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Abstract

Motivation: Developing targeted therapeutics and identifying biomarkers relies on large amounts of

research participant data. Beyond human DNA, scientists now investigate the DNA of micro-organisms

inhabiting the human body. Recent work shows that an individual’s collection of microbial DNA con-

sistently identifies that person and could be used to link a real-world identity to a sensitive attribute in

a research dataset. Unfortunately, the current suite of DNA-specific privacy-preserving analysis tools

does not meet the requirements for microbiome sequencing studies.

Results: To address privacy concerns around microbiome sequencing, we implement metage-

nomic analyses using secure computation. Our implementation allows comparative analysis

over combined data without revealing the feature counts for any individual sample. We focus on

three analyses and perform an evaluation on datasets currently used by the microbiome research

community. We use our implementation to simulate sharing data between four policy-domains.

Additionally, we describe an application of our implementation for patients to combine data that

allows drug developers to query against and compensate patients for the analysis.

Availability and implementation: The software is freely available for download at: http://cbcb.umd.

edu/�hcorrada/projects/secureseq.html

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: hcorrada@umiacs.umd.edu

1 Introduction

Microbiome sequencing seeks to characterize and classify the compos-

ition and structure of microbial communities from metagenomic DNA

samples. It is estimated that only 1 in 10 cells in and on a person’s

body contain that individual’s DNA (Turnbaugh et al., 2009), the re-

mainder corresponding to microbial DNA, most from organisms that

cannot be cultured and studied in the laboratory.

The Human Microbiome Project (HMP) (Turnbaugh et al.,

2007), the Global Enterics Multi-Center Study (MSD)(Pop et al.,

2014), the Personal Genome Project (Church, 2005) and the

American Gut Project (Blaser et al., 2013) aim to characterize

the ecology of human microbiota and its impact on human health.

Potentially pathogenic or probiotic bacteria can be identified by de-

tecting significant differences in their distribution across healthy and

disease populations. While the biology has led to promising results,

privacy concerns of microbiome research are now being identified

with no secure analysis tools available.

Recent work by Franzosa et al. (2015) shows that microbiome

data are an unique identifier across time points in a dataset and could

be used to link a sensitive attribute to an individual. Earlier work by

Fierer et al. (2010) showed that it is possible to identify an object that
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an individual touched by comparing microbiome samples from the ob-

ject and the individual’s hand. We provide a thorough review of micro-

biome sequencing and a categorization of microbiome privacy

considerations in the Supplementary Materials. To counter these con-

cerns, we present an implementation and evaluation of metagenomic as-

sociation analyses in a secure multi-party computation (SMC)

framework. For this work, we focus on garbled circuits, a cryptographic

technique that evaluates a function over private inputs from two parties.

In this article, we concentrate on the case where two parties, each hold-

ing organism abundances in a set of case and control samples, are inter-

ested in performing an association analysis (e.g. determining organisms

that are differentially abundant in cases) over their combined data,

without revealing organism abundances in any specific sample.

We provide a detailed review of this approach in Section 3 and

benchmark our secure implementation of commonly used microbiome

analyses on three public datasets. We also quantify the statistical gain

of analysis using combined datasets by simulation with a dataset that

contains samples from four different countries.

We believe that implementing metagenomic analyses in an SMC

framework will prove beneficial to researchers focused on the

human microbiome as well as the secure computation community.

Computational biologists will benefit from a method that allows ef-

ficient and secure function evaluation over datasets which they may

be obligated to keep confidential. Security researchers can draw

on the findings from our work and construct protocols that enable

sharing large, sparse datasets to perform analysis.

2 System and methods

Our secure metagenomic analysis system is built upon garbled cir-

cuits (Malkhi et al., 2004), which we describe in this Section. We

then detail our system including participants along with alternative

approaches in the design space for privacy-preserving analysis.

2.1 Garbled circuits
Two parties, one holding input x and another holding input y, wish to

compute a public function F(x, y) over their inputs without revealing

anything besides the output. The parties could provide their inputs to

a trusted third-party that computes the function and reveals the output

to each party. However, modern cryptography offers a mechanism to

run a protocol between only the two parties while achieving the desired

functionality. The main idea behind garbled circuits is to represent the

function to be computed as a Boolean circuit over the inputs from both

parties and use encryption to hide the input of each party during evalu-

ation by mapping each 0 and 1 bit of the inputs unto random strings

that still compute the same result. At the end of circuit evaluation, the

resulting random strings can be mapped back to appropriate 0 and

1 bit values that can then be released to each party. In this way, each

party learns F(x, y) without learning anything else about the input of x

and y. Figure 1 illustrates the garbled circuits protocol.

2.2 System participants
We consider the case in which parties located in two policy-domains

want to perform metagenomic analyses over shared data. Examples

of policy-domains include countries with differing privacy laws or

institutions (universities, companies) that stipulate different data dis-

closure procedures.

For i 2 1; 2, denoting PDi as a policy domain, Ri as a researcher in

policy domain i, Di as the data from Ri, F as the set of functions that a

set of Ris would like to compute we consider the following setting:

R1 and R2 would like to compute F over combined D1 and D2

but cannot do so by broadcasting the data as either PD1 or PD2

does not allow for public release or reception of individual-level

microbiome data. We set jij ¼ 2 but this setting could be general-

ized to any i.

Policy domains naturally arise due to differences in privacy laws.

For example, studies currently funded by the NIH are required to re-

lease non-human genomic sequences including human microbiome

data (http://gds.nih.gov/PDF/NIH_GDS_Policy.pdf). In contrast, the

European General Data Protection Regulation, which is currently in

draft form, lists biometric data and ‘any “data concerning health”

means any personal data which relates to the physical or mental

health of an individual, or to the provision of health services to

the individual’ as protected information that is not to be released

Fig. 1. Schematic illustration of the garbled circuits protocol. For analyses discussed in this paper, parties P1 and P2 are researchers performing a statistical ana-

lysis over combined data. They provide metagenomic count matrices, or locally precomputed statistics computed from count matrices, along with case/control

status as input. Function F(x, y) is determined by the analysis performed, e.g. test on difference in Alpha Diversity between case and control. The ‘garbling’ in

step (B) also includes randomly permuting the rows of the truth table so that the inputs are not revealed by the ordering - we omit this from the figure for clarity.

A review of the Oblivious Transfer protocol used in step (D) is provided in Supplementary Materials Section S3
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publicly (http://www.europarl.europa.eu/sides/getDoc.do?pubRef¼
-//EP//TEXTþTAþP7-TA-2014-0212þ0þDOCþXMLþV0//EN).

Therefore, researchers in the USA and EU may encounter different

policies for data release but still have an interest in computing meta-

genomic analyses over shared data. Also, given the results published

by Franzosa et al., some institutions may re-evaluate microbiome

data release policies.

2.2.1 Threat model

We consider researcher R1, who has a microbiome sample from a

victim mixed with other samples, to be a semi-honest adversary, or

one that follows the protocol but examines the transcript to learn

more information than it should. Researcher R2 is examining an as-

sociation for a specific trait and would like to expand her study

to use samples held by R1. R1 wants to determine if the victim is in

R2’s dataset and thus learn a sensitive attribute of the victim such as

disease status.

The attacks of Fierer et al. and Franzosa et al. operate over the vec-

tor of feature counts for a given sample. For the analyses studied in

this article, an adversary will have no better chance of reconstructing

the count vector for a specific sample than guessing the majority, or

mode, of the count of any specific feature in this system. Through

using a garbled circuit implementation of metagenomic analyses, R2

will be able to keep the vector of microbiome features for any sample

private, learn the outputs of functions that she would like to learn

over the shared data, and prevent R1 from completing the attack.

2.3 Solution design approaches
We consider different approaches to allow two parties to compute

analyses over data which each must keep confidential.

2.3.1 Access control plus trusted third party

In the USA, the NIH has recognized re-identification through pub-

licly posted genomic data as a realistic threat. Therefore, policy

allows for publication of summary statistics and transfer of individ-

ual level sequencing data through access control using the Database

for Genotypes and Phenotypes (Mailman et al., 2007). Once a re-

searcher receives permission to access data, she is provided the data

and is required to maintain the access control list for her research

group. We look to remove the need for access control by implement-

ing the queries that a researcher would like to run without revealing

the data directly.

2.3.2 Differential privacy

Statistical perturbation of analysis results, most widely implemented

as differential privacy, is a second approach for researchers to pro-

vide privacy guarantees to participants. In this setting, a researcher

maintains a data set and allows other researchers to perform queries

over the data. Informally, the results of these queries are perturbed

in such a manner that an adversary, with access to query results over

a data set in which one specific participant has a set of values and re-

sults from another data set with that specific participant having a

different set of values, will not be able to infer any information

about that individual by examining the results (Groce, 2014).

Although this approach provides provable privacy guarantees, the

introduction of statistical noise has not gained traction in the com-

putational biology research community. Also, recent work showed

that learning warfarin dosage models on differentially private data

sets introduces enough noise that the dosage recommendation could

be fatal to patients (Fredrikson et al., 2014).

2.3.3 Secure multiparty computation

An alternative solution which we undertake is using secure compu-

tation to perform metagenomic analyses. Other researchers have

presented SMC for computing secure genome-wide association stud-

ies using secret-sharing, but that particular approach requires the

use of three parties for computing tasks (Kamm et al., 2013). We ad-

dress the feasibility of using garbled circuits to implement metage-

nomic analyses in terms of running time, network traffic, and

accuracy. We believe that garbled circuits is the best approach for

this scenario as it allows for direct communication between two par-

ties and models research settings well. Further, garbled circuits can

handle a variety of adversaries beyond the semi-honest one that we

consider in this work.

3 Implementation

In this section, we describe how we implemented metagenomic ana-

lyses in garbled circuits and detail an evaluation of our system.

3.1 Metagenomics using garbled circuits
3.1.1 FlexSC

FlexSC, the back end of ObliVM, is a framework for secure compu-

tation including garbled circuits with a semi-honest adversary (Liu

et al., 2015). FlexSC allows users to write a function in Java for two

parties to compute then compiles and evaluates the garbled circuit

representation of that function. We implemented all metagenomic

tests as Java packages then compiled and ran each with FlexSC. Our

initial work on v2-test was based on a v2-test implementation using

SNP data (https://github.com/wangxiao1254/idash_competition).

3.1.2 Metagenomic analysis assumptions

For this article, we perform all analyses at the species taxonomic

level. As detailed in Supplementary Materials Section S1, OTUs are

generated from direct pairwise comparison of sequencing reads.

Fig. 2. Circuit size per feature for each implementation and dataset. The fea-

ture count for Alpha Diversity is the number of samples. The differences in

Alpha Diversity between datasets is explained by the number of samples

for PGP (168) being much lower than that of HMP (694) and MSD (992). PC,

Pre-compute
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This is a compute-intensive process when performed on clear text

(Ghodsi et al., 2011). We do not attempt it in SMC for this work

and assume each party performs this operation locally. We assume

that each party will annotate each resulting OTU by matching to a

common reference database, previously agreed upon by both parties

(note that this reference database is orthogonal to sample-specific

sequencing results obtained by each party). For illustration we as-

sume that the agreed upon reference database yields annotation at

the microbial species level. We also assume that parties can split

data into case and control groups based on an agreed upon pheno-

type. Finally, we do not consider features that have all zeros in the

case or control group for either party.

3.2 Design approaches
We took several approaches to implement each statistic. Since

the metagenomic datasets we examined are at least 80% sparse and

this trend is expected with OTU data (Paulson et al., 2013),

we make design choices to make computation with garbled circuits

feasible. We now detail each implementation of the v2 -test, odds

ratio, Differential Abundance and Alpha Diversity. To measure the

impact of our design choices we implemented a naive algorithm for

each statistic and compared results.

3.2.1 Precomputation

We first developed a method that finds an aggregate statistic at each

party so that only those values are circuit inputs. This method is a

straightforward approach to reduce the amount of operations and

data in the secure computation protocol. As expected, for each stat-

istic this approach had the best performance on all the datasets we

evaluated. Supplementary Figure S2 shows the process for calculat-

ing a v2-test and odds ratio on precomputed contingency table

counts. An issue with this approach is not all analyses that re-

searchers are interested in computing may be able to be performed

over locally generated aggregates.

3.2.2 Sparse matrix

We devised two methods to account for the sparsity of the feature

count matrices we used for evaluation. We first followed an ap-

proach introduced by Nikolaenko et al. (2013) to perform sparse

matrix factorization in garbled circuits. We detail our work with

this technique in the Supplementary Materials Section S4. As our

contribution, we took a conceptually simpler approach that input

the non-zero elements for each feature to the circuit and operated

over those elements directly. As shown in Figures 4 and 5, this

method significantly reduces the number of operations that need to

be performed in the secure protocol and offers reasonable running

times compared to the precomputation approach.

3.2.3 Presence/absence

We implemented the v2-test and odds ratio to perform presence/ab-

sence association testing. We provide a review of v2-test and odds

ratio in Supplementary Materials Section S1.

For the precomputation technique, each party splits its data into

case and control groups on a characteristic determined outside of

this protocol. Each party then locally computes the contingency

table counts on the split data. These contingency table counts are

each party’s input into the circuit. Within the circuit, the counts are

summed for both case and control groups then the v2-statistic along

with the odds ratio are computed for each feature.

In the sparse matrix approach, the total number of samples and

all non-zero elements for each feature are input to a garbled circuit.

The circuit first adds the number of non-zero elements to compute

the present contingency table counts then uses the total number of

samples to find the absent counts.

3.2.4 Differential abundance

For calculating differential abundance, we implemented a two-sam-

ple t-test for testing the mean abundance between case and control

groups. We assume normalization of sequencing counts can be ac-

complished in a preprocessing step between both parties. We make

this assumption because we use normalized datasets in our evalu-

ation. We leave implementation of normalization techniques in

garbled circuits to future work.

For review of two-sample t-test we refer the reader to the

Supplementary Materials Section S1. We examined the process for

calculating mean, variance and the t-statistic to determine what op-

timizations can be made for computing in a circuit. In order to avoid

processing all samples within the computation framework, we ob-

serve transformations that reduce the total number of operations. In

the Supplementary Materials, we show how mean abundance and

variance can be computed using the sum, sum of squares and total

number of elements from each party. For precomputation, as each

institution only needs to provide three values per feature we calcu-

late them locally. In the circuit, a two-sample t-statistic to test differ-

ence between case and control groups is computed.

For the sparse matrix approach, the total sum and sum of

squares are calculated in the circuit using the non-zero elements for

each feature. Mean abundance along with variance can then be cal-

culated and used compute the two-sample t-test. We refer the reader

to Supplementary Materials Section S4 for more detail.

3.2.5 Alpha diversity

We use a two-sample t-test to determine the significance of mean

Alpha Diversity difference between case and control groups. Given

that FlexSC does not currently compute logarithm, we measure

Alpha Diversity as Simpson’s index: D ¼
X

nðn�1Þ
NðN�1Þ where n is the

number of OTU counts for OTUi and N is the total number of

counts observed in a sample.

For precomputation, we locally compute Simpson’s index for

each sample. These values are input into the circuit where they are

summed, mean and variance is taken, and the t-statistic is calcu-

lated. In Alpha Diversity, all samples in case and control must be

processed together as opposed to Presence/Absence and Differential

Abundance which can be computed per feature.

For our sparse computation design, the two values for Simpson’s

index,
X

nðn� 1Þ and NðN � 1Þ are generated over each sample in

the circuit during one pass through the matrix. Then a pass over an

array of these values using division yields Simpson’s index from

which the total sum and sum of squares can be used to compute the

two-sample t-test between case and control groups.

3.3 Evaluation
We evaluated our implementation using two Amazon EC2

r3.2xLarge instances with 2.5 GHz processors and 61 GB RAM run-

ning Amazon Linux AMI 2015.3. We measured the size of the cir-

cuit generated, running time and network traffic between both

parties for each metagenomic statistic and dataset. Circuit size serves

as a useful comparison metric since it depends on the function and

input sizes but is independent of hardware. Running time and net-

work traffic are helpful in system-design decisions and benchmark-

ing of deployments.
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3.4 Datasets
We used OTU count data from the Personal Genome Project (PGP)

(Church, 2005), the HMP (Turnbaugh et al., 2007), and the Global

Enterics MSD (Pop et al., 2014). We retrieved the MSD data from the

project website (ftp://ftp.cbcb.umd.edu/pub/data/GEMS/MSD1000.

biom) as well as the PGP and HMP datasets are from the American-

Gut project site (https://github.com/biocore/American-Gut/tree/master/

data) (Blaser et al., 2013). We used the tongue as the case and gingiva

as control for the HMP data. For PGP, we set forehead as case and left

palm as control. Case and control criteria for the MSD dataset were

already set by the researchers that publish the data depending on dis-

ease phenotype. After aggregating to species and removing features

which hold all zeros for either the case or the control group, the PGP

contains 168 samples and 277 microbiome features, the HMP has 694

samples and 97 features, and the MSD dataset consists of 992 samples

and 754 features. Supplementary Table S2 summarizes the size and

sparsity of each dataset.

3.5 Efficiency of secure computation
3.5.1 Circuit size

Figure 2 shows the circuit size per feature for each experiment. As a

result of the work by Kolesnikov and Schnieder (2008), XOR gates

in each circuit do not require costly network traffic and computa-

tion, therefore the total number of non-XOR gates is reported for

each statistic and dataset. Using precomputation, the complexity of

the equation in terms of arithmetic operations to calculate each stat-

istic determines the circuit size. This explains the circuit sizes for

odds ratio and v2 test as compared with Differential Abundance. For

Alpha Diversity, all rows and columns are preprocessed with only

the two sample t-test computed in the circuit. With the sparse imple-

mentation, the complexity of the test along with the number of non-

zero elements in the dataset directly affects circuit size.

3.5.2 Running time

For the sparse implementation, the running time was proportional

to the size and number of non-zero elements in each dataset. For

precomputation, Alpha Diversity was affected by the number of

samples in each dataset. The running time for the v2 test, odds ratio,

and Differential Abundance were proportional to the number of fea-

tures (rows) processed. Figure 3 summarizes the effects of input size

and algorithm complexity on running time.

3.5.3 Network traffic

Supplementary Table S5 shows the network traffic for each experi-

ment. The increase in network traffic between the precomputation

and sparse implementations is more significant than the differences

in running times of those approaches. We believe that the network

traffic for the precompute implementation is quite good for the se-

curity guarantees provided with using garbled circuits while the

sparse approach presents an acceptable tradeoff depending on the

network resources available.

3.6 Accuracy
We compared the accuracy of our implementation results to com-

puting the statistic using standard R libraries. Table 1 lists the accur-

acy of results for the v2 statistic, odds ratio, as well as the t-test

results for Differential Abundance and Alpha Diversity. The differ-

ences in our garbled circuits results compared to the R values appear

to be the result of circuit complexity. The floating-point arithmetic

operations in FlexSC are software implementations. Therefore the

operations are subject to rounding errors that are rarely observed on

modern processors which have hardware level support for floating-

point arithmetic.

We investigated if our implementation yielded any false positives

and false negatives with the results from R acting as ground truth.

For the P-values of Differential Abundance in PGP, HMP, and MSD

datasets we found no false positives or false negatives for a signifi-

cance level of 0.05.

Fig. 3. Running time for each statistic and each dataset in minutes. In each

statistic, the number of arithmetic operations determined the running time.

The size of the dataset along with sparsity contributed to running time for the

sparse implementations. Alpha Diversity MSD Naive did not run to comple-

tion on the EC2 instance size due to insufficient memory. Based on the circuit

size and the number of gates processed per second for other statistics, we es-

timate the running time to be 378 min. PC, Pre-compute

Table 1. Computation accuracy

PGP HMP MSD

Chi-square statistic 7.84e-07 7.48e-06 7.02e-08

Chi-square P-value 2.00e-07 2.14e-06 9.72e-08

odds ratio 1.60e-13 5.42e-13 2.44e-13

Differential abundance

t-statistic 0.023 0.0017 0.0012

Differential abundance

degrees of freedom 2.7e-4 2.5e-4 0.0028

Differential abundance

P-value 0.0024 0.0026 0.0011

Alpha Diversity

t-statistic 0.0038 0.017 0.0049

Alpha Diversity

degrees of freedom 1.48e-05 9.7e-4 2.2e-4

Alpha Diversity

P-value 0.0088 0.044 0.014

Results were generated using the R chisq.test{stats}, odds.ratio{abd}, t.test{-

stats}, and diversity{vegan} against our implementation in ObliVM for the v2-

test, odds ratio, differential abundance and Alpha Diversity. We use Normalized

Mean Squared Error: kx� yk2=kxk2 with x as the value output by R and y the

value from our implementation. For comparing P-values, we use the log10 P-

value and exclude any exact matches [since log10(0)¼�Inf in R] while comput-

ing the mean.
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3.7 Significant features discovered through data-

sharing
Researchers in different policy domains may be forced to compute

analyses on partial data. We measured the effect of using our imple-

mentation for data-sharing between policy domains. The MSD data-

set provides a means to simulate secure computation of microbiome

analyses between different countries. The data were gathered from

Kenya, The Gambia, Bangladesh and Mali. We simulate each coun-

try performing secure Differential Abundance pair-wise with the

other countries. We observed that sharing data resulted in a substan-

tial increase (at minimum a 98% increase) in the number of species

found to be differentially abundant between case and control

groups. Table 2 summarizes the results.

3.8 Metagenomic codes
We also evaluated our implementation on the genetic marker data

that showed the greatest identification power in the metagenomic

codes analysis (Franzosa et al., 2015). The data are also from the

HMP and consists of a total of 85 samples and 221 111 features.

Due to the large number of features and sparsity of the data, we im-

plemented a filtering garbled circuit in which we first return a vector

to each party denoting if a given feature meets a presence cutoff and

then have each party input those features into our existing imple-

mentations to compute the statistical test. For v2, the 1 729 851 751

gate circuit (circuit size of 7823 Non-Free gates per feature) is eval-

uated in 67.4 min, with 51 926.35 MB sent to the evaluator, and 1

642.53 MB sent to generator. For odds ratio, the 632 918 505 gate

circuit is evaluated in 33.18 min, with 20,542.84 MB sent to the

evaluator, and 1,642.29 MB sent to generator. This result shows

that the secure comparative analyses we would like to perform are

possible given the legitimate concerns raised by Franzosa et al.

4 Discussion

In this section, we describe related work and provide a context for

our contribution. We also discuss a use case for our solution in

building datasets and finally present conclusions we formed during

the course of our work.

4.1 Related work
As we are the first, to our knowledge, to approach secure micro-

biome analysis, we review related work on privacy-preserving oper-

ations over human DNA.

4.1.1 Secure DNA sequence matching and searching

Comparing two DNA segments is essential to genome alignment and

identifying the presence of a disease causing mutation. One approach

is to use an oblivious finite state machine for privacy-preserving ap-

proximate string matching (Troncoso-Pastoriza et al., 2007). FastGC,

the predecessor of the FlexSC library, was benchmarked by computing

Levenstein distance and the Smith-Waterman algorithm between pri-

vate strings held by two parties (Huang et al., 2011). More recently,

Wang et al. (2015) compute approximate edit-distance using whole

genome sequences.

4.1.2 Privacy-preserving Genome-wide association studies

Prior work has shown that secure computation between two institu-

tions on biomedical data is possible by using a three-party secret-

sharing scheme (Kamm et al., 2013). The authors present an imple-

mentation of a v2-test over SNP data using the Sharemind frame-

work. Other researchers have presented a modification of functional

encryption that enables a person to provide her genome and pheno-

type to a study but only for a restricted set of functions based on a

policy parameter (Naveed et al., 2014).

Prior works have built systems for genomic studies using differ-

ent cryptographic protocols, including systems using additive homo-

morphic encryption (Dachman-Soled et al., 2011) and systems using

fully homomorphic encryption (Lauter et al., 2014). When com-

pared with these works, we use a garbled circuit protocol with cir-

cuits for floating-point operations. Our system has two unique

advantages compared to these prior works: (i) We can benefit from

a long line of work on improving the practicality of garbled circuits

(Huang et al., 2011; Kolesnikov and Schneider, 2008; Zahur et al.,

2015) (ii) Floating-point operations ensure us a small and bounded

error even after multiple operations.

4.1.3 Secure genetic testing

For using sequencing results in the clinical realm, paternity deter-

mination and patient-matching is possible using private set intersec-

tion (Baldi et al., 2011). Also, it is feasible to utilize homomorphic

encryption for implementing disease-risk calculation without reveal-

ing the value of any genomic variant (Ayday et al., 2013).

4.2 Patient pool
A novel application of multi-party secure computation approaches

to genomic analysis are patient pool designs that can benefit patient

groups, specifically those suffering from rare diseases or those with

insufficient data in existing repositories for association studies. The

recent announcement by 23andMe to begin drug development on its

genome variant datasets highlights the value of biomarker data. We

imagine a scenario where individuals can use our solution to create

and manage datasets in order to charge drug developers to run ana-

lysis functions over the data. The companies will have to be non-col-

luding as otherwise all function results could be shared among

companies. The current regulatory process for drug development

allows a mechanism to enforce this constraint.

The patient pool can be paid to compute a function to over its data

and sign the output. Upon requesting drug trial permission in the USA,

a company is required to hand over all data from research, which in

this case would include the output of the patient pool analysis and sig-

natures over those results. The FDA could verify the signatures to en-

force non-collusion between companies. This provides a mechanism to

create high-quality datasets that are accessible to a variety of compa-

nies and ensure patients are compensated for their efforts.

Table 2. Significant features found from sharing data between

each country

Features found Total increase

Kenya only 47 N/A

Gambia only 84 N/A

Mali only 58 N/A

Bangladesh only 75 N/A

Kenya þ The Gambia 133 86

Kenya þMali 112 65

Kenya þ Bangladesh 138 91

Gambia þ Bangladesh 166 82

Mali þ Gambia 167 109

Mali þ Bangladesh 169 111

When computing data with another policy domain, each country saw an in-

crease in the number of features detected to be significantly different between

case and control groups.
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5 Conclusions

In this article, we show that it is possible to perform metagenomic

analyses in a secure computation framework. Our implementation

made use of precomputation steps to minimize the number of oper-

ations performed in secure computation making the use of garbled cir-

cuits feasible. We also implemented sparse-matrix methods for each

statistic. We took this step in order to prove the applicability of this

solution for other analyses when the data itself acts as sufficient statis-

tics, such as for the Wilcoxon rank-sum test. We also explored poten-

tial applications of our implementation in patient pool designs.

Although the storage and sharing of medical data is ultimately a

policy matter, providing a technical solution is useful to forming

good policy. We believe that given the time costs associated with re-

consenting patients to release data to another researcher or creating

a legal contract stipulating a data receiver’s responsibility, that the

running times we presented for metagenomic analyses are a reason-

able tradeoff.

DNA-sequencing technologies are entering a period of unprece-

dented applicability in clinical and medical settings with a concomi-

tant need for regulatory oversight over each individual’s sequencing

data. We believe that addressing privacy concerns through computa-

tional frameworks similar to those used in this article is paramount

for patients while allowing researchers to have access to the largest

and most descriptive datasets possible. We expect that secure com-

putation and storage of DNA sequencing data, both the individual’s

DNA and their metagenomic DNA, will play an increasingly im-

portant role in the biomedical research and clinical practice

landscape.
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