pathways (Figure 3). For example, in 
a VEGF-A/VEGFR blockade-resistant syngeneic pancreatic 
cancer mouse model, concurrent mAb targeting of Ang2 sup-
pressed re-vascularisation and tumour progression [93].

The potential utility of combination therapy for targeting 
neo-angiogenesis has been indicated clinically. Firstly, in a 

Phase III trial, peptide-Fc fusion protein Trebananib, which 
targets Ang2, as well as additional Tie2 ligand, Ang1, was 
found to enhance PFS in ovarian cancer patients (Table 1) 
[23]. Secondly, a bispecific Ang2/VEGF-A-targeting mAb, 
Vanucizumab, underwent a Phase I trial in ovarian cancer pa-
tients and demonstrated potential clinical activity, with 20% 
of patients displaying an OR (Figure 3) [94].

Due to the redundancy of neo-angiogenesis pathways and 
the centrality of TAMs in driving them, a more durable thera-
peutic strategy may be to specifically target pro-angiogenic 
TAM subsets via mAbs (Figures 2 and 3). This could be 
achieved through identification of a surface marker selectively 
expressed on a TAM subset co-expressing VEGF-A and Tie2, 
to achieve selective depletion, without inhibiting potential 
anti-tumoural TAM subsets. For example, Tie2+ TAMs iso-
lated from ovarian cancer patient ascites express high levels 
of CD52, the target of licensed IgG1 mAb Alemtuzumab 
(Lemtrada) [79]. In a syngeneic ovarian cancer mouse model, 
anti-CD52 treatment was demonstrated to restrict tumour 
neo-angiogenesis and growth, substantiating the potential 
clinical utility of subset-level TAM-targeting. Consequently, 
Alemtuzumab entered Phase I investigation in ovarian cancer 
patients, but disappointingly the study was terminated due to 
poor patient enrolment (NCT00637390).

mAbs to trigger Fc-mediated functions of 
TAMs
Instead of inhibiting the pro-tumoural activity of TAMs, spe-
cific mAbs have sought to promote the anti-tumour function 
of TAMs.

One such approach is through an antibody’s simultan-
eous engagement of tumour-associated antigens (TAAs) on 
tumour cells and antibody Fc receptors on TAMs, to trigger 
tumouricidal TAM effector function [95]. This can result in 
the engulfment of tumour cells via antibody-dependent cel-
lular phagocytosis (ADCP) and paracrine tumour cell lysis 
via antibody-dependent cellular cytotoxicity (ADCC) (Figure 
3) [95]. All licensed full-length TAA-targeting mAbs are of 
the IgG isotype [96]. Among IgGs, IgG1 isotype features the 
highest affinity for all Fc-γ receptors (FcγRs), whilst IgG2 has 
a high affinity for FcγRIIa-H131, which is mainly expressed 
on macrophages [97]. Consequently, they have increasingly 
been recognised to involve Fc-mediated TAM effector func-
tions as part of their mechanism of action [97].

Although TAA-targeting IgG mAbs have displayed efficacy 
in solid tumours, clinical results in ovarian cancer have been 
disappointing (Table 1). This disparity is illustrated by the 
anti-human epidermal growth factor receptor 2 (HER2) IgG1 
mAb Trastuzumab (Herceptin). HER2 is expressed in up to 
66% of ovarian tumours and negatively correlates with OS 
[98]. However, despite demonstrating anti-tumour efficacy 
in a variety of preclinical ovarian cancer models, in a Phase 
II trial in ovarian cancer patients with high tumour HER2 
expression, only 7.3% responded to the treatment (Table 1) 
[29,99–101].

One emerging strategy to enhance the efficacy of TAA-
targeting IgG mAbs is through mAb-mediated blockade 
of ‘don’t eat me’ signals expressed on tumour cells, to en-
hance the contribution of TAM effector functions to their 
mechanism of action. For example, tumour cell CD47 and 
CD24 engage cognate receptors on TAMs, signal regulatory 
protein-α (SIRPα) and sialic acid-binding Ig-like lectin 10 
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(Siglec-10), respectively, to trigger signalling cascades which 
inhibit macrophage phagocytosis [102, 103] (Figure 3). CD47 
expression is predictive of disease stage and prognosis in pa-
tients with ovarian cancer, whilst one study identified ovarian 
tumours to express the highest level of CD24 of all cancer 
types analysed, with its expression inversely correlating with 
patient RFS [102, 104].

Pre-clinically, neutralising anti-CD47 and anti-CD24 mAbs 
have demonstrated enhancement of non-specific macrophage 
phagocytosis of ovarian cancer cells in vitro, as well as in-
hibition of tumour growth in murine ovarian cancer models 
[102, 105]. In vitro, dual blockade of CD47 and CD24 ex-
hibited an additive effect on ovarian cancer cell phago-
cytosis [102]. Moreover, in other cancer types, anti-CD47 
blockade has been demonstrated to enhance macrophage 
ADCP of tumour cells in response to TAA-targeting IgG 
mAbs, including Trastuzumab, anti-CD20 IgG1 Rituximab 
(Rituxan), and anti-epidermal growth factor receptor (EGFR) 
IgG1 Cetuximab (Erbitux) [106]. Furthermore, in a syngeneic 
breast cancer mouse model, co-treatment with Trastuzumab 
and anti-CD47 mAbs improved tumour control and was as-
sociated with macrophage pro-inflammatory polarisation and 
cytotoxic gene expression in CD8+ T cells [107].

Neutralising anti-CD47 mAbs have recently begun early 
phase clinical investigation across different cancer types. 
Interim results from a Phase I/II trial of anti-CD47 IgG2 mAb 
AO-176 demonstrated a good tolerability profile and possible 
anti-tumour activity, with 1 PR and 7 SD from 27 patients 
with advanced solid tumours (Table 1) [26].

Moreover, in view of the enhanced pre-clinical efficacy of 
TAA-targeting mAbs when in combination with anti-CD47 
mAbs, several trials are currently underway using this 
regimen in non-ovarian solid tumours. For example, a phase 
II study in colorectal cancer patients of anti-CD47 IgG4 mAb 
Hu5F9-G4 in combination with Cetuximab, reported stable 
disease in 45% of patients, as well as increased macrophage 
tumour infiltration [108]. It remains to be seen whether the 
possible enhancement of TAM effector function offered by 
such a combination therapy could overcome the efficacy 
threshold that has hitherto eluded TAA-targeting IgGs in 
ovarian cancer.

mAbs targeting the role of TAMs in tumour 
immunomodulation
Ovarian cancer patients frequently exhibit evidence of im-
munogenic tumour recognition, such as CD8+ T cell tu-
mour infiltration; however immunosuppression within the 
TME frequently prevents their effector function [57, 109]. 
TAMs play a major role in this immunosuppression (Figures 
2 and 3). For example, TAMs display poor upregulation of 
T cell co-stimulatory molecules CD80 and CD86 and an 
IL-10highIL-12low secretome (Figure 2) [50]. Furthermore, they 
exhibit high expression of immune checkpoint ligand B7-H4, 
which engages T cells to suppress their proliferation [110]. 
High B7-H4 expression by TAMs is associated with poorer 
survival in patients, as well as a high density of regulatory T 
cells (Tregs) [110]. TAMs have been demonstrated to drive 
such high Treg densities through secretion of M2-associated 
chemokine CCL22, and once recruited, Tregs amplify this im-
munosuppressive axis by triggering further TAM B7-H4 en-
richment and CD86 and IL-12 suppression [110, 111].

Following the disappointing clinical results of TAM de-
pletion strategies and the difficulty of selective TAM subset 
depletion, recent strategies have instead sought to exploit 
TAM plasticity through targeting these immunosuppressive 
subsets by repolarisation towards an immunostimulatory, 
anti-tumoural phenotype (Figure 1 and 2). Among 
TAM repolarisation strategies, mAbs targeting the TAM 
co-stimulatory molecule CD40 has been the focus of clin-
ical investigation in ovarian cancer. During type I immune 
responses to pathogens, CD40 agonism by Th1 cell CD40 
ligand (CD40L) drives macrophages to a hyper-inflammatory 
phenotype [112]. Agonistic anti-CD40 mAbs aim to recapitu-
late this hyper-inflammatory state in TAMs (Figure 3).

Pre-clinically, anti-CD40 mAbs have predominantly 
been investigated in other malignant diseases; however, in 
an ovarian cancer xenograft mouse model, a recombinant 
CD40L inhibited tumour growth [113]. As monother-
apies, anti-CD40 mAbs have demonstrated evidence of pro-
moting a macrophage-driven shift in the immune landscape 
of tumours. In a syngeneic pancreatic cancer mouse model, 
anti-CD40 mAb treatment resulted in the intra-tumoural mi-
gration of hyperinflammatory monocytes and macrophages, 
which mediated tumour regression [114]. Moreover, in a 
Phase I trial, anti-CD40 IgG2 mAb Selicrelumab induced a 
CR in a patient with metastatic melanoma, which was sus-
tained 9 years after therapy initiation [115]. The patient ex-
hibited a pro-inflammatory shift in the TME post-treatment, 
including tumour necrosis factor (TNF) upregulation and 
downregulation of M2-associated CSF1R. However, a Phase 
I/II trial of ABBV-428, a bispecific mAb targeting CD40 (as 
an agonist) and tumour cell marker mesothelin, was not able 
to replicate these promising anti-tumoural effects in ovarian 
cancer patients [25].

Such clinical results have generally shifted the outlook on 
anti-CD40 mAbs towards combined treatment regimens with 
cytotoxic therapies. Firstly, chemotherapy promotes the release 
of TAAs during a process known as ‘immunogenic cell death’, 
which facilitates the generation of de novo T cell immunity 
[116]. This can be sustained as a memory T cell response in 
combination with anti-CD40 repolarisation in a syngeneic 
pancreatic cancer mouse model, for which anti-CD40 mono-
therapy is insufficient [117]. In a Phase I trial of Selicrelumab 
in combination with paclitaxel and carboplatin in patients 
with advanced solid tumours, including ovarian cancer, pre-
liminary evidence of anti-tumour activity was observed, with 
20% of patients displaying PRs [118].

Secondly, evidence has emerged that TAM-mediated im-
munosuppression underpins the lack of efficacy displayed by 
ovarian cancer patients in response to ICB, and therefore ICB 
in combination with anti-CD40 treatment has been advanced 
as a potentially efficacious strategy (Figure 3) [57]. Despite 
revolutionising therapeutic approaches in cancer types such 
as melanoma, ovarian cancer is one of the few malignancies in 
which ICB displays minimal activity [119]. One study found 
that ovarian cancer patient CD8+ T cells were responsive to 
anti-PD-1 activation at primary tumours only [57]. At meta-
static sites, CD163+ TAMs were inversely associated with 
CD8+ T cell effector function and patient OS.

Clinically, a Phase I trial using anti-CD40 IgG2 mAb CDX-
1140 with anti-PD-1 IgG4 mAb Pembrolizumab (Keytruda) is 
currently recruiting ovarian cancer patients (NCT03329950). 
This will provide the first insight into whether anti-CD40 
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mediated TAM repolarisation can skew the ovarian TME im-
mune landscape towards ICB efficacy (Figure 3).

IgE antibodies can exert macrophage-
mediated anti-tumour activity by both tumour 
killing and pro-inflammatory activation
Currently, all licensed full-length mAbs are of the IgG isotype 
[96]. IgE antibodies can induce a rapid and potent skewing 
of the immune landscape in both allergy and parasite clear-
ance, by distinct mechanisms to those of IgG isotypes [120, 
121]. IgE antibodies exhibit unique features, relative to IgG, 
which may be of utility in cancer treatment via mAbs. Whilst 
the high-affinity IgG receptor, FcγRI, exhibits a Ka for IgG 
of 108–109 M−1, the high-affinity IgE receptor, Fc ε receptor 
I (FcεRI), exhibits a substantially higher affinity for IgE (Ka 
= 1010–1011 M−1) [122, 123]. This strong interaction may 
trigger rapid IgE engagement by circulating FcεRI-expressing 
immune cells, such as monocytes, to traffic IgE efficiently 
to the TME [121, 124]. Moreover, comparatively fewer Fc 
receptor:antibody molecules are required to be cross-linked 
by antigen for effector cell activation [125]. Furthermore, IgE 
is not subject to inhibition via an inhibitory receptor or an-
other isotype subclass as IgG is via FcγRIIb and IgG4, respect-
ively [126, 127]. Accordingly, there is growing evidence for 
the role of IgE antibodies in anti-tumour immunosurveillance, 
including an inverse association between serum IgE levels and 
the risk of gynaecological cancers including ovarian cancer 
[128]. Consequently, it is hypothesised that these features can 
be harnessed by IgE isotype mAbs to engage a unique anti-
tumour immune axis in cancer patients.

Among several developed IgE mAbs targeting TAAs, MOv18 
IgE, represents the first-in-class to enter clinical testing, in an 
ongoing phase I trial involving predominantly ovarian cancer 
patients (NCT02546921). MOv18 IgE is targeted against 
TAA, folate receptor α (FRα), which is overexpressed in 82% 
of serous epithelial ovarian cancers and inversely correlated 
with patient OS and disease-free interval (DFI) [129, 130].

In pre-clinical models, MOv18 IgE exerted anti-tumoural 
effects via Fc engagement of monocytes and macrophages 
in a two-armed mechanism, comprising tumour killing and 
crucially, pro-inflammatory polarisation [131]. In an ovarian 
cancer patient-derived xenograft (PDX) mouse model, 
MOv18 IgE produced superior mouse survival compared 
with the equivalent IgG1 [132]. This survival benefit was ab-
rogated following depletion of monocytes from the human 
PBMC infusion. Furthermore, in a syngeneic rat lung me-
tastases model, rat MOv18 IgE restricted lung metastases 
growth compared with its IgG2b equivalent [133]. This effect 
was associated with enhanced intra-tumoural macrophage 
migration.

In vitro interrogation of tumour cell killing determined 
that MOv18 IgE predominantly induces cancer cell ADCC 
by monocytes, as well as ADCP, when monocytes are IL-4-
stimulated to induce expression of low-affinity IgE receptor, 
CD23 [132]. In comparison, the equivalent IgG1 mediated 
ADCP only, suggesting alternative and potentially synergistic 
killing mechanisms between IgE and IgG1 (Figure 3).

Consistently, in vitro and in vivo studies have found that 
cross-linking of TAA-bound IgE initiates a TNF-α/CCL2-
mediated monocyte and macrophage pro-inflammatory re-
cruitment feedback loop, to potentiate tumour killing and 

drive pro-inflammatory polarisation [133–135]. Exploration 
of this phenotypic shift found that cross-linking of MOv18 
IgE on human monocytes by ovarian cancer cells, induced a 
pro-inflammatory secretome (TNF-α, CCL2, IL-10, CXCL-
10, IL-1β, IL-6, and IL-23) [134]. Consistently, monocytes 
also upregulated co-stimulatory molecules CD80, CD86, 
and CD40, whereas M2-associated scavenger receptors, 
CD163, CD206, and MerTK, were downregulated. High 
tumour expression of this secreted signature was associated 
with improved ovarian cancer patient survival. Accordingly, 
this pro-inflammatory activation was found to enable 
repolarisation of anti-inflammatory human MDM subsets, 
M0 (unpolarised) and M2 (IL-4 polarised), following in vitro 
cross-linking of the TAA-specific IgE mAb SF-25 [135].

Collectively, TAA-targeting IgE mAbs may drive a unique 
monocyte and macrophage polarisation signature, which 
combined with an alternative tumour killing mechanism and 
superior in vivo anti-tumour activity, may permit sustained 
efficacy, which has hitherto eluded TAA-targeting IgG mAbs 
in ovarian cancer. Recent interim results from the Phase I clin-
ical trial of MOv18 IgE have demonstrated the therapy to be 
well tolerated and, although preliminary, anti-tumour activity 
was displayed by one patient [136].

Conclusion
High frequency, broad Fc receptor expression, extensive po-
tential pro-tumoural activities and strong phenotypic plasti-
city, render TAMs and their associated functions as attractive 
mAb targets to meet the unmet clinical need in ovarian cancer 
(Figure 3). Antibodies designed to broadly deplete TAMs, 
such as CCL2/CCR2 and CSF-1/CSF1-R neutralising mAbs 
have performed poorly in the clinic as single agents, char-
acterised by both a lack of effect on specific pro-tumoural 
subsets and collateral inhibition of anti-tumour TAM activity. 
Moreover, depletion of TAMs has been observed to trigger 
compensatory recruitment of other innate immune cells, such 
as myeloid-derived suppressor cells (MDSCs), to maintain an 
immunosuppressive TME in the absence of TAMs [137].

Consequently, instead of viewing TAMs as a deleterious 
population for removal, recent experimental mAb strategies 
have frequently sought to exploit their extensive plasticity and 
immunoregulatory function via phenotypic repolarisation, to 
mediate a TAM-driven shift in the TME towards anti-tumour 
immunostimulation (Figures 1 and 3). These include agonistic 
anti-CD40 and IgE isotype mAbs. TAM repolarisation could 
be of significant interest in ovarian cancer, where immunosup-
pressive TAM subsets which restrict anti-tumour immunity 
are frequently present. Both therapies have demonstrated 
promising preclinical activity, as well as early signs of clinical 
responses. In addition to potentially alleviating immunosup-
pression, a population-level TAM repolarisation could collat-
erally inhibit wider pro-tumoural TAM activity and therefore 
may synergise with other promising mAb candidates, such as 
neutralising anti-IL6 and anti-VEGF-A, which inhibit TAM’s 
role in metastasis and neo-angiogenesis, respectively (Figures 
2 and 3).

Overall, mAb-mediated TAM repolarisation may facilitate 
a therapeutic window in which the ovarian TME is biased 
towards anti-tumour activity. Clinical exploitation of this 
opportunity therefore may best be achieved through com-
bination with established cytotoxic therapies. For example, 
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potential synergistic anti-tumour activity between TAM 
repolarisation and both tumour-targeting chemotherapy and 
adaptive immunity-targeting ICB have begun to emerge.

Further investigation of these mAb candidates and possible 
combination regimens is warranted in larger clinical studies, 
to determine whether therapeutic targeting of TAMs may 
represent a viable pathway for efficacy, which has generally 
eluded mAbs in ovarian cancer.
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