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A B S T R A C T   

Background: Breast cancer (BC), the most common cancer among women globally, has been 
shown by numerous studies to significantly involve non-apoptotic regulatory cell death (RCD) in 
its pathogenesis and progression. 
Methods: We obtained the RNA sequences and clinical data of BC patients from The Cancer 
Genome Atlas (TCGA) database for the training set, while datasets GSE96058, GSE86166, and 
GSE20685 from The Gene Expression Omnibus (GEO) database were utilized as validation co-
horts. Initially, we performed non-negative matrix factorization (NMF) clustering analysis on the 
BC samples from the TCGA database to discern non-apoptotic RCD-related molecular subtypes. To 
identify prognostically-relevant non-apoptotic RCD genes (NRGs) and construct a prognostic 
model, we implemented three machine learning algorithms: lasso regression, random forest, and 
XGBoost analysis. The expression of selected genes was verified using real-time quantitative 
polymerase chain reaction (RT-qPCR), single-cell RNA-sequencing (scRNA-seq) analysis, and The 
Human Protein Atlas (HPA) database. The risk signature was evaluated concerning clinical 
characteristics and drug sensitivity. Furthermore, we developed a nomogram to predict BC pa-
tient survival. 
Results: The NMF method successfully compartmentalized patients from the TCGA database into 
three distinct non-apoptotic RCD-related subtypes, with significant variations observed in im-
mune characteristics and prognostic stratification across these subtypes. We identified 5 differ-
entially expressed NRGs used in establishing the risk signature. Patients with different risk groups 
exhibited distinct clinicopathological features, drug sensitivity, and prognostic outcomes. A 
nomogram was subsequently developed, incorporating the NRGs-related risk signature, age, T 
stage, and N stage, to aid clinical decision-making. 
Conclusion: We identified a novel NRGs-related risk signature, which was expected to become a 
potential prognostic marker in BC.   

1. Introduction 

According to the International Agency for Research on Cancer, breast cancer (BC) has now surpassed lung cancer to become the 
most prevalent form of malignancy among women worldwide [1]. Despite significant advancements in BC therapies, a fraction of 
patients still face daunting prognoses due to issues such as drug resistance, recurrence, and metastasis [2,3]. In the era of precision 
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medicine, the need for individualized patient assessment and personalized treatment plans for BC has escalated. However, prevailing 
prognostic evaluation and treatment stratification for BC primarily hinge on TNM (tumor node and metastasis) staging and molecular 
subtype [4]. Given the complexity of treatment and the tumor’s heterogeneity, there is a pressing need to develop novel high-precision 
biomarkers for predicting the prognosis of BC patients and guiding treatment. 

Contrary to uncontrolled necrosis, regulatory cell death (RCD) represents a meticulously orchestrated cell death mechanism, 
steered by gene expression events [5]. Apoptosis, a well-studied RCD form, is the main target of current anti-cancer chemotherapeutic 
agents [6]. However, tumors can circumvent apoptosis through strategies such as overexpression of anti-apoptotic proteins, leading to 
resistance to multiple chemotherapy drugs [7]. Recently, numerous novel non-apoptotic RCD forms have emerged, including auto-
phagy, pyroptosis, ferroptosis, necroptosis, cuproptosis, and disulfidptosis, offering a rich array of alternative therapeutic targets [8,9]. 
Significant advancements have been made in therapies targeting non-apoptotic RCD in BC. For instance, phloretin, a dihydrochalcone 
flavonoid compound, has been demonstrated to counteract tamoxifen resistance by modulating autophagy in triple-negative BC 
(TNBC) cells (Chen et al., 2021) [10]. Additionally, Zeng et al. have engineered a nanohybrid capable of inducing ferroptosis, thereby 
enhancing radiotherapy efficacy and improving TNBC treatment outcomes [11]. Notably, mounting evidence underscores significant 
crosstalk and cross-regulation amongst these signaling pathways [12–14]. Despite this, the bulk of current research remains centered 
on elucidating the role of specific types of non-apoptotic RCD in the progression and prognosis of BC. 

In the present study, we conducted an exhaustive analysis of the expression of non-apoptotic RCD genes (NRGs) in BC. Utilizing the 
Cancer Genome Atlas (TCGA) database, we discerned three distinct subgroups of non-apoptotic RCD in BC. Moreover, we constructed a 
robust risk signature, composed of 5 NRGs, that prognosticates the outcome in BC. The cellular distribution and expression levels of 
these risk gene signatures were further validated by employing real-time quantitative polymerase chain reaction (RT-qPCR), single-cell 
RNA-sequencing (scRNA-seq) analysis, and The Human Protein Atlas (HPA) database. We also explored the disparities in clinical 
characteristics and drug sensitivity among the various risk cohorts. Collectively, our findings underscore the functional relevance of 
the NRGs-related risk signature and uncover a potential prognostic biomarker for BC. 

2. Materials and methods 

2.1. Data acquisition 

RNA expression data and clinicopathological information for BC patients were extracted from the TCGA database. Additionally, 
three relevant datasets (GSE96058, GSE20685, and GSE86166) were retrieved from the Gene Expression Omnibus (GEO) database. To 
address potential batch effects, we implemented the “ComBat” function from the “sva” R package. 

We sourced autophagy-related and ferroptosis-related genes from the GeneCards database, while pyroptosis-related, necroptosis- 
related, and cuproptosis-related genes were acquired from the Gene Set Enrichment Analysis (GSEA) website and previous literature 
[15–21]. Additionally, we collected 16 disulfidptosis-related genes from a recent study by Liu et al. [22]. A comprehensive list of these 
NRGs is provided in Supplementary Table S1. 

2.2. Identification of non-apoptotic RCD related subtypes 

The “limma” R package was utilized to identify differentially expressed NRGs between normal and tumor samples within the TCGA- 
BRCA dataset. Subsequent to this, the identified differentially expressed genes (DEGs) were subjected to nonnegative matrix factor-
ization (NMF) clustering. The optimal number of clusters was determined to be k = 3, ascertained through the evaluation of the 
cophenetic coefficient, contour, and sample size. Principal component analysis (PCA) was utilized to validate the robustness and 
reliability of the non-apoptotic RCD-related subtypes. 

To assess variations in the tumor microenvironment (TME) across different molecular subtypes, the single sample gene set 
enrichment analysis (ssGSEA) method from the “GSVA” R package and the ESTIMATE algorithm were employed. Moreover, gene set 
enrichment analysis (GSEA) was performed on patients with diverse molecular subtypes using the “clusterprofiler” R package. 

2.3. Construction and validation of the risk model 

We utilized the “limma” R package to identify DEGs across diverse molecular subtypes. Furthermore, we investigate whether these 
DEGs exhibited expression discrepancies between normal and tumor samples within the TCGA-BRCA and GSE65194 datasets. The 
criteria for significance were set as an absolute log2 fold change (FC) greater than 1 and a false discovery rate (FDR) less than 0.05. 

To circumvent potential model overfitting, we integrated three machine learning algorithms, namely lasso regression, random 
forest (RF), and XGBoost analysis, to construct a more robust predictive model. The risk score for each patient in both the modeling set 
and validation set was calculated using this model. Subsequently, patients were stratified into high- and low-risk groups based on the 
median risk score. The accuracy of the risk model was then evaluated using Kaplan-Meier (KM) survival curves, receiver operating 
characteristic (ROC) curves, and risk score distribution plots. 

2.4. RT-PCR analysis 

The MCF-10A and T47D cell lines, procured from Procell Life Science and Technology Co., Ltd, were cultured under a humidified 
atmosphere at 37 ◦C with 5 % CO2. For RNA extraction, cells were expanded in suitable culture dishes until they achieved 
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approximately 80 % confluency. Total RNA was extracted using TRIzol reagent, strictly following the manufacturer’s recommenda-
tions. The quality and quantity of the resultant RNA samples were evaluated using a NanoDrop spectrophotometer and gel electro-
phoresis. GAPDH was used as endogenous control. The sequences of the primers utilized are provided in Supplementary Table S2. 

2.5. scRNA-seq data processing 

ScRNA-seq data was procured from the GSE161529 dataset, encompassing 32 samples of breast carcinoma and 13 samples of non- 
neoplastic breast tissue [23]. Pre-processing measures included ensuring expression of each gene in a minimum of three cells, 
maintaining the gene expression per cell within the range of 300–7000, and limiting the mitochondrial gene content to less than 15 %. 
The “harmony” R packages was employed for the mitigation of batch effects among samples, followed by dimension reduction via the 
UMAP method to delineate the cell clusters. 

By leveraging the CellMarker database, we undertook manual annotation to stratify all cell clusters into distinct subgroups: 
epithelial cells (EPCAM, KRT8, and KRT17), fibroblasts (COL3A1 and PDGFRA), pericytes (RGS5), endothelial cells (VWF, PECAM1, 
CD36, CDH5, and SELE), T cells (CD3D and CD2), B cells (MS4A1 and CD79A), and Myeloid cells (CD68, CD14, CD163, and CSF1R) 
[24]. 

2.6. Construction and validation of the prognostic nomogram 

Ultimately, we executed univariate and multivariate analyses to validate the independent prognostic value of the NRGs-related risk 
signature. Following this, we formulated a prognostic nomogram for the prediction of 3- and 5-year OS rates in BC patients. The 
performance of the model was evaluated through a variety of methods, including the concordance index (C-index), ROC curves, 
calibration curves, and decision curve analysis (DCA). 

2.7. Statistical analysis 

The data were processed, analyzed, and presented utilizing R software (version 4.1.0). A two-tailed P-value of less than 0.05 was 
deemed to denote statistical significance. 

Fig. 1. The flow chart of this study.  
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3. Results 

3.1. Identification of distinct non-apoptotic RCD associated subtypes 

The schematic representation of the entire study workflow is delineated in Fig. 1. From the TCGA-BRCA dataset, we collated 941 
tumor tissue samples, along with their concomitant clinical data. Additionally, we also included 95 normal tissue samples for com-
parison. The differential expression analysis of NRGs revealed 60 distinct genes, out of which 37 exhibited upregulation in tumor 
tissues Fig. 2A. 

Employing the NMF algorithm for sample clustering based on the differential NRG expression, we discerned the formation of three 
distinct clusters (C1, C2, and C3) when the number of clusters (k) was set to 3, as inferred from covariance and residual sum of squares 

Fig. 2. Identification of three distinct non-apoptotic RCD-related molecular subtypes in BC via NMF analysis. (A) Volcano plot illustrating 
differentially expressed NRGs between cancerous and normal tissues. (B) Determination of factorization rank for k ranging from 2 to 10. (C) Cluster 
mapping based on the NMF algorithm. (D) Heatmap representation of the NRGs’ expression patterns across distinct molecular subtypes. (E) PCA 
scatter plot substantiating the classification into three non-apoptotic RCD molecular subtypes. (F) KM survival curves for the three identified clusters 
within the TCGA-BRCA dataset. 
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(RSS) analyses (Fig. 2B). Further, the consensus matrix heatmap for k = 3 manifested clearer demarcation compared to other cluster 
numbers, underscoring the optimal cluster identification (Fig. 2C). The differential NRG expression across these three molecular 
subtypes is depicted in Fig. 2D. The PCA results corroborated the distinct distribution patterns of the three clusters (Fig. 2E). Kaplan- 
Meier survival analyses underscored that patients within the C2 and C3 clusters exhibited significantly superior prognostic outcomes 
compared to those in the C1 cluster, emphasizing the clinical relevance of these molecular subtypes (Fig. 2F). 

3.2. Diverse molecular subtypes exhibit varied TME and biological functions 

Recent studies have underscored the pivotal role of non-apoptotic RCD in myriad facets of immune cell biology, encompassing their 
survival, differentiation, activation, and migratory behaviors [25–27]. In the present investigation, we leveraged the ssGSEA algorithm 
to probe the infiltration dynamics of immune cells across the three non-apoptotic RCD subtypes. Significantly, we discerned pro-
nounced variations among discrete immune cell subpopulations, such as activated B cells, activated CD4+ T cells, activated CD8+ T 
cells, and natural killer T cells, with a preponderance in the C2 cluster (Fig. 3A). In alignment with the ssGSEA findings, the C2 cluster 
manifested the highest immune score as per the ESTIMATE algorithm, whereas the C1 cluster demonstrated the lowest (Fig. 3B). These 
observations shed light on the intricate dynamics of immune cells linked with non-apoptotic RCD subtypes. We further noted sig-
nificant disparities in tumor purity and stromal scores among the distinct molecular subtypes (Fig. 3C–F). The C1 cluster displayed 
elevated tumor purity, potentially contributing to a poorer prognosis (Fig. 3C). Concurrently, the C2 cluster exhibited a significantly 
higher stromal score compared to the C1 and C3 clusters (Fig. 3D–F). Moreover, GSEA findings, utilizing the Hallmark pathway 
database, revealed significant variations in enrichment patterns across different traits (Fig. 3G–I). 

Fig. 3. Assessment of TME and biological processes. (A) ssGSEA analysis was employed to evaluate the infiltration levels of 28 immune cells across 
the three identified clusters. (B–F) The ESTIMATE analysis was utilized to evaluate the immune score, tumor purity, and stromal score in distinct 
molecular subtypes. (G–I) GSEA was employed for functional enrichment analysis. 
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3.3. Construction prognostic signature for NRGs 

Upon discerning the disparities among the three non-apoptotic RCD clusters, our subsequent investigation focused on identifying 
prognostic markers intertwined with NRGs. We identified 8248 DEGs between the C1 and C2 clusters, 8802 DEGs between the C1 and 
C3 clusters, and 5385 DEGs between the C2 and C3 clusters. After intersecting these genes, we further selected those exhibiting 
differential expression between normal and tumor samples in both the TCGA-BRCA and GSE65194 datasets for the construction of an 
NRGs-related risk signature (Fig. 4A). Following this, we utilized univariate Cox regression analysis and identified 42 NRGs signifi-
cantly correlated with the prognosis of BC patients (Fig. 4B). To mitigate model overfitting, we employed three machine-learning 
methodologies for variable selection, including lasso regression, RF, and XGBoost analysis (Fig. 4C–F). Consequently, we identified 
five core NRGs (ARID5A, TFPI2, SDC1, CEMIP, SIAH2) in BC as prognostic indicators (Fig. 4G). The resulting risk scoring formula was 
as follows: Risk score = (0.152 * SDC1 expression) + (0.046 * CEMIP expression) - (0.326 * ARID5A expression) - (0.149 * TFPI2 
expression) - (0.146 * SIAH2 expression). 

3.4. Assessment of the performance of the NRGs-related model 

Risk scores were computed for each sample in the training set and the three validation sets utilizing the risk score formula. 

Fig. 4. Construction of risk features associated with non-apoptotic RCD. (A) Venn diagram representation. (B) Implementation of Univariate Cox 
regression analysis for the identification of prognosis-related OS genes. (C–D) Application of LASSO regression analysis. (E) Utilization of the 
Random Forest algorithm for analysis. (F) Execution of XGBoost analysis. (G) The Venn diagram illustrates the intersections of results derived from 
different machine learning algorithms. 
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Following this, patients were categorized into high-risk and low-risk groups using the median risk score as the demarcation. Within the 
TCGA-BRCA training set, the KM survival curves distinctly showcased a marked difference in prognosis between the high-risk and low- 
risk groups (Fig. 5A). The robust predictive proficiency of the model was underscored by the ROC curves (Fig. 5B). Moreover, the 
distribution of risk scores is visually represented in Fig. 5C, emphatically illustrating that samples with elevated risk scores signifi-
cantly correlate with shorter survival times in contrast to those with lower risk scores. Analogous results were obtained when identical 
methodologies were applied to the validation sets (Fig. S1). We investigated the association between the risk score and clinicopath-
ological characteristics to assess the predictive precision of the risk scores for these traits. Patients classified into the high-risk group 
demonstrated significantly advanced tumor stages and histological grades in comparison to those allocated to the low-risk group. 
Furthermore, patients classified as Basal and Her2 subtypes under the PAM50 classification exhibited higher risk scores than other 
subtypes (Fig. 5D–K). 

3.5. Drug sensitivity analysis 

To establish a more robust association between the risk signature and clinical application, we utilized the “oncoPredict” R package 
to appraise the responsiveness of patients stratified into high-risk and low-risk groups to widely administered endocrine and 
chemotherapy agents for BC. Drug sensitivity and therapeutic efficacy were evaluated based on IC50 values, denoting the median 50 % 
inhibitory concentration. The outcomes disclosed that patients in the low-risk group manifested enhanced sensitivity to cyclophos-
phamide, docetaxel, epirubicin, gemcitabine, paclitaxel, palbociclib, tamoxifen, and olaparib treatments, as evidenced by diminished 
IC50 values (Fig. 6A–H). These insights may provide implications for directing the choice of pharmacological therapy for BC patients. 

3.6. Validation of the expression levels of selected NRGs 

We evaluated the expression of risk signature genes in a BC cell line, T47D, and a normal cell line, MCF10A, employing RT-qPCR. 
The expression levels of CEMIP, SIAH2, SDC1, and TFPI2 were elevated, while those of ARID5A were attenuated in T47D relative to 
MCF10A (Fig. 7A–E). Moreover, we investigated the protein expression levels of these genes in BC patients utilizing the HPA database. 
The protein-level outcomes of ARID5A, CEMIP, SIAH2 and TFPI2 were in alignment with our PCR results. Unfortunately, data per-
taining to CEMIP expression were not available in the HPA database (Fig. 7F). 

Fig. 5. Clinical correlation and survival analysis. (A–C) KM survival curves, ROC curves, and risk distribution plots in TCGA-BRCA database. (D–K) 
Correlation analysis between risk score and clinicopathological characteristics. 
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Fig. 6. The drug sensitivity analysis reveals that the risk score correlates with the treatment sensitivity of cyclophosphamide (A), docetaxel (B), epirubicin (C), gemcitabine (D), paclitaxel (E), pal-
bociclib (F), tamoxifen (G), and olaparib (H). 
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3.7. ScRNA-seq analysis 

Upon manual annotation of the single-cell sequencing dataset GSE161529, we distinguished seven cell types, comprising epithelial 
cells, fibroblasts, pericytes, endothelial cells, T cells, B cells, and myeloid cells (Fig. 8A–B). Following this, we explored the cellular 
distribution of the five genes implicated in the construction of the risk score. Our observations disclosed that ARID5A was predom-
inantly expressed in epithelial cells, fibroblasts, and endothelial cells. SIAH2 and SDC1 were primarily manifest in epithelial cells, 
while TFPI2 was chiefly discerned in endothelial cells. Regrettably, CEMIP expression was not identifiable in any of these cell types 
(Fig. 8C). 

3.8. Nomogram construction and validation 

The independent prognostic significance of the NRGs-related risk signature was validated via univariate and multivariate Cox 
regression analyses utilizing the TCGA database (Fig. 9A–B). In light of the findings from the multivariate Cox regression analysis, a 
nomogram was constructed, amalgamating age, T-stage, N-stage, and the NRGs-related risk score, to foretell the likelihood of OS at 3 
and 5 years for BC patients. As portrayed in Fig. 9C, for a 68-year-old female BC patient at stage T1N0, the risk score amounts to 0.5, 
resulting in an aggregate risk score of 280. The anticipated 3-year and 5-year OS, as delineated in the nomogram, are approximately 
84.8 % and 73.4 %, respectively. Various evaluation methodologies, encompassing the ROC curve, calibration curve, and DCA plots, 
underscored the exceptional predictive prowess of the nomogram (Fig. 9D–G). Comprehensive clinical data for patients in the 
GSE96058 and GSE86166 datasets were not accessible; hence, we elected to affirm the predictive precision of the model exclusively 
within the independent validation set GSE20685 (Fig. S2). 

4. Discussion 

Apoptosis, recognized as the first form of RCD to be identified, was once deemed to be the principal mechanism influencing the 
survival of cancer cells. Nevertheless, the effectiveness of drugs targeting apoptosis in oncological treatment appears to be thwarted by 
the advent of drug resistance and immune evasion [28,29]. With the progressive elucidation of cell death mechanisms, an escalating 
number of novel non-apoptotic RCDs have been discovered, offering new opportunities for therapeutic intervention [30]. A plethora of 
studies have consistently underscored the complex interplay among diverse non-apoptotic regulated cell death signaling pathways, 
collectively orchestrating the cell death process [12–14]. However, hitherto, there persists a dearth of research integrating 
non-apoptotic RCD for the systematic and comprehensive analysis of its prognostic and therapeutic implications in BC. 

In the present investigation, we encompassed six types of non-apoptotic RCD, namely apoptosis, ferroptosis, necroptosis, pyrop-
tosis, along with the recently identified cuproptosis and disulfidptosis. By scrutinizing the expression profiles of NRGs, we harnessed 

Fig. 7. (A–E) Evaluation of mRNA levels of NRGs in a BC cell line (T47D) and a normal cell line (MCF10A) ascertained by RT-qPCR. (F) Deter-
mination of protein levels utilizing data from The Human Protein Atlas (HPA) database. 
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the NMF algorithm to categorize patients in the TCGA-BRCA cohort into three discrete clusters, designated as C1, C2, and C3. We 
discerned substantial variations in immune cell infiltration, matrix score, and prognosis among these patient clusters. To precisely 
assess the prognostic risk of non-apoptotic RCD in BC, we devised a 5-gene risk score utilizing machine learning analysis. This risk 
signature exhibited potent predictive efficacy in both the training set and the three validation sets, thereby underscoring its robustness. 

ARID5A, an essential component of the ARID protein family, significantly modulates a wide array of cellular processes, including 
invasion, metastasis, epithelial-to-mesenchymal transition, and immune evasion [31]. Wang et al. reported an improved prognostic 
outcome in BC patients exhibiting elevated ARID5A expression, which is consistent with our own findings [32]. TFPI2, a serine 
proteinase inhibitor, is well-known for its ability to suppress tumor metastasis in different types of cancer cells [33]. For instance, Luo 
et al. confirmed that overexpression of TFPI2 effectively mitigated proliferation and invasion in Glioblastoma Multiforme (GBM) cells 
[34]. Comparable conclusions have been drawn by Zhao and Prakasha within the context of BC and fibrosarcoma, respectively [35, 
36]. The role of SIAH2 proteins in BC continues to be a subject of debate. Confalonieri and Maurice reported a relatively extended 
survival period in BC patients expressing high levels of SIAH2 [37]. Christina et al. proposed that SIAH2 loss triggers vascular 
normalization, thereby amplifying the effectiveness of chemotherapy in BC patients [38]. In contrast, Adam et al. suggested that SIAH2 
enhances the migration and invasion of BC cells [39]. Our study noted an escalation in SIAH2 expression in BC, with patients 
demonstrating high SIAH2 expression presenting a more favorable prognosis. The intricate regulatory mechanisms of SIAH2 in BC 
warrant further investigation. SDC1, a key cell surface heparan sulfate proteoglycan, serves as a coreceptor for an array of 
heparin-binding growth factors and engages with multiple extracellular matrix molecules [40]. Numerous studies consistently 
demonstrate that an upsurge in SDC1 expression in breast carcinomas is linked with a worse prognosis and an aggressive phenotype in 
BC [41,42]. Moreover, Martin et al. provided evidence that SDC1 expression level could be utilized as a predictive marker for the 
efficacy of neoadjuvant therapy in BC patients [43]. CEMIP, a protein implicated in the Wnt pathway, has been identified to activate 

Fig. 8. (A) Violin plot for differential expression levels of marker genes across distinct cell types. (B) UMAP plot of seven cell types. (C) UMAP plot 
visualization of the distribution of 5 NRGs. 
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the STAT3 pathway, thereby fostering cell proliferation and migration in BC [44]. Moreover, CEMIP can facilitate the colonization of 
BC cells in brain metastases via the release of exosomes [45]. In line with our findings, a study spearheaded by Xue et al. revealed that 
BC patients with high CEMIP expression levels have a comparatively unfavorable prognosis [46]. 

This study, however, is not without its limitations. Primarily, it is crucial to underscore that our research is retrospective, hence the 
devised risk score warrants validation in a prospective study encompassing a larger patient cohort. Additionally, our deductions are 
predominantly confined to bioinformatic analysis, necessitating further in vitro and in vivo experimentation in ensuing research. 

In conclusion, we have successfully devised an innovative scoring algorithm for non-apoptotic RCD that proficiently segregates BC 
patients based on risk and prognosticates their clinical outcomes. This scoring system presents a valuable tool for guiding clinical 
treatment decisions. Moreover, we have developed a predictive nomogram model that augments the precision of prognostic prediction 
for BC patients. 

Ethics approval 

Since all the data used in the current study was available online, and no individual patient was involved, the IRB (Institutional 
Review Board) review was exempted. 

Fig. 9. Construction and Validation of Nomogram. (A–B) Univariate and multivariate Cox regression analyses of risk score in conjunction with 
clinicopathological attributes. (C) Employment of the nomogram for prognostication of 3- and 5-year OS probabilities in BC patients. (D) Quan-
tification of area under the ROC curves for prognostication of 3- and 5-year survival in TCGA-BRCA cohorts. (E) Calibration plots for the nomogram. 
(F–G) DCA of 3- and 5-year OS for patients in TCGA. 
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