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The development of nanogenerators (NGs) with optimal performances and functionalities requires more novel materials. Over the
past decade, biopolymer nanofibers (BPNFs) have become critical sustainable building blocks in energy-related fields because they
have distinctive nanostructures and properties and can be obtained from abundant and renewable resources. This review
summarizes recent advances in the use of BPNFs for NG development. We will begin by introducing various strategies for
fabricating BPNFs with diverse structures and performances. Then, we will systematically present the utilization of
polysaccharide and protein nanofibers for NGs. We will mainly focus on the use of BPNFs to generate bulk materials with
tailored structures and properties for assembling of triboelectric and piezoelectric NGs. The use of BPNFs to construct NGs for
the generation of electricity from moisture and osmosis is also discussed. Finally, we illustrate our personal perspectives on

several issues that require special attention with regard to future developments in this active field.

1. Introduction

With the fast development of modern society, the question
of how to ease the increasing energy demand in various
fields has become one of the most critical issues facing
human beings [1-4]. Although numerous mature systems
for energy storage, conversion, and harvesting have been
established, many potential sources of energy in people’s
daily lives—especially in disordered forms such as human
movement and wind energy—are still largely wasted.
Therefore, the development of advanced materials and sys-
tems for harvesting various types of energy is critical for
power generation. Compared with other strategies for elec-
tricity generation, the use of nanogenerators (NGs) has
some obvious advantages. These include high power out-
put, flexible structural design and assembly, diverse mate-
rial selection, and the ability to transform disordered
forms of energy into electricity [5-9]. Piezoelectric NGs
(PENGS) [10], triboelectric NGs (TENGs) [11], pyroelec-
tric NGs [12], and hybrid NGs [13] represent an emerging
branch of energy conversion and have been widely devel-

oped. TENGs harvest mechanical energy by the coupling
effect of contact electrification and electrostatic induction
[14]. When using TENGs, two different materials periodi-
cally contact each other and separate. This results in the
flow of induced electrons between two electrodes. TENGs
are mainly divided into vertical contact-separation, lat-
eral-sliding, single-electrode, and free-standing working
modes [15]. PENGs depend on the structural particularity
of piezoelectric materials, which are crystalline substances
with noncentrosymmetry. During external mechanical
stimulation, the lattice dipole moment in the piezoelectric
material deforms, causing polarization. This results in the
generation of an external potential difference [16]. Various
polymers such as fluorinated ethylene propylene (FEP)
[17], polyethylene terephthalate (PET) [18], polytetrafluor-
oethylene (PTFE) [19, 20], polydimethylsiloxane (PDMS)
[21], polyimide (PI) [22], and polyvinyl chloride (PVC)
[23] have been widely researched in the designing of
TENGs, ranging from material selection and modification,
structure design, and patterning to performance optimiza-
tion and applications [24]. PENGs have been developed
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from various piezoelectric materials such as zinc oxide (ZnO)
nanowires [10], cadmium sulfide (CdS) nanowires [25], poly(-
vinylidene fluoride) (PVDF) [26], and barium titanate (BTO)
nanoparticles [27]. Various polymers such as PDMS [28, 29]
have been integrated with piezoelectric materials to fabricate
PENGs with improved mechanical strength and flexibility.
However, the above-mentioned polymers are mainly synthetic
polymers at relatively high cost, and their fabrication is gener-
ally complicated or requires toxic solvents. Therefore, there is
an expectation that sustainable polymers, which could also
provide novel building blocks for optimizing NG perfor-
mance, will be exploited. Among the numerous candidates,
biopolymer nanofibers (BPNFs) have attracted increasing
interest as critical components for NGs.

BPNFs are natural polymer nanofibers that are synthe-
sized by living things such as trees, bamboo, crabs, shrimps,
spiders, and silkworms [30, 31]. Polysaccharide and protein
nanofibers are the two most prominent types of BPNFs on
earth. Polysaccharide nanofibers—such as cellulose [32-40]
and chitin nanofibers [41]—generally have complex structural
patterns and are used to support the bodies and guarantee the
survival of biological organisms. Some protein nanofibers—-
such as collagen and keratin nanofibers—exist within biologi-
cal organisms [42], whereas others such as silk nanofibers are
secreted by silkworms or spiders [43-45]. Exfoliation is an
effective strategy for individualizing BPNFs that inherit their
original structures from biological materials [30]. Moreover,
bacterial cellulose (BC), which is a special kind of polysaccha-
ride nanofiber, can be obtained by biosynthesis [46-48]. Elec-
trospinning is another versatile strategy for producing BPNFs
from a viscoelastic biopolymer solution under a strong electric
field [49, 50]. Different fabrication strategies and raw materials
generate BPNFs with various structures and performances,
providing ample building blocks for NGs.

Owing to their intrinsic nanostructures and properties,
BPNFs have attracted increasing interest and have been widely
utilized in material, energy, environmental, and biomedical
fields [30]. The use of BPNFs in NG research has attracted tre-
mendous attention. Most researchers have focused on the
development of BPNF-based TENGs [51, 52] or PENGs [53,
54], but there has also been progress in the use of BPNF-
derived generators for harvesting electricity from moisture
[55] and osmosis [56]. Based on the nanofiber structures and
properties, modification, integration, bulk material preparation,
device assembly, and applications, the utilization of BPNFs for
NGs is mainly categorized into the following five groups:

(1) Owing to their intrinsic one-dimensional (1D) nano-
fiber structures and advantageous mechanical prop-
erties, BPNFs can be directly assembled or
integrated with active materials to produce high-
performance films, mats, membranes, or aerogels
for various types of NGs

(2) The surfaces of BPNFs are rich in active group-
s—such as hydroxyl, acetamide, amino, or carboxyl
groups—that are recognizable active sites for chemi-
cal modification to modulate the properties of the
BPNFs and BPNF-derived bulk materials for NGs
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(3) Owing to the intrinsic structures of BPNFs, NGs with
special advantages such as flexibility, foldability, and
transparency can be constructed by utilizing opti-
mized BPNFs as building blocks and choosing appro-
priate methods for their assembly as bulk materials

(4) Because of the easily processing of BPNFs into bulk
materials, it is convenient for manipulating the char-
acters of bulk materials, including their pore size,
porosity, roughness, nanofiber alignment, patterning,
and ability to form assemblies with complex architec-
tures, to further improve the output performance of
NGs

(5) BPNFs with various widths, lengths, bundles, compo-
nents, surface chemistries, and mechanical/therma-
l/optical properties can be produced from
numerous sources using different fabrication strate-
gies, providing abundant building blocks for the con-
struction of many types of BPNF-derived NGs

There is increasing interest in utilizing BPNFs to con-
struct NGs. Sometimes this simply involves using the BPNFs
as building blocks to fabricate bulk materials as parts of the
NGs. Sometimes these utilizations are built upon the intrinsic
structures and tunable structures, components, functional
groups, and properties of BPNFs and BPNF-derived bulk
materials, which enable the generation of NGs with unique
functions and high output performances. Owing to the
efforts of many research groups, numerous BPNFs have been
used to fabricate various types of NGs. Several reviews have
focused on various aspects of the use of biopolymers to con-
struct NGs [24, 57-61]. Some of them have summarized the
utilization of several types of BPNFs such as nanocellulose
for NG development. However, to date, there has not been
a review that systemically summarizes and compares the uti-
lization of various kinds of BPNFs for multiple types of NGs.

Herein, we attempt to systematically summarize the gen-
eration of BPNFs with different structures, components, and
performances for the development of NGs (Figure 1). We
begin with an overview of various strategies that have been
used to fabricate BPNFs from different sources and the struc-
tures and characteristics of various kinds of BPNFs. Then, we
systematically summarize recent progress in the utilization of
BPNFs for NGs. We will mainly focus on the development of
BPNF-based TENGs and PENGs. We will also discuss recent
advances in the use of BPNFs for harvesting electricity from
moisture and osmosis. Finally, we provide a brief summary,
together with personal perspectives on the challenges facing
future research.

2. Fabrication of BPNFs

High-performance NGs require BPNFs with controlled
structures and properties. Therefore, effective strategies for
fabricating such materials are expected. To date, numerous
methods for the generation of BPNFs have been established
and optimized. These approaches fall into one of three cate-
gories: (1) exfoliation from biological materials, (2) biosyn-
thesis from small molecules, and (3) electrospinning.
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FI1GURE 1: Schematic diagram showing the main topics of the present review, ranging from the sources, fabrication, and structures of
biopolymer nanofibers to the construction of bulk materials and the use of bulk materials for the development of various nanogenerators.

Although nanofibers can also be obtained from biopolymers
through dissolving-regeneration processes [62-66], they gen-
erally exist in films or aerogels; they have not been extracted
as single individual nanofibers and are therefore not dis-
cussed in depth in the present review [67, 68]. Fabrication
from different sources via various methods produces many
types of BPNFs with different morphologies, lengths, widths,
degrees of nanofibrillation, bundles, crystallinities, zeta
potentials, chemical components, and surface chemistries.
This section mainly comprises a discussion of the strategies
used for BPNF fabrication.

2.1. Exfoliation. In biological materials, BPNFs mainly exist
as polysaccharide or protein nanofibers and assemble into
sophisticated hierarchical architectures with multistage
scales. Exfoliation is an efficient “top down” strategy for indi-
vidualizing these nanofibers. Because nanofibers are embed-
ded in various matrices within most biological materials,
chemical pretreatment is generally carried out before nanofi-
brillation. The structures and performances of different
nanofibers and biological materials differ. Therefore, exfolia-
tion strategies for various polysaccharide and protein nanofi-
bers also generally differ, although there are some

similarities. BPNFs with various structures and properties
can be produced from any native biopolymer using different
exfoliation strategies. The resulting BPNFs are quite slender.
However, the large-scale extraction of high-quality nanofi-
bers that are uniform in size and have a high degree of nano-
fibrillation wusing an environmentally friendly method
remains challenging.

2.1.1. Polysaccharide Nanofibers. Polysaccharide nanofibers
mainly comprise cellulose nanofibers and chitin nanofibers.
Chemically, cellulose is a linear long-chain polymer com-
posed of 3-1,4-linked anhydro-D-glucose units [69], whereas
chitin is a cellulose analogue consisting of f3-1,4-linked N-
acetyl glycosaminoglycan repeating units [41]. Cellulose
nanofibers exist in plants (such as trees and bamboo), in crop
straws, and in some animals (such as tunicates) [32, 34, 35,
37, 38]. Chitin nanofibers mainly occur in the exoskeletons
of shellfish and insects and in the cell walls of mushrooms
[41]. In these biological materials, the polysaccharide nanofi-
bers are mainly embedded in various matrices. For example,
cellulose nanofibers usually form hybrid structures with
hemicellulose and lignin within wood, whereas chitin nanofi-
bers interact with proteins and calcium carbonate within crab
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FI1GURE 2: Fabrication of biopolymer nanofibers by exfoliation. SEM images of (a) nanofibrillated cellulose (NFC) and (b) nanofibrillated
chitin (NFCh). (c) AFM image of TEMPO-oxidized NFC. TEM images of (d) cotton cellulose nanocrystal (CNC), (e) tunicate CNC, and
(f) chitin nanocrystal (ChNC). SEM images of nanofibrillated silk (NES) derived from (g) spider silk and (h) silkworm silk fabricated by
high-intensity ultrasonication. (i) SEM image of NFS produced by milling combined with homogenization. SEM images of NFS fabricated
by partially dissolving the degummed silk in (j) HFIP and (k) sodium hypochlorite before ultrasonication. (I) AFM image of NFS prepared
by treating the degummed silk with HFIP for 72 h. (a) is reproduced with permission from Ref. [74], copyright 2007 Biomacromolecules.
(b) is reproduced with permission from Ref. [76], copyright 2009 Biomacromolecules. (c) is reproduced with permission from Ref. [82],
copyright 2009 Biomacromolecules. (d) is reproduced with permission from Ref. [71], copyright 2014 ChemSusChem. (e) is reproduced
with permission from Ref. [86], copyright 2008 Biomacromolecules. (f) is reproduced with permission from Ref. [88], copyright 2007
Biomacromolecules. (g) and (h) are reproduced with permission from Ref. [91], copyright 2007 Applied Physics Letters. (i) is reproduced
with permission from Ref. [92], copyright 2019 ACS Sustainable Chemistry ¢ Engineering. (j) is reproduced with permission from Ref.
[93], copyright 2016 Advanced Materials. (k) is reproduced with permission from Ref. [94], copyright 2018 Advanced Functional

Materials. (1) is reproduced with permission from Ref. [99], copyright 2020 ACS Materials Letters.

shells. To facilitate the nanofibrillation and fabrication of
high-purity cellulose and chitin nanofibers, the matrix
should be largely removed in advance. Lignin can be
removed by various chemical methods such as treatment
with acidified sodium chlorite [70-72]. Hemicellulose can
be largely eliminated by treatment with potassium hydroxide
[70, 72-74]. Proteins and minerals can be removed using
aqueous sodium hydroxide/potassium hydroxide and hydro-
chloric acid, respectively [75-77]. The as-generated purified
cellulose and chitin are then subjected to nanofibrillation
using various equipment such as high-pressure homogenizer
[78, 79], grinder [74, 76], high-intensity ultrasonicator [70,
72], and high-speed blender [80, 81], resulting in the fabrica-
tion of high aspect ratio nanofibrillated cellulose (NFC) and
nanofibrillated chitin (NFCh). NFC and NFCh are entangled
and display web-like structures (Figures 2(a) and 2(b)) [74,
76]. Owing to the strong interactions through hydrogen bond
and van der Waals forces among the adjacent nanofibers of
biological materials, NFC and NFCh also contain nanofiber

bundles. Electrostatic repulsion has been explored as a means
of further improving the degree of nanofibrillation and facil-
itating the exfoliation of single nanofibers. The chemical
modification of cellulose pulp by 2,2,6,6-tetramethylpiperi-
dine-1-oxyl radical- (TEMPO-) mediated oxidation causes
the selective generation of numerous Cy carboxylate groups
on the nanofiber surfaces [82-84]. Electrostatic repulsion
and/or osmotic effects lead to the exfoliation of individual-
ized NFC with widths of 3-4 nm through mechanical nanofi-
brillation (Figure 2(c)) [82]. To isolate chitin nanofibers,
various organic acids such as acetic acid are used for cationi-
zation of the C, amino groups of the chitin [76, 85]. The elec-
trostatic repulsions between the nanofibers promote the
facile nanofibrillation and exfoliation of highly individual-
ized NFCh.

Polysaccharide nanofibers can also be produced using a
strong acid hydrolysis method to remove the amorphous
area, leading to the generation of polysaccharide nanocrystals
that are resistant to attack by strong acids. Compared with
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NFC and NFCh, the polysaccharide nanocrystals are short
and highly crystalline. Cellulose nanocrystal (CNC) can be
isolated by hydrolyzing cellulose pulp using various strong
acids such as sulfuric acid (Figures 2(d) and 2(e)) [71, 86],
hydrochloric acid [71], and phosphoric acid [87]. Chitin
nanocrystal (ChNC) is generally extracted by hydrochloric
acid hydrolysis (Figure 2(f)) [88], although sulfuric or phos-
phoric acid hydrolysis, TEMPO-mediated oxidation [89],
and surface cationization [90] are also effective. The exfolia-
tion of polysaccharide nanocrystals is widely determined by
the resources, the type of acid used, the acid concentration,
the polysaccharide/acid ratio, the hydrolysis temperature
and duration, and the subsequent mechanical treatment
[30, 33]. Therefore, different types of polysaccharide nano-
crystals have apparently different structures and
performances.

2.1.2. Protein Nanofibers. Protein nanofibers are mainly
found in protein-based biological materials such as silkworm
and spider silk. A protein consists of one or more linear
chains of amino acids. It is still a challenge to retain the native
silk nanofiber structure during the exfoliation process. Nano-
fibrillated silk (NFS) can be prepared by directly nanofibril-
lating spider or silkworm silk or degummed silkworm silk
by high-intensity ultrasonication (Figures 2(g) and 2(h))
[91] or milling combined with homogenization treatment
(Figure 2(i)) [92]. The as-produced NFS still contains numer-
ous bundles. The degree of nanofibrillation is increased by
partial dissolution before the nanofibrillation process. Hexa-
fluoroisopropanol (HFIP) is used to partially dissolve the
degummed silk fibers. This has a critical effect on the subse-
quent ultrasonication process. The as-fabricated NFS is 20
+ 5 nm wide and up to 500 nm long (Figure 2(j)) [93]. HFIP
can be replaced with nontoxic sodium hypochlorite
(Figure 2(k)) [94]. The structure of NFS can be manipulated
by controlling the input of the sonification energy. Ribbon-
like NFS (~0.4 nm thick) can be produced by partially dis-
solving the degummed silk in a sodium hydroxide/urea solu-
tion [95] or subjecting it to TEMPO-mediated oxidation
[96], in combination with ultrasonication treatment. NFS
can also be extracted using various solvent systems such as
salt/formic acid and HFIP without an additional mechanical
process [97, 98]. When degummed silkworm silk fibers are
treated with HFIP, individualized NFS with high aspect
ratios, widths of approximately 3.1 nm, and perfectly pre-
served pristine conformations can be gradually exfoliated
by controlling the duration of incubation (Figure 2(1)) [99].

2.2. Biosynthesis. In addition to exfoliation from native bio-
logical materials, another efficient strategy for the fabrication
of high crystalline BPNFs is the biosynthesis of BC by the fer-
mentation of microorganisms [46-48]. Previously, BC has
mainly been produced for a popular dessert known as Nata
de Coco. It was first reported by Brown in 1886 [100]. Low
molecular weight carbon sources such as p-glucose are used
as precursors for the synthesis of BC. Compared with cellu-
lose nanofibers exfoliated from higher plants, BC nanofibers
comprise pure cellulose, which can be biosynthesized on a
large scale. However, BC ribbons are a little wide and thick.

BC is generally formed into pellicles and is not well individ-
ualized. Moreover, BC is relatively expensive to produce.

Several bacteria have been developed for the extracellular
secretion of BC [101]. Acetobacter xylinum is the most effi-
cient synthesizer of BC. In Acetobacter xylinum, BC is formed
between the outer and cytoplasma membranes by a cellulose-
synthesizing complex [102, 103] that is associated with the
pores at the surface of the bacterium (Figure 3(a)) [101].
Large amounts of multienzyme complex systems participate
in the synthesis, and the synthesis is a multistep reaction pro-
cess. Following a complex synthesis, BC is assembled and
excreted by the bacteria. It can be synthesized in both static
(Figure 3(b)) [104] and agitated (Figure 3(c)) [105] condi-
tions [106]. The structure of the BC can be controlled by
manipulating various parameters such as pH, temperature,
and incubation time during the fabrication process [46, 107].

The as-produced BC comprises ribbon-like nanofiber
structures with high aspect ratios (Figures 3(d) and 3(e))
[108]. The ribbons are 20-100nm wide, approximately
10 nm thick, and several micrometers long and are organized
by ultrafine cellulose nanofibers. BC forms as pellicles with
web-like entangled networks containing large amounts of
water. It is pure cellulose, without the impurities that com-
monly exist in plant resources, such as hemicellulose and lig-
nin. Generally, BC has a crystallinity of 70-80% and a degree
of polymerization up to 8000 [109]. In recent years, BC has
frequently been used for developing functional materials/de-
vices in biomedical-, environment-, and energy-related fields.
BC can be modified by introducing active components such
as functionalized glucose [110] and carbon nanotubes [111]
during microbial fermentation to produce a series of novel
materials.

2.3. Electrospinning. Electrospinning is a facile, versatile, and
efficient strategy for fabricating nanofibers from biopoly-
mers. The electrospinning device comprises four main parts:
a high-voltage power supply, a syringe pump, a spinneret,
and a conductive collector [112-114]. Many biopolymer-
s—including cellulose, chitin, chitosan, silk, collagen, and
gelatin—can be electrospun into nanofibers, as long as they
can be dissolved in appropriate solvents to obtain solutions
that meet the requirements of electrospinning. Electrospun
nanofibers are long and continuous and have uniform
widths, although their widths are generally larger than those
of exfoliated nanofibers. The native crystalline structures are
usually destroyed when the biopolymers are dissolved. The
critical challenge is to design and develop versatile, environ-
mentally friendly, and inexpensive biopolymer solvents for
electrospinning.

The solvent plays an important role with regard to the
biopolymer in electrospinning. It should dissolve the crystal-
line biopolymer to generate an electrified jet. The solvent
molecules should also be removed from the nanofibers by
rapid vaporization after the nanofibers have been collected.
Owing to the diversity and complexity of biological materials,
particular solvents are required to fabricate electrospun cellu-
lose nanofibers (ES-CNFs), electrospun chitin nanofibers
(ES-ChNFs), electrospun chitosan nanofibers (ES-CtsNFs),
electrospun silk nanofibers (ES-SNFs), electrospun collagen
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FIGURE 3: Fabrication of bacterial cellulose (BC) by biosynthesis. (a) Schematic showing the fabrication of BC. Digital images of BC fabricated
under (b) static and (c) agitated conditions. SEM images of the (d) surface structures and (e) vertical section structures of BC pellicles. (a) is
reproduced with permission from Ref. [101], copyright 1998 Polymer Degradation and Stability. (b) is reproduced with permission from Ref.
[104], copyright 2006 Polysaccharides I1. (c) is reproduced with permission from Ref. [105], copyright 2011 Biomacromolecules. (d) and (e) are
reproduced with permission from Ref. [108], copyright 2008 Advanced Materials.

nanofibers (ES-CoNFs), and electrospun gelatin nanofibers
(ES-GeNFs) (Figures 4(a)-4(f)) [115-120]. Because of the
high crystallinity caused by the strong inter- and intramolec-
ular hydrogen bonds, polysaccharides such as cellulose and
chitin are generally difficult to dissolve. The commonly used
solvents for electrospinning cellulose include N-methylmor-
pholine N-oxide (NMMO)/H,O [121-123], lithium chlori-
de/N,N-dimethylacetamide (DMAc) [124-126], ionic liquid
(IL) [127, 128], and sodium hydroxide/urea [129]. Cellulose
derivatives such as cellulose acetate can also be dissolved in
various solvents including acetone [130-133], acetone/D-
MAc [134, 135], and acetone/N,N-dimethylformamide
(DMF) [136-138] to produce ES-CNFs. Chitin is often dis-
solved in 1,1,1,3,3,3-hexafluoro-2-propanol [116, 139-141]
and IL [142, 143] prior to electrospinning. Chitosan—an N-
deacetylated derivative of chitin—can be electrospun by dis-
solving it in trifluoroacetic acid (TFA) [117, 144] or aqueous
acetic acid solution [145]. With regard to protein nanofibers,
degummed silkworm silk or spider silk can be electrospun
using 1,1,1,3,3,3-hexafluoro-2-propanol [146-148] and for-
mic acid (FA) [118, 149-152] as solvents. Various types of
collagen obtained from calf skin and chicken sternal cartilage
are usually dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol
[153-158], whereas 2,2,2-trifluorothanol (TFE) [159, 160],
FA [161], acetic acid [162], and FA/acetic acid systems
[163] are used to dissolve gelatin derived from porcine and
bovine skin before electrospinning.

To produce continuous nanofibers of uniform width, the
concentration of the biopolymer solution should be carefully
controlled in an approached range. The structures of the
nanofibers are critically determined by the applied voltage,
the injection speed of the syringe pump, the spinning dis-

tance, the relative humidity, and the ambient temperature
[112-114]. Generally, electrospun BPNFs are long and con-
tinuous. They have smooth surfaces and form randomly ori-
ented nonwoven structures. The properties of nanofibers are
mainly determined by the molecular structures of the bio-
polymers and their assembly within the nanofibers during
electrospinning. Novel active components are introduced
during or after electrospinning to manipulate the structures
and performances of the nanofibers. Specifically, CNCs have
been integrated with other polymers as building blocks for
the fabrication of electrospun nanofibers [164, 165]. As with
other electrospun nanofibers [112-114], BPNFs can be
formed into many complex structures—such as
nanoparticle-coated nanofibers (Figure 4(g)) [166], core-
sheath structures (Figure 4(h)) [167], aligned nanofiber
structures (Figure 4(i)) [168], ordered arrays, and hierarchi-
cal structures—by careful integration with active compo-
nents during or after electrospinning and by the
manipulation of nanofiber alignment, stacking, and folding.

3. Nanogenerator Development

Owing to their intrinsic structures and performances, BPNFs
are often selected as sustainable building blocks for NG
development, and because BPNFs are so diverse, many types
of NGs have been constructed. BPNFs are either used directly
or chemically modified to form films, mats, membranes, or
aerogels for various NGs. They can also be integrated with
active materials during or after the formation of the bulk
materials. The structure, porosity, roughness, and constitu-
ents of the bulk material can be manipulated to further opti-
mize the performance of the NGs. In recent years, BPNF-



Research

Polysaccharide nanofibers

ES-CNF

Protein nanofibers

i)~
%
(<7
ES-SNF

ES-GeN

Structure design

Fiber-particle

Core-sheath

Aligned-fiber

200 ym

FIGURE 4: Fabrication of biopolymer nanofibers by electrospinning. SEM images of (a) electrospun cellulose nanofibers (ES-CNFs), (b)
electrospun chitin nanofibers (ES-ChNFs), (c) electrospun chitosan nanofibers (ES-CtsNFs), (d) electrospun silk nanofibers (ES-SNFs), (e)
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fibers, (h) carbon nanotube yarn/ES-SNF core-sheath composite fibers, and (i) aligned ES-SNFs. (a) is reproduced with permission from
Ref. [115], copyright 2020 ACS Nano. (b) is reproduced with permission from Ref. [116], copyright 2004 Polymer. (c) is reproduced with
permission from Ref. [117], copyright 2007 Biomacromolecules. (d) is reproduced with permission from Ref. [118], copyright 2016 Nano
Research. (e) is reproduced with permission from Ref. [119], copyright 2004 Frontiers in Bioscience-Landmark. (f) is reproduced with
permission from Ref. [120], copyright 2013 Advanced Functional Materials. (g) is reproduced with permission from Ref. [166], copyright
2012 Nano Letters. (h) is reproduced with permission from Ref. [167], copyright 2018 Nano Letters. (i) is reproduced with permission

from Ref. [168], copyright 2011 Advanced Functional Materials.

derived TENGs and PENGs have attracted increasing atten-
tion, and BPNFs have also been used to fabricate NGs for
the generation of electricity from moisture and osmosis.
We will discuss recent advances in the utilization of BPNFs
for various types of NGs in the coming sections.

3.1. Polysaccharide Nanofiber-Derived NGs. Polysaccharide
nanofibers can be produced using various strategies. There-
fore, the structures and performances of polysaccharide
nanofiber-derived NGs vary considerably. NFC and NFCh
can be used directly or modified or integrated with active
materials to produce films, mats, membranes, or aerogels
for NGs. BC pellicles can be used directly or disintegrated
into small pieces to integrate with active components to pro-
duce films or aerogels. Because CNC and ChNC are relatively
short, they are generally integrated with other polymers or
coatings on a substrate before the NGs are assembled. Elec-
trospun polysaccharide nanofibers are usually formed into
mats for NGs. The diversity of polysaccharide nanofibers
enables various strategies including chemical modification,
hybridization with active materials, and tailoring of the struc-
tures of bulk materials, for exploiting the advantages of poly-
saccharide nanofibers and improving the output properties
of the as-assembled NGs.

3.1.1. NFC/NFCh-Derived NGs. Owing to their high aspect
ratios and advantageous mechanical properties, NFC and
NEFCh can be used to fabricate strong and flexible bulk mate-
rials for various NGs [169-172]. TEMPO-oxidized NFC was
used to prepare a transparent, flexible, triboelectrically posi-
tive film. A TENG with an electrical output comparable to
that of a typical synthetic polymer TENG device was success-
fully assembled by pairing the film with FEP (Figure 5(a))
[52]. NFC can also be used as a supporting matrix to inte-
grate and protect active materials such as phosphorene to
produce a hybrid film as the active layer of a TENG [173].
Moreover, NFC can be hybridized with active materials and
plays multiple roles in the as-assembled TENG. Using vac-
uum filtration followed by hot pressing or annealing, a flexi-
ble and conductive bilayer NFC/silver nanowire film was
produced [174]. In a TENG assembled by pairing the two
films in parallel, the NFC and silver nanowire layers not only
act as the triboelectric and countertriboelectric layers but also
as the substrate and electrode, respectively. NFC can also be
hybrid with active materials to assemble a TENG that is able
to work in a single-electrode mode. A hybrid of NFC and
MZXene produces a composite dispersion that can be used
as a flexible liquid electrode [175]. NFC is used as a disper-
sant and interlocking agent to promote the interconnection
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of two-dimensional (2D) MXene nanosheets. An
NFC/MXene liquid electrode-based TENG with an open-
circuit voltage up to 300 V was produced, which can produce
electrical output under various extreme deformations.

Owing to its native chemical composition and structure,
cellulose has weak tribopolarity in the triboelectric series.
The surfaces of cellulose nanofibers comprise numerous
hydroxyl groups. These groups can be regarded as suitable
sites for chemical modification or integration with active
materials to improve the output performances of TENGs.
Integration with carboxyl or nitro groups increases the
electron-withdrawing capability of cellulose nanofibers,
which therefore readily acquire negative charge. In contrast,
the introduction of methyl or amino groups enhances the
electron-donating performance of cellulose nanofibers,
which are consequently likely to be positively charged [24].
Tribopositive and tribonegative NFC with positive and nega-
tive surface charge densities of 62.5Cm™ and 85.8 uCm™>
were prepared by the attachment of methyl and nitro groups,
respectively [176]. A TENG assembly comprising paired tri-
bopositive and tribonegative NFC films produces an average
voltage output of 8V and a current output of 9 yA. Silver
nanoparticle-coated NFC/polyethylenimine (PEI) films can
be fabricated by crosslinking the NFC and PEI by glutaralde-
hyde activation and then coating the films with nanoparticles
[177]. The nanoscale surface and the increase in positive tri-
boelectric polarity enhance the triboelectric output of the
TENG.

To increase the porosity and interior surface area and
create a rougher surface, three-dimensional (3D) NFC aero-
gels were exploited by the lyophilization method to form
porous triboelectric materials that are useful in TENGs. The
output performance of the NFC aerogel-derived TENG is
improved by increasing the contact area and electrostatic
induction of the porous structure, resulting in the generation
of additional charge on the porous surface [178]. The perfor-
mance of the NFC aerogel TENG can be further improved by
integration with active materials using various strategies. The
integration of NFC with cellulose microfibers and silver pro-
duces a hierarchical nanostructure composite with antibacte-
rial activity for TENG (Figure 5(b)) [179]. Hybridization of
NFC with highly tribopositive materials—such as silica
fibers, human hair, and rabbit fur—enhances the triboelectric
output of the TENG [22]. Introducing novel chemical groups
with high electron donating or sucking functionality is an
efficient way of improving triboelectric output. The tribopo-
sitive polarity of an NFC aerogel can be enhanced by intro-
ducing amino groups to improve its electron-donating
ability by crosslinking the NFC with PEI (Figures 5(c) and
5(d)) [180] or subjecting the NFC to silanization using ami-
nosilane [178].

TENG performance can be further enhanced by design-
ing and patterning the structures of NFC-based bulk mate-
rials because NFC is easily processed. NFC has been
explored as a substrate or building block for the construction
of intrinsic structures by printing. The voltage output of an
all-printed NFC aerogel-based TENG with a 3D hierarchical
structure is nearly 175% of that of a TENG assembled by the
molding method (Figure 5(e)) [181]. A gear-like TENG can

be fabricated by integrating an NFC-based composite with
an EVA substrate, which is cut into a triangular columnar
body and attached as a tooth-shaped structure (Figure 5(f))
[177]; this 3D flexible space structure increases the frictional
contact area. A TENG assembled from three pairs of such
gear-like structures has a maximum open-circuit voltage of
286V.

NFC and NFCh are sustainable piezoelectric materials
and are used to fabricate PENGs. The NFC aerogel film was
coated with PDMS (Figure 5(g)) [54], which was subse-
quently inserted between two PDMS films and two alumi-
num foils to produce a flexible PENG (Figure 5(h)) [54].
The PENG produced a stable output signal under periodic
mechanical deformation. The electricity generated by the
PENG could directly power 19 blue light-emitting diodes
(LEDs) and charge a capacitor by up to 3.7V. A high-
strength TEMPO-oxidized NFC/molybdenum disulfide
nanosheet composite film with a longitudinal piezoelectric
constant of 31 pC/N was produced [182]. The composite
film-based PENG had a maximum output voltage of 4.1V
and a short-circuit current of 0.2 yA. NFCh has been used
directly or integrated with PVDF to produce films for PENGs
(Figures 5(i) and 5(j)) [183]. NFCh film-based PENGs have
an open-circuit output voltage of 22V and a short-circuit
current of 0.12 yA. The incorporation of NFCh into PVDF
results in the nucleation of 3 polymorphs in the composite
film, leading to an output voltage of 49V and a short-
circuit current of 1.9 yA.

In addition to their utilization in TENGs and PENGs,
NFC and NFCh have been used to construct NGs for harvest-
ing electricity from moisture and osmosis. Negatively and
positively charged NFC and positively charged NFCh have
been used as building blocks to fabricate aerogels with lay-
ered structures and oriented pores [184]. With the hydrophi-
licity and charged states, the aerogels can absorb moisture
and generate hydrated nanochannels. Open-circuit voltage
was obtained due to the streaming potential formed by a
dynamic balance of water absorption and evaporation.
Asymmetric ionic aerogels can be constructed from bilayer
structures with oriented microscale pores using oppositely
charged NFC building blocks (Figure 5(k)) [55]. When mois-
ture is absorbed, the dissociation and diffusion of ions within
the hydrated nanochannels induce the directional movement
of charge, producing an open-circuit potential of ~115mV
with a maximum short-circuit current of 45nA. To harvest
osmotic energy, TEMPO-oxidized NFC has been integrated
with graphene oxide (GO) nanosheets to form a composite
membrane (Figure 5(1)) [185]. The introduction of
TEMPO-oxidized NFC enlarges the channel, decreases the
energy barrier for ion transport, and provides space charge
between the pristine GO nanosheets to maintain the ion
selectivity. A power density of 4.19 Wm™ was achieved by
mimicking sea/river water conditions. Besides, a power den-
sity of 7.20 W m ™2 was obtained at 323 K.

3.1.2. BC-Derived NGs. BC is commercially available as a bio-
polymer nanofiber that can be purchased directly and is
therefore widely accepted by researchers as a raw material
for NGs. Generally, BC is disintegrated by various
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mechanical treatments and then regenerated or hybridized
with active materials to produce films or aerogels for NGs.
A flexible and transparent regenerated BC film was inte-
grated with copper foil to assemble an arch-shaped TENG
(Figure 6(a)) [186] that had an accumulative charge of
~8.1 uCm™? and a peak power density of ~4.8 mW m™, at a
load resistance of 1 MQ when a force of 16.8 N was applied.
To improve the dielectric constant and construct a micro-
nanostructure with a rough surface, the disintegrated BC
was integrated with dielectric BTO particles to form a com-
posite film (Figure 6(b)) [187], which was assembled with
PDMS. The as-obtained TENG had a maximum short-
circuit current of 21 yA, an open-circuit voltage of 181V,
and a transfer charge quantity of 76.7 nC. The disintegrated
BC was also hybridized with BTO nanoparticles and silver
nanowire for use as a conductive ferroelectric composite film
(Figure 6(c)) [188]. The as-produced film was utilized as a
positive triboelectric layer and a bottom electrode. The
electron-donating capability of the film was improved by
the poling process in a forward direction (Figure 6(d))
[188]. The as-assembled TENG produced an output voltage
of ~170V and a current of ~9.8 A under a compressive force
of 5kgf. The optimized output power density of the TENG
achieved ~180 yW cm >

BC can also be used as a flexible polymer matrix for inte-
gration with piezoelectric materials to produce PENGs. A
disintegrated BC was combined with piezoelectric BTO
nanoparticles to produce a composite film. The as-
assembled PENG (Figure 6(e)) [189] had an open-circuit
voltage of 14V and a short-circuit current density of
190nAcm™?.  The maximum power density was
0.64 W cm ™2, Because BC is thin and long and the BC net-
works were densely permeated with BTO nanoparticles, the
PENG was flexible and was able to produce a peak voltage
of 1.5 V. Vanadium-doped ZnO (V-ZnO) microflowers were
uniformly assembled in the BC film using an in situ synthesis
method (Figure 6(f)) [53]. A composite film containing fer-
roelectric V-ZnO was prerequisite for poling with a high
external voltage to enhance output performance. The as-
fabricated flexible PENG had an output voltage of 1.5V, a
current density of 80nAcm™>, and a power density of
60 nW cm ™

Hybrid triboelectric-piezoelectric NGs are fabricated by
integrating BC and NFC-based materials. A hybrid tribo/pie-
zoelectric NG was developed using a nitro-NFC film as the
triboelectric layer and a BC/BTO/multiwalled carbon nano-
tube composite film as the piezoelectric layer (Figure 6(g))
[190]. The TENG had an open-circuit voltage of 37V and a
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short-circuit current density of 1.23 uA cm ™2, and the PENG
had an open-circuit voltage of 22V and a short-circuit cur-
rent density of 220 nA cm™>. The outputs of the hybrid NG
reached 18 V and 1.6 4A cm ™, when a full-wave bridge diode
was used to integrate the two outputs.

3.1.3. CNC-Derived NGs. CNC can be used to fabricate com-
posites or transparent materials for NGs. CNC flakes were
used as dielectric fillers by directionally embedding them in
PDMS to prepare a composite film (Figure 7(a)) [191]. The
as-assembled TENG had an open-circuit voltage of ~350V
and a short-circuit current density of ~5uA cm™>. It exhib-
ited a 10-fold power increase compared to a pure PDMS-
derived TENG, under the same periodic compression
(Figures 7(b) and 7(c)) [191]. Wood-derived CNC as a tribo-
electric positive material was deposited on an indium tin
oxide (ITO) electrode to form a transparent friction layer/-

electrode assembly architecture (Figure 7(d)) [192]. A trans-
parent wind-driven TENG was fabricated by assembling two
CNC/ITO films and a FEP vibration film (Figures 7(e)-7(h))
[192]. The TENG was capable of generating 2 mW of power,
an output voltage of up to 130V, and a current of 15uA ata
wind speed of 20ms ™.

3.1.4. ES-CNF-Derived TENGs. ES-CNFs can be used as
porous nanofiber mats for TENGs. Owing to their intrinsic
biodegradability, chemical stability, ready processability,
and positive triboelectric polarity, electrospun cellulose ace-
tate nanofibers, which have a high specific surface area, were
used as a positive friction layer in TENGs [193]. The ES-
CNFs were distributed uniformly with an average diameter
of 418 nm. When integrated with a composite nanofiber
membrane, the as-assembled TENG with multilayered nano-
fibers produced plentiful triboelectric charges and can
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enhance the transfer rate and storage depth of the triboelec-
tric charges. Such TENGs can deliver a power density of
0.13 W m™? with an effective area of 9 cm” at a load of 30 MQ.

3.2. Protein Nanofiber-Derived NGs. Research into protein
nanofiber-based NGs lags behind the rapid advances in poly-
saccharide nanofiber-derived NGs. However, protein nanofi-
bers, especially those produced from silk fibers, have gained
significant attention in recent years owing to their ease of fab-
rication, abundance, sustainability, biocompatibility, biode-
gradability, and advantageous mechanical properties [30].
Because protein nanofibers are diverse, the structures and

properties of nanofiber-derived bulk materials differ mark-
edly, resulting in discrepancies in the performances of NGs.
Although collagen- and gelatin-derived nanofibers can be used
to fabricate NGs, current research on protein nanofiber-based
NGs mainly focusses on NFS- and ES-SNF-derived NGs. In
the subsequent sections, we will discuss recent advances in
the use of NFS and ES-SNFs for various NGs.

NES can be used directly to fabricate bulk materials for
the friction layers of TENGs. A 0.38 nm thick film was pro-
duced by integrating ribbon-like NFS with a regenerative silk
fibroin film and magnesium to construct an all-silk bio-
TENG (Figure 8(a)) [96]. The raw materials used in the
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TENG were biodegradable and biocompatible. The differ-
ences between the microstructures and work functions of
the NFS film and the regenerative silk fibroin film are benefi-
cial for increasing the output performance of the TENG. The
TENG displayed a maximum voltage of 41.6 V, a current of
0.5 uA, and a power density of 86.7 mW m ™.

NES has also been used to fabricate NGs for the genera-
tion of electricity from moisture. Positively charged cationic
NFS (~4nm thick) have been integrated with negatively
charged NFS to form asymmetric ionic aerogels
(Figures 8(b) and 8(c)) [194]. When faced with moist air,
hydrated and oppositely charged NFS serve as nanochannels
for ion transportation and generate ion gradients. Such aero-
gels can create an optimal open-circuit voltage of up to
121 mV in humid ambient air.

For osmotic energy harvesting, an NFS membrane play-
ing as a screening layer that dominates the ion transport
was integrated with an anodic aluminum oxide substrate
membrane. An as-generated nanofluidic membrane with
asymmetric geometry and charge polarity illustrated a maxi-
mum power density of 2.86 W m™?, when mixing the artificial
seawater and river water at basic conditions (Figure 8(d))
[56]. To further improve the power density, NFS was inte-
grated with GO to construct a multilayer GO-NFS-GO
nacre-mimetic membrane as an osmotic power generator
(Figure 8(e)) [195]. The NFS mainly served as a nanoscale
lock to prevent the free slip of the GO sheets. The intrinsic
structures of composite membranes and the synergistic
effects of the building blocks enhance interfacial bonding
and endow the membranes with long-term stability in saline.
The 2D nanofluidic channel configuration decreases resis-
tance to ion transport and offers plenty of storage spaces
for ions. An as-generated NG comprising such an NFS-
based membrane produced an output power density of up
to 5.07 W m™> when mixing seawater and river water.

ES-SNFs have attracted attention as candidates for the
fabrication of porous nanofiber membranes. ES-SNF mem-
branes have rougher surfaces than cast silk films. ES-SNFs
with diameters of 100-200 nm were paired with a PI film to
assemble a TENG (Figure 8(f)) [51], which had a triboelectric
surface charge density of up to 1.86 uCm™ and an instanta-
neous electric power of 4.3mW m ™2 at 5MQ (Figures 8(g)
and 8(h)) [51]. The ES-SNFs were also paired with other elec-
trospun nanofibers to construct an all-fiber TENG. Gener-
ally, ES-SNF films are used as electron donor layers. When
paired with an MXene nanosheet and poly(vinyl alcohol)
electrospun nanofibers, an as-fabricated all-electrospun
nanofiber TENG exhibits an instantaneous maximum peak
power density of 1087.6 mWm™>, at a load resistance of
5MQ (Figure 8(i)) [196]. Owing to its all-fiber structure,
the TENG is flexible and foldable and illustrates structure
stability under repeated mechanical deformation. All-fiber
hybrid triboelectric-piezoelectric nanogenerators have been
created by integrating ES-SNFs with electrospun piezoelec-
tric nanofibers. The hybrid NGs were generated by electro-
spinning silk fibroin and PVDF nanofibers on conductive
fabrics [197]. A cloth-shaped device (Figures 8(j) and 8(k))
[197], which had mechanical flexibility and desirable wearing
comfort, was obtained by pairing the two components. The
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voltage, short-circuit current, and power density of the
hybrid NG reached 500V, 12uA, and 0.31 mW cm 2,
respectively.

4. Conclusion and Outlook

Recent extensive research into BPNFs has demonstrated
their considerable potential for use in NGs. BPNFs are
derived from abundant and renewable sources and inherit
most of the advantages of biological materials, such as advan-
tageous mechanical properties, biocompatibility, and biode-
gradability. The distinctive structures and properties of
BPNFs make them useful for a variety of NGs. BPNEF-
derived TENGs and PENGs are largely employed. Moreover,
BPNFs have also been used in the development of NGs for
generating electricity from moisture and osmosis.

In the present review, we have discussed how to obtain
nanofibers from biopolymers such as polysaccharides and
proteins and how to utilize them to produce a variety of
NGs. Various strategies—including exfoliation from biologi-
cal materials, biosynthesis, and electrospinning—have been
developed to fabricate BPNFs with diverse structures and
properties. The unique 1D nanofiber structures and physi-
cal/chemical functionalities of BPNFs enable the production
of as-fabricated bulk materials with exceptional performance
improvements for NGs. With regard to the fabrication of NG
devices, BPNFs can be used in the following ways: (1) direct
use, chemical modification, or integration with active mate-
rials to produce films, mats, membranes, or aerogels for
NGs; (2) fabricating flexible, foldable, and transparent bulk
materials for the development of functional NGs; (3) con-
structing bulk materials with tailored characteristics includ-
ing pore size, pore structure, roughness, nanofiber
alignment and patterning, nanofiber/matrix composite struc-
ture, and complex architecture for optimal NG performance;
and (4) fabricating numerous bulk materials for NG develop-
ment using diverse types of BPNFs as building blocks.

Tremendous effort has been devoted to the assembly of
BPNF-derived NGs for various applications. However, the
further optimization of the performances and functionalities
of NGs faces certain challenges. These include the following:
(1) the mass production of BPNFs using simple, cost-effec-
tive, and green routes, to provide abundant building blocks
for NGs; (2) the development of more effective ways to chem-
ically modify the active groups of BPNFs by introducing
more functional groups to modulate their performance; (3)
integrating BPNFs with active components and controlling
their surface/interface interactions; (4) tailoring the hierar-
chical structures of bulk materials from the viewpoint of mul-
tiple scales to optimize the architecture and output
performance of the NGs; (5) fabricating more types of BPNFs
and BPNEF-derived bulk materials for various types of NGs;
(6) focusing greater attention on the structural similarities
and differences among the various types of BPNFs; (7) focus-
ing greater attention on the structural and performance
advantages of BPNFs and BPNF-derived bulk materials dur-
ing NG assembly and application; and (8) further designing
the chemistry/structure of BPNF-derived materials to create
more newly emerging NGs. An exciting future lies ahead
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for BPNF-derived NGs once these critical issues have been
fully addressed.
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