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Abstract

The transcription factor ThPOK has been shown to be required and sufficient for CD4+CD8− 

thymocyte generation, yet the mechanism through which ThPOK orchestrates CD4 helper T cell 

lineage differentiation remains unclear. Here we utilized reporter mice to track expression of 

transcription factors in developing thymocytes. Distal promoter-driven Runx3 (Runx3d) 

expression was restricted to MHC class I-selected thymocytes. In ThPOK-deficient mice, Runx3d 

expression was de-repressed in MHCII-selected thymocytes, contributing to their redirection to 

the CD8 T cell lineage. In the absence of both ThPOK and Runx, redirection was prevented and 

cells potentially belonging to the CD4 lineage, presumably specified independently of ThPOK, 

were generated. Our results suggest that MHCII-selected thymocytes are directed towards the CD4 

lineage independently of ThPOK, but require ThPOK to prevent Runx-dependent differentiation 

towards the CD8 lineage.

INTRODUCTION

Development of αβ T cells requires rearrangement of the Tcra and Tcrb loci and appropriate 

signals transduced via interactions between T cell receptors (TCR) on CD4+CD8+ double 

positive (DP) thymocytes and peptide in the context of major histocompatibility complex 

(MHC) molecules on thymic stromal cells. Only a small proportion of DP thymocytes is 

selected for differentiation into mature cells that home to peripheral secondary lymphoid 

organs. This positive selection process is accompanied or followed by coordinated activation 

and/or repression of genes that program differentiation of the selected thymocytes to specific 

lineages of mature T cells. CD4+ helper T cells and CD8+ cytotoxic T cells comprise a 
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majority of mature αβ T lymphocytes in mice and humans. After positive selection, DP cells 

expressing MHC class I- or MHC class II-restricted TCRs undergo differentiation into CD8+ 

and CD4+ lineage T cells, respectively; this differentiation involves transcriptional down-

regulation of one or the other co-receptor1. CD4 expression is terminated in CD4−CD8+ 

single positive (CD8SP) thymocytes through activation of the Cd4 silencer, a negative cis-

regulatory element in the Cd4 locus; Cd4 silencing is subsequently maintained by epigenetic 

mechanisms2,3. CD8 expression is transiently down-regulated in both MHCI- and MHCII-

restricted thymocytes and is selectively reactivated in MHCI-restricted CD8SP cells through 

stage-specific enhancers4. In addition to Cd4, Cd8a and Cd8b, other genes are selectively 

activated or repressed in each mature T cell lineage, and a major goal has been to elucidate 

how lineage-specific gene regulation is coordinated.

During early hematopoiesis, a balance between distinct lineage-specific transcription factors 

determines fates of mature cells derived from common multipotent progenitors5. Similar 

gene regulatory networks may regulate the CD4 versus CD8 lineage decision. The C2H2 

type zinc finger transcription factor ThPOK (http://www.informatics.jax.org/javawi2/servlet/

WIFetch?page=markerDetail&key=18709), encoded by the Zbtb7b gene, is required and 

sufficient for generation of CD4SP thymocytes following positive selection6,7. hd/hd 

(helper deficient) mice, which harbor a mutation in ThPOK, lack CD4+ helper T cells, and 

thymocytes selected by MHCII are redirected to the CD8+ T cell lineage. Forced expression 

of ThPOK results in redirection of MHCI restricted thymocytes to the CD4+ T cell 

lineage6,7.

Whereas ThPOK exerts a dominant influence over the differentiation of CD4SP thymocytes, 

it is not clear if differentiation of CD8SP thymocytes requires such a pivotal factor or occurs 

by default if ThPOK is not up-regulated. We previously identified the Runx family of 

transcriptional regulators as crucial for Cd4 gene silencing associated with differentiation of 

the CD8+ cytotoxic T cell lineage8. Among the three Runx proteins that form heterodimers 

with the common subunit CBFβ (http://www.informatics.jax.org/javawi2/servlet/WIFetch?

page=markerDetail&key=15686), Runx3 (http://www.informatics.jax.org/javawi2/servlet/

WIFetch?page=markerDetail&key=45178) is the primary mediator of heritable Cd4 

silencing during development of the CD8SP lineage, and Runx1 (http://

www.informatics.jax.org/javawi2/servlet/WIFetch?page=markerDetail&key=45176) also 

contributes to partial Cd4 silencing in the absence of Runx3 (ref. 8,9). Conditional 

inactivation of both Runx1 and Runx3 at the DP stage of thymocyte differentiation resulted 

in a complete loss of CD8SP thymocytes, although generation of CD4SP thymocytes was 

still observed10. Runx3 protein is detected in CD8SP but not CD4SP thymocytes, even 

though Runx3 mRNA was up-regulated in both lineages following positive selection10,11. 

These findings suggest that Runx3 expression is regulated at least in part via post-

transcriptional mechanisms. Runx transcripts are initiated at two distinct sites; Runx3 

expression from the distal promoter is detected exclusively in CD8SP thymocytes, whereas 

CD4SP cells express only the proximal promoter-derived transcript that is not sufficient for 

protein synthesis10. These results, together with our previous finding that Runx1 

inactivation alone exerts little influence on development of the CD8+ lineage10, suggest that 

the CD8+ lineage-specific requirement for Runx function is satisfied primarily by Runx310, 
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and that activation of the Runx3 distal promoter (designated here as Runx3d) is a key event 

required for CD8 lineage differentiation of MHCI-restricted thymocytes. Even though it is 

not expressed in naïve peripheral CD4+ T cells, Runx3 protein is up-regulated in interferon 

(IFN)-γ–producing T helper type 1 (TH1) cells, where it contributes to repression of the 

interleukin (IL)-4 (Il4) gene, but the mechanism for its regulation in these cells is not 

known12,13.

ThPOK expression in developing thymocytes is regulated by a cis-acting silencer element 

required to restrict ThPOK expression to the CD4+ lineage14,15. In the absence of this 

silencer, ThPOK is prematurely expressed in DP thymocytes, and all positively selected 

thymocytes differentiate into CD4+ lineage cells14. The ThPOK silencer is bound by Runx 

complexes, and ThPOK is prematurely expressed in pre-selection DP thymocytes in the 

absence of both Runx1 and Runx3 (ref. 14). This result implies that ThPOK activity is 

required for diversion of MHCI-selected Runx-deficient thymocytes to the helper T cell 

lineage, and suggests that Runx proteins continue to suppress ThPOK expression following 

positive selection of MHCI-restricted thymocytes. However, a requirement for Runx 

complexes in lineage-specific ThPOK silencing has been disputed14,15.

To clarify the gene regulatory network governing lineage determination of αβ T cells, we 

generated knock-in reporter strains that facilitate single cell analysis of ThPOK and Runx3d 

expression in MHCI- and MHCII-selected thymocytes. By analyzing these reporter mice, we 

show here that ThPOK prevents up-regulation of Runx3 and other CD8 lineage-specific 

genes. We provide genetic evidence suggesting that ThPOK stabilizes the fate of MHCII-

selected thymocytes that would otherwise be diverted to the CD8SP lineage due to 

constitutive Runx function. We also show that ThPOK is not required for the appearance of 

CD4SP cells in an environment in which MHCII-specific thymocytes are positively 

selected; this latter finding suggests that other factors act upstream of ThPOK to direct CD4 

expression following positive selection.

RESULTS

Runx3d is required for Runx3 protein expression in CD8+ T cells

To visualize thymocytes expressing Runx3d mRNA, we generated a reporter allele 

(Runx3dYFP) by replacing the first coding exon utilized by the Runx3 distal promoter with 

the yellow fluorescent protein (YFP) coding sequence (Supplementary Fig. 1a, online). In 

accordance with previous analyses of Runx protein and mRNA expression10, YFP 

expression was detected in CD8+ T cells, but not in CD4+ T cells or B220+ cells in 

peripheral blood lymphocytes from Runx3dYFP/+ mice (Supplementary Fig. 1b, online). To 

determine whether Runx3 distal promoter activity is required for Runx3 protein expression 

in CD8+ T cells, we generated homozygous Runx3dYFP/YFP mice, in which distal promoter-

derived Runx3 expression was eliminated. Whereas germline deletion of both proximal 

promoter- and distal promoter-derived Runx3 results in neonatal lethality in the 129 or 

C57BL6 genetic background16,17, Runx3dYFP/YFP mice were viable and fertile, and showed 

no gross abnormality (data not shown). Runx3 protein was almost undetectable in CD8+ T 

cells, and was markedly reduced in T helper type (TH1)-polarized activated CD4+ T cells 

from Runx3dYFP/YFP compared to Runx3dYFP/+ mice (Fig. 1a and Supplementary Fig. 1c,d, 
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online). Runx1 was up-regulated in Runx3-deficient CD8+ T cells from both Runx3F/FCd4-

cre+ and Runx3dYFP/YFP mice (Fig. 1a and Supplementary Fig. 1d, online). This result 

indicates that most of Runx3 protein is derived from the distal promoter-driven transcript 

both in CD8+ T cells and in TH1-polarized CD4+ T cells, and that only a small amount of 

Runx3 protein is expressed from the proximal promoter in T cells. In CD8+ T cells from 

Runx3dYFP/YFP mice, Cd4 silencing was incomplete and there was no up-regulation of 

CD103 (integrin αE) expression, which was previously shown to be dependent on Runx3 

(ref. 18) (Fig. 1b,c). Thus, Runx3 expression from the distal promoter is required for Cd4 

silencing and CD103 expression in CD8SP thymocytes.

To investigate regulation of Runx3d expression in developing thymocytes, we next 

examined YFP expression in a series of intermediate thymocyte subsets defined by CD4, 

CD8, TCRβ, CD69 and CD24 (HSA) expression (Fig. 2a and Supplementary Fig. 2a,b, 

online). YFP+ cells were not detected in pre-selected CD69− DP thymocytes (data not 

shown). Following positive selection, MHCI- and MHCII-selected thymocytes both transit 

through an intermediate CD69+HSAhiTCRβintCD4+CD8lo (referred to hereafter as 

CD4+CD8lo) stage (Supplementary Fig. 2c, online) 19–25. At this stage, we observed 2–5 % 

of cells expressing YFP (Fig. 2a and Supplementary Fig. 2d, online). These YFP+ cells were 

absent in Runx3dYFP/+ mice on a B2m−/− background, indicating that Runx3d transcription is 

activated only in positively selected MHCI-restricted thymocytes (Supplementary Fig. 2d, 

online). Following the CD4+CD8lo stage, MHCI-selected thymocytes become 

CD4+CD8+CD69+TCRβhi, and such cells are absent in mice lacking β2-microglobulin, an 

essential component of MHCI molecules (B2m−/−) (Supplementary Fig. 2e, online). In 

contrast, MHCII-restricted thymocytes continue to down-regulate surface CD8 expression to 

become CD4+CD8− thymocytes before down-regulation of HSA. A majority of 

CD4+CD8+CD69+TCRβhi thymocytes expressed YFP, and cells with the highest surface 

TCRβ expression were brightest for YFP (Fig. 2a). Mature HSAlo/− CD8SP thymocytes 

expressed a uniformly high amount of YFP (Fig. 2a). YFP expression was not detected in 

the MHCII-restricted CD4+CD8−HSAhi population. These results indicate that Runx3d-YFP 

expression is highly restricted to MHCI-selected thymocytes, that it occurs largely following 

transit from the CD4+CD8lo stage, and that it specifically marks developing CD8SP 

thymocytes.

ThPOK expression specific to MHCII-restricted thymocytes

To visualize ThPOK expression in individual differentiating thymocytes, we generated a 

green fluorescent protein (GFP) knock-in allele of ThPOK (Zbtb7bGFP) by replacing the 

entire exon 2 and exon 3 with GFP cDNA (Supplementary Fig. 3a, online). In the periphery, 

all CD4+ T cells expressed high amounts of GFP, and a small proportion of CD8+ T cells 

expressed GFP, although in approximately 10-fold lower quantities (Supplementary Fig. 4a, 

online)6,7. A large proportion of B220+ cells also expressed low amounts of GFP 

(Supplementary Fig. 4a, online). In the thymus, GFP+ cells were not detected in CD69− pre-

selected DP thymocytes (data not shown). Following positive selection, approximately half 

of the CD4+CD8lo cells and all mature CD4SP thymocytes expressed high quantities of GFP 

(Fig. 2b). In the B2m−/− background, a larger proportion of the CD4+CD8lo thymocytes 

expressed GFP due to enrichment of MHCII-restricted cells (Fig. 2c). At the CD4+CD8lo 
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stage, distinct GFPhi and GFPlo populations were observed (Fig. 2b). We noted slightly 

higher TCRβ expression in GFPhi cells, suggesting that MHCII-selected thymocytes 

undergo maturation while up-regulating ThPOK during the CD4+CD8lo stage (Fig. 2b). 

Thus, expression of ThPOK occurs earlier in differentiation than that of Runx3d. Consistent 

with little GFP expression in peripheral CD8+ T cells, only a small subset of MHCI-selected 

thymocytes expressed low amounts of GFP. In Zbtb7bGFP/+H2-Ab1−/− mice, which lack 

MHCII molecules, approximately 5% of CD4+CD8lo, CD4+CD8+CD69+TCRβhi and 

CD4lo/−CD8+ populations expressed low quantities of GFP (Fig. 2c and data not shown). 

Approximately 4% of CD4+CD8+CD69+TCRβhi and CD4lo/−CD8+ thymocytes co-

expressed Runx3d-YFP and low amounts of ThPOK-GFP (Fig. 2d), but we could not detect 

cells expressing high amounts of both reporters. Thus, strong expression of ThPOK and 

Runx3d in positively selected thymocytes may be mutually exclusive.

We also generated mice with a null allele of ThPOK (Supplementary Fig. 3b, online) and 

examined Zbtb7bGFP/− mice that express no ThPOK protein. Zbtb7bGFP/− mice contained 

very few mature HSAlo/− CD4SP cells, but the total number of TCRhiHSAlo/− thymocytes 

remained normal (Supplementary Fig. 4b, online). This phenotype is similar to that found in 

hd/hd mice26. As GFP expression in the CD69+HSAhiCD4+CD8lo/− subpopulations was 

comparable between Zbtb7bGFP/+ mice and Zbtb7bGFP/− mice, ThPOK up-regulation during 

positive selection appeared unlikely to be dependent on ThPOK expression itself (Fig. 3a). 

We observed a substantial amount of GFP expression in approximately two-thirds of CD8SP 

thymocytes and peripheral CD8+ T cells in Zbtb7bGFP/− mice (Fig. 2e). GFP expression in 

CD8+GFP+ T cells in the periphery was approximately 3-fold lower compared to that in 

CD4+ T cells (data not shown). All CD8SP thymocytes in Zbtb7bGFP/−B2m−/− mice 

expressed GFP, indicating that they were MHCII-restricted cells redirected from the CD4SP 

lineage (Supplementary Fig. 4c). These findings suggest that MHCII-restricted positive 

selection is required and sufficient to turn on high ThPOK expression.

ThPOK blocks Runx3 expression

To determine whether there is cross regulation of ThPOK and Runx3 during thymocyte 

lineage specification, we examined expression of the ThPOK and Runx3d reporters in the 

absence of one or the other factor. ThPOK-GFP expression was unaffected by disruption of 

the distal promoter-derived Runx3 transcript or by transgenic overexpression of Runx3 (data 

not shown). In contrast, Runx3d-YFP was ectopically expressed in MHCII-restricted 

thymocytes in ThPOK-deficient mice, suggesting that ThPOK acts as an upstream negative 

regulator of Runx3 expression (Fig. 3b). Approximately 30–40% of CD4+CD8− HSAhi 

thymocytes expressed Runx3d-YFP in the absence of ThPOK; these YFP+ cells expressed 

the highest amount of TCRβ (Fig. 3b). ThPOK-GFP was up-regulated despite the absence of 

ThPOK protein in MHCII-restricted CD4+CD8−HSAhi thymocytes, which were present only 

in MHCII–sufficient mice and were eventually redirected to the CD8SP lineage (Fig. 3a, c). 

These findings suggest that Runx3d-YFP de-repression is an early indication of lineage 

redirection of ThPOK-deficient CD4SP “wannabe” cells to the CD8+ T cell lineage.
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Lineage redirection due to a hypomorphic ThPOK allele

Our data imply that ThPOK expression following MHCII-restricted positive selection 

prevents expression of Runx3d. However, our analysis of ThPOK-GFP expression showed 

that a small proportion of CD8+ T cells also expressed ThPOK but differentiated into the 

cytotoxic lineage with normal Runx3d-YFP expression. This observation suggests that there 

is a threshold level of ThPOK expression that is required for helper T cell lineage 

commitment. To study the effect of reduced ThPOK quantities, we employed a 

hypomorphic Zbtb7b allele, in which the Pgk-neor selection cassette was left in intron 1 of 

the Zbtb7b locus (Zbtb7bFN allele) (Supplementary Fig. 3, online). CD4+CD8− mature 

thymocytes and peripheral T cells were still present in Zbtb7bFN/− mice even though ThPOK 

expression was reduced by 80% compared to control CD4+ T cells as determined by q-RT-

PCR, by ThPOK protein expression, and by GFP expression from a Zbtb7bGFP-neo allele 

(the Zbtb7bGFP allele with the Pgk-neor cassette in the same context as in the Zbtb7bFN 

allele) (Fig. 4a,b and Supplementary Fig. 3, online). As compared to Zbtb7b+/+, Zbtb7bFN/+, 

Zbtb7b+/−, or Zbtb7bFN/FN mice, Zbtb7bFN/− mice had fewer CD4+CD8− cells and more 

CD4−CD8+ cells in HSAlo/− mature thymocyte and peripheral T cell populations, which 

resulted in an inverted CD4/CD8 ratio (Fig. 4c). CD4−CD8+ mature thymocytes and 

peripheral T cells, as well as CD4SP cells, were present in Zbtb7bFN/−B2m−/− mice, 

indicating that some MHCII-selected cells were redirected to the CD8SP lineage in the 

presence of an attenuated amount of ThPOK (Fig. 4c). In addition to cells expressing CD4 

or CD8, we observed atypical populations of mature thymocytes and T cells with a 

CD4+CD8+ phenotype in Zbtb7bFN/− and Zbtb7bFN/−B2m−/− mice, suggesting that a reduced 

amount of ThPOK during thymocyte development affected the CD4 versus CD8 lineage 

decision (Fig. 4c). These DP cells and a fraction of CD4−CD8+ T cells expressed GFP in 

Zbtb7bFN/GFP mice, consistent with their being MHCII-restricted (Supplementary Fig. 5a, 

online). These results suggest that during CD4SP thymocyte development a threshold 

amount of ThPOK expression is needed to mediate CD4SP thymocyte differentiation, and 

that when ThPOK amounts fall below this threshold, MHCII-restricted cells are diverted to a 

CD8 lineage fate.

Unstimulated peripheral CD4+ T cells do not normally express Runx3 protein. However, 

peripheral CD4+CD8− T cells from Zbtb7bFN/− mice constitutively expressed Runx3, and 

CD4+CD8− T cells from Zbtb7bFN/−Runx3dYFP/+ mice expressed YFP (Fig. 4d and 

Supplementary Fig. 5b, online). Runx3 protein expression was higher in CD4+CD8+ cells, 

and GFP expression from the Zbtb7bGFP-neo allele, which reflects ThPOK mRNA 

expression from the Zbtb7bFN allele, was inversely correlated with Runx3 protein 

expression (Fig. 4d and Supplementary Fig. 5, online). These results indicate that a high 

quantity of ThPOK is required to block Runx3 up-regulation and diversion of MHCII-

restricted thymocytes to the CD8SP lineage.

CD4SP cells can be generated in the absence of ThPOK

Our data indicated a correlation between Runx3 de-repression and redirection of MHCII-

restricted thymocytes to the cytotoxic lineage. To determine whether Runx complexes are 

required for lineage redirection occurring in the absence of ThPOK, we generated mice 

doubly deficient for ThPOK and CBFβ. We used the Lck-cre transgene to conditionally 
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inactivate Cbfb because its later inactivation in DP thymocytes with Cd4-cre allows 

generation of CD8+ mature thymocytes (which de-repress CD4)12, most likely due to long 

half-life of the CBFβ protein. Conditional inactivation of Cbfb with Lck-cre allows 

thymocytes to proceed through beta selection and phenocopies loss of both Runx1 and 

Runx3 at the DP stage. HSAhiCD69+ and HSAhiTCRβhi positively selected thymocytes 

were reduced by approximately 5-fold in Lck-cre+CbfbF/F mice and Lck-

cre+CbfbF/FZbtb7bGFP/− mice as compared to littermate control or ThPOK-deficient mice 

(Fig. 5a,b). Similar to our previous observation in Runx1F/FRunx3F/FCd4-cre+ mice10, 

CD4−CD8+ mature thymocytes with intact CD4 silencing, that had escaped Cre-mediated 

inactivation of Cbfb, were present in Lck-cre+CbfbF/F mice. Although almost all of the 

mature thymocytes were redirected to the CD8SP subset in Lck-cre+ Cbfb+/+Zbtb7bGFP/− 

mice, a majority of the mature HSAlo thymocytes in Lck-cre+ CbfbF/FZbtb7bGFP/− mice 

were CD4+CD8− and were not redirected to the CD8 lineage (Fig. 5a). We also observed a 

CD4+CD8− T cell population not redirected to the CD8 lineage in lymph nodes of Lck-

cre+CbfbF/FZbtb7bGFP/− mice (Fig. 5a). The number of CD4+CD8− thymocytes and 

peripheral T cells were reduced compared to wild-type mice but were similar in Lck-

cre+CbfbF/FZbtb7bGFP/+ and Lck-cre+CbfbF/FZbtb7bGFP/− mice (Fig. 5b). We do not believe 

that these cells represent a rare population of unconventional CD4SP thymocytes, as iNKT 

cells do not develop in the absence of Runx complexes27 and Foxp3+ regulatory T cells are 

severely reduced in both CBFβ-deficient mice and ThPOK-deficient mice (unpublished 

results). In addition, CD40L (CD154) was up-regulated upon stimulation of CD4+ T cells 

lacking both transcription factors, consistent with their being helper lineage cells 

(Supplementary Fig. 6, online). Thus these findings indicate that Runx complexes are 

required for redirection of MHCII-restricted thymocytes towards the CD8SP lineage in the 

absence of ThPOK, and ThPOK is not required for CD4 expression in mature MHCII-

restricted thymocytes and CD4+ peripheral T cells.

ThPOK represses genes specific for the CD8SP lineage

The finding of Runx3d de-repression in ThPOK-deficient MHCII-restricted thymocytes 

raises the possibility that other CD8+ lineage-specific genes may also be de-repressed in 

these cells. To assess this possibility, we compared gene expression between 

CD4+CD8−HSAhiGFP+ thymocytes from Zbtb7bGFP/− and Zbtb7bGFP/+ mice. qRT-PCR 

analysis showed that Zbtb7bGFP/− cells expressed significantly higher amounts of transcripts 

that are normally expressed in the CD8SP lineage of wild-type mice, including Cd8a, Itgae, 

Nkg7, Cd160 and Prf1 (Fig. 6a). In addition, unlike wild-type CD4+ T cells, a majority of 

Zbtb7bFN/− CD4+ T cells produced IFN-γ when stimulated with anti-CD3 and anti-CD28 in 

the absence IL-12 (Fig. 6b). Expression of the CD8 lineage-specific IFN-γ–regulating 

transcription factor Eomes was significantly elevated in Zbtb7bFN/− compared to wild-type 

CD4+ T cells (Fig. 6c). These findings suggest that a high amount of ThPOK expression is 

required during development of CD4+ T cells to block the CD8SP lineage-specific gene 

expression program.
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Discussion

Despite extensive effort over the past two decades, the mechanism by which DP cells 

undergoing positive selection commit to either the CD4+ or CD8+ lineage is not yet 

understood. The discovery of the hd mouse, which harbors a mutation in the Zbtb7b gene 

that encodes ThPOK, clearly demonstrated that positive selection could occur independently 

of lineage commitment26,28. Subsequent studies have suggested that ThPOK serves as a 

“master regulator” that directs the differentiation of helper T cells6,7. This conclusion was 

based on findings that forced expression of ThPOK redirected MHCI-selected thymocytes to 

the CD4+ lineage, and that MHCII-selected cells adopted the CD8+ lineage fate in the 

absence of functional ThPOK. Furthermore, a defect in a Runx-dependent silencer within 

the Zbtb7b gene resulted in de-repression of ThPOK in DP cells and in redirection of MHCI-

selected thymocytes14. Here we showed that ThPOK is up-regulated in positively selected 

CD4+CD8lo thymocytes before induction of Runx3 in cells destined to become CD8+ T 

cells, that ThPOK represses expression of Runx3 in MHCII-selected cells transiting from the 

CD4+CD8lo to the CD4+CD8− stage, and, intriguingly, that MHCII-selected thymocytes can 

become CD4SP cells even in the absence of ThPOK and, hence, may be specified to the 

helper lineage independently of ThPOK. These results argue that ThPOK may not be a 

“master regulator” but rather that it reinforces the CD4 lineage decision, at least in part by 

repressing Runx3 and thus preventing cells from expressing CD8+ lineage-specific genes.

Among the three Runx proteins, Runx3 is the only one specifically expressed in the CD8 

lineage, where it is transcribed from its distal promoter. We previously demonstrated that 

conditional inactivation of Runx3 resulted in de-repression of the Cd4 gene in CD8 lineage 

T cells, but not in loss of CD8SP thymocytes or in redirection of MHCI-restricted 

thymocytes to the CD4SP lineage 10. This is most likely explained by functional 

redundancy achieved upon compensatory up-regulation of Runx1, and, accordingly 

inactivation of both Runx1 and Runx3 in DP thymocytes resulted in complete loss of CD8 

lineage cells and in lineage redirection10,14. The results thus imply that, in the absence of 

genetic manipulation, activation of the Runx3 distal promoter is critical for initiation of 

CD8SP development. In the current study, we showed that ThPOK suppresses Runx3d 

expression in MHCII-selected cells. Following positive selection, a large proportion of 

MHCII-restricted thymocytes within the CD4+CD8lo population expressed the ThPOK-GFP 

reporter, but the Runx3d-YFP reporter was not expressed by MHCI-restricted thymocytes 

until they differentiated further. ThPOK-deficient MHCII-restricted thymocytes, in contrast, 

de-repressed Runx3d after they up-regulated ThPOK-GFP reporter expression in 

CD4+CD8lo/− subsets. This observation suggests that CD4+ T cell differentiation requires 

high ThPOK expression that is initiated prior to Runx3 up-regulation. In the presence of 

insufficient amounts of ThPOK, MHCII-restricted thymocytes fail to block Runx3 

expression and are redirected to the CD8SP lineage. These findings suggest that Runx3d 

transcription can be activated regardless of MHC restriction but is normally blocked by 

ThPOK in a CD4+ lineage-specific manner. Analysis of regulation of the Runx3 distal 

promoter may clarify the potential cross regulation between these two transcription factors.

In mice lacking both ThPOK and Runx complexes, lineage redirection of MHCII-restricted 

CD4SP cells no longer occurred, suggesting that the CD4 lineage can be specified even in 
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the absence of ThPOK. Consistent with this interpretation, in preliminary studies we found 

that CD40L (CD154), which is expressed on the surface of wild-type activated CD4+ but not 

CD8+ T cells, was up-regulated in CD4+CD8− T cells lacking both ThPOK and CBFβ. This 

result appears at first to be inconsistent with observations of previous studies on lineage 

regulation by ThPOK and Runx. For example, de-repression of ThPOK in the absence of 

Runx complexes in DP cells resulted in diversion of MHCI-restricted cells to the CD4+ 

lineage14. However, this effect was not demonstrated to be dependent on ThPOK. Similar 

lineage diversion observed upon targeted deletion of the ThPOK silencer may have resulted 

in higher-than-normal amounts of ThPOK in MHCI-selected cells; this elevated ThPOK 

expression may thus have effectively phenocopied forced ThPOK expression in transgenic 

mice, and may have bypassed the transcriptional mechanisms that normally precede ThPOK 

up-regulation during CD4 lineage specification14.

Our results therefore suggest that signals initiated in DP thymocytes upon TCR interaction 

with peptide-loaded MHCII molecules specify differentiation to the CD4+ lineage prior to 

the activity of ThPOK, which is expressed in this lineage upon release of its silencing and, 

possibly, activation of lineage-restricted positive regulatory elements14. The signals and 

factors involved in specification of the CD4+ lineage and in induction of ThPOK remain to 

be defined. GATA3 another transcription factor known to be required for the differentiation 

of CD4+ lineage cells, is up-regulated earlier than ThPOK, at the CD69+TCRlo DP stage29. 

In the absence of GATA3, MHCII-selected thymocytes are arrested at the CD4+CD8lo 

stage30. GATA3 or other unknown CD4 specification factors may be required for ThPOK 

up-regulation, although a GATA3 consensus binding sequence in the ThPOK silencer 

appears to be dispensable15.

These findings are consistent with the notion that there is reciprocal regulation of ThPOK 

and Runx complexes. Runx1 and Runx3 are required for ThPOK silencing in DP cells, 

although their role in ThPOK regulation following positive selection remains unclear. 

Specific expression of Runx3 in the CD8SP lineage raises the possibility that ThPOK 

silencing is maintained by Runx3 in MHCI-restricted thymocytes, and that ThPOK silencing 

is ‘released’ in MHCII-selected thymocytes that do not express Runx3. However, as ThPOK 

up-regulation in MHCII-selected thymocytes occurs earlier than Runx3 up-regulation in 

MHCI-selected thymocytes, it is unlikely that Runx3 determines lineage-specific ThPOK 

expression. Alternatively, it is possible that Runx1 may modulate ThPOK silencer activity 

following positive selection signals either by acting alone or in cooperation with other 

CD4SP specifying factors, such as GATA3. Indeed it has been demonstrated that Runx and 

GATA factors potentially interact with each other and synergistically regulate blood cell 

lineage decisions in Drosophila31,32.

The roles of ThPOK and Runx factors in the helper versus cytotoxic T cell lineage decision 

appear to be asymmetric. Whereas ThPOK represses Runx3 expression following positive 

selection, the Runx proteins do not appear to prevent ThPOK expression except at the DP 

stage. In contrast to the effect of forced expression of ThPOK, transgenic overexpression of 

Runx proteins fails to redirect MHCII-specific cells to the CD8 lineage. Therefore, 

following induction of ThPOK in CD4 lineage thymocytes, its expression appears to become 

resistant to Runx-mediated repression. This may be due to epigenetic changes or to active 
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inhibition of the repressive effect of Runx complexes, which have been reported to remain 

associated with the ThPOK silencer even in CD4+ lineage cells14.

ThPOK is likely to function not only to repress Runx3 expression, but also to repress other 

factors involved in cytotoxic lineage commitment or to insulate genes involved in CD4+ 

lineage commitment from the effects of Runx expression. Thus, in the absence of ThPOK, 

not only Runx proteins but also other ThPOK target genes are likely involved in the 

diversion to the CD8+ lineage. Following intrathymic differentiation, ThPOK and Runx3 

protein can be co-expressed in activated peripheral CD4+ T cells under TH1 polarizing 

conditions12,13 (data not shown). The mechanism which permits Runx3 expression in 

mature cells in the presence of ThPOK is unknown, but may involve a dominant role for the 

transcription factor T-bet, which is required for Runx3 expression in TH1 cells13. Effector 

helper T cell functions may depend on expression of both transcription factors.

The “kinetic signaling” model of CD4 vs. CD8 lineage choice33,34 proposes that, during 

the post-positive selection CD4+CD8lo stage, extended signaling due to interaction of CD4 

with MHCII results in helper lineage specification. Our results are potentially consistent 

with this model, and are the first to demonstrate that the CD4+CD8lo thymocyte 

subpopulation is heterogeneous with respect to expression of ThPOK. It is hence possible 

that only those cells with prolonged signaling up-regulate ThPOK. These may also be cells 

that preferentially up-regulate GATA3 in response to MHCII29.

In summary, we have provided genetic evidence suggesting that ThPOK may not be 

essential for specification of the CD4SP lineage, while Runx complexes are required for 

lineage redirection in the absence of ThPOK. ThPOK plays an essential role to prevent 

commitment to the CTL lineage following MHCII-restricted selection, at least in part by 

inhibiting up-regulation of Runx3 from the distal promoter. Future studies are needed to 

identify factors necessary for CD4+ lineage specification prior to ThPOK induction, to 

determine if there is a basal differentiation state following positive selection by either MHCI 

or MHCII, and to elucidate the gene regulatory network governing thymocyte lineage 

diversification.

METHODS

Mice

Cbfb, Runx3, and Runx1 conditional knockout mice were described previously8,12. B2m−/− 

mice35, H2-Ab1−/− mice36, Cd4-cre and Lck-cre transgenic mice37 were purchased from 

Taconic Farms, and EIIa-cre transgenic mice38 were from the Jackson Laboratory. For 

targeted insertion of YFP into the Runx3 locus, genomic fragments for homologous arms 

were PCR amplified from a BAC clone (RP24-309N18) encompassing the Runx3 locus. A 

targeting vector was constructed such that a 46 nt Runx3 coding sequence starting with an 

initiating codon from the distal promoter transcript was replaced with the YFP coding 

sequence. The NotI linearized targeting vector was electroporated into embryonic stem cells 

and G418 and gancyclovir double resistant colonies were screened by PCR for homologous 

recombination at the 3’ end. Positive clones were validated by Southern blot with BamHI 

digestion. Genomic fragments encompassing the Zbtb7b locus were excised from a BAC 
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clone (RP23-126P10) and cloned into pBluescript. For targeted deletion or conditional 

targeting of Zbtb7b, a targeting vector was constructed to flank exon 2 and exon 3, 

containing the entire coding sequence of Zbtb7b, with loxP sites. The neomycin resistance 

cassette was inserted approximately 1.1 kb upstream of exon 2 in a forward orientation with 

an additional loxP site at its 5’ end. SacII-linearized targeting vector was transfected into ES 

cells by electroporation. G418 and gancyclovir double resistant colonies were screened by 

Southern blotting. For generation of Zbtb7bF/+ mice, Zbtb7bFN/+ ES cells were transiently 

transfected by pMC-Cre to remove the neomycin resistance gene. The Zbtb7b− allele was 

obtained by crossing Zbtb7bFN/+ mice to EIIa-cre transgenic mice. All mice were 

maintained under specific pathogen free conditions in the Skirball Institute Animal Facility. 

All experiments were performed in accordance with the protocol approved by the IACUC at 

the NYU School of Medicine.

Flow cytometry

All monoclonal antibodies were purchased from eBioscience or BD Bioscience. Clone 

names for individual antibodies used in this study are as follows: anti-CD4 (RM4-5), anti-

CD8α (53–6.7), anti-TCRβ (H57–597), anti-HSA (M1/69), anti-CD69 (H1.2F3), anti-

CD103 (2E7), anti-CD154 (MR1). anti-IL-4 (11B11), anti-IFN-γ (XMG1.2). Single cell 

suspensions were stained with the antibodies and DAPI, and analyzed with a LSRII flow 

cytometer (BD Biosciences) equipped with 355 nm, 405 nm, 488 nm and 633 nm lasers. 

510/20, 545/35, 495LP, and 525LP filters were used to separate GFP and YFP signals. Data 

were analyzed using Flowjo software (Tree Star). Cell sorting was performed with a FACS 

Aria (BD Biosciences). The purity of sorted samples was higher than 99%.

Real time PCR for gene expression analysis

Total RNA was prepared from sorted thymocytes or lymphocytes using Trizol (Invitrogen). 

cDNA was synthesized with Superscript reverse transcriptase (Invitrogen). Real time PCR 

analysis was performed as described previously10. Primers and Taqman probes for Gata3 

and Zbtb7b were described previously6,39. Other primer sequences are listed in 

Supplementary Table 1, online. Gene expression was examined using 3 independent samples 

and statistical difference was tested using two-tailed T test with unequal variance 

assumption. P values smaller than 0.05 were considered significant.

Immunoblotting

FACS purified cells were washed once with PBS and lysed in buffer containing 150 mM 

NaCl, 2 mM EDTA, 20mM Tris-HCl (pH7.5), 10% glycerol and 1% NP-40. The lysate was 

cleared by centrifugation, denatured in 1 × Laemmli buffer and separated by SDS-PAGE. 

Anti-pan-Runx recognizing the C-terminus of Runx1 and Runx3 was described 

previously10. Anti-ThPOK was generated by immunizing rabbits with a recombinant GST-

fusion protein containing amino acids 423–543 of ThPOK. Immunoblot was performed 

using crude serum. Anti-HMG1 was used to estimate loading.
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T cell stimulation and intracellular staining

Purified CD4+CD8−CD25−CD62L+CD44lo naïve T cells were stimulated with plate-bound 

anti-CD3 (145-2C11, 1 µg/ml) and anti-CD28 (37.5.1, 5 µg/ml) for 3 days in the presence of 

recombinant mouse IL-2 (20 U/ml) and in the absence of IL-12. The cells were restimulated 

with PMA and ionomycin for 4 hours in the presence of GolgiPlug (BD Biosciences), fixed 

with 2% paraformaldehyde, permeabilized with 0.3% saponin, and intracellularly stained for 

IFN-γ and IL-4 in the presence of 0.03% saponin.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. CD8SP lineage-specific Runx3 expression from its distal promoter is required for Cd4 
silencing and CD103 expression in CD8+ T cells
(a) Runx3 and Runx1 protein expression in purified CD8+ cells from Runx3dYFP/YFP and 

Runx3dYFP/+ mice is shown with anti-HMG1 blot as loading control. Lysates from Cd4-

cre+Runx1F/F CD4+ T cells and Cd4-cre+Runx3F/F CD8+ T cells were used as negative 

controls for Runx1 and Runx3 expression, respectively. (b,c) CD4 and CD8 (b) or CD8 and 

CD103 (c) expression in TCRβ+ lymph node (LN) cells from Runx3dYFP/YFP and 

Runx3dYFP/+ mice. In the right panel in (b), CD4 expression in CD8+ T cells from 

Runx3dYFP/YFP (open histogram) and Runx3dYFP/+ (shaded histogram) mice is shown. Mean 

fluorescent intensity: Runx3dYFP/+ 308, Runx3dYFP/YFP 1767. Data shown are representative 

of more than 3 independent experiments.
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Figure 2. Runx3d and ThPOK reporter expression in developing thymocytes
(a) Distal promoter-derived Runx3 expression determined by the Runx3d-YFP reporter in 

thymocyte subpopulations as defined in Supplementary Fig. 2, online. YFP+ cells are gated 

with orange rectangles. (b) ThPOK-GFP reporter expression in developing thymocytes. 

GFPhi and GFPlo populations are gated with dark and light blue rectangles, respectively. 

Percentages indicate frequencies of YFP+, GFPhi, and GFPlo cells among thymocyte subsets 

marked at top, except for those in the CD4+CD8+ subpopulation, for which percentages 

correspond to frequencies of gated cells among CD4+CD8+TCRβhi thymocytes (marked 

with asterisks). (c) ThPOK-GFP reporter expression in MHCI- and MHCII-restricted 

CD4+CD8lo thymocyte subpopulations. The percentages of total GFP+ cells (bottom gate) 

and GFPhi cells (top gate) are shown. (d) Mutually exclusive high ThPOK-GFP and Runx3d-

YFP expression during thymocyte differentiation. ThPOK-GFP and Runx3d-YFP expression 

in developing thymocytes from indicated mice. Numbers indicate percentages of cells within 

gates. (e) Continued ThPOK-GFP expression in redirected MHCII-restricted ThPOK-

deficient CD8+ T cells. ThPOK-GFP expression in CD8+ T cells from Zbtb7bGFP/+ or 
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Zbtb7bGFP/− mice. Numbers indicate percentages of GFP+ cells. Data shown are 

representative of more than 3 independent experiments.
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Figure 3. CD8+ lineage-specific Runx3d-YFP expression is de-repressed in ThPOK-deficient 
MHCII-restricted thymocytes
(a) ThPOK up-regulation independently of ThPOK following positive selection. ThPOK-

GFP reporter expression in HSAhiCD69+CD4+CD8lo/− thymocytes from Zbtb7b+/+, 

Zbtb7bGFP/+ and Zbtb7bGFP/− mice. (b) Runx3d-YFP expression in thymocyte 

subpopulations in the presence or absence of ThPOK. YFP+ cells are gated as indicated by 

rectangles. (c) CD8 down-regulation following thymocyte positive selection in the absence 

of ThPOK. CD4 and CD8 expression in HSAhiCD69+ thymocytes from Zbtb7bGFP/+, 
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Zbtb7bGFP/− and H2-Ab1−/− mice is shown. CD4+CD8− cells are gated as shown within 

rectangles and their frequencies are indicated. Data shown are representative of more than 3 

independent experiments.
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Figure 4. CD4+ T cell differentiation in the presence of reduced amounts of ThPOK
(a,b) ThPOK expression in CD4+CD8− T cells from Zbtb7bFN/− mice. ThPOK expression 

was examined by qRT-PCR (a) and immunoblotting (b). qRT-PCR data are shown as 

averages and standard deviations from three independent samples. (c) Lineage redirection of 

MHCII-restricted T cells to the CD8 lineage in the presence of reduced amounts of ThPOK. 

CD4 and CD8 expression in gated HSAlo/−TCRβhi mature thymocytes from Zbtb7b+/−, 

Zbtb7bFN/−, Zbtb7b+/−B2m−/− and Zbtb7bFN/−B2m−/− mice is shown. Percentages of 

CD4SP, CD8SP, CD4+CD8+ and CD4−CD8− cells are indicated. (d) De-repressed Runx3 

protein expression in CD4+CD8− T cells from Zbtb7bFN/− mice. Runx1 and Runx3 

expression (indicated by arrows) was examined by immunoblotting with anti-pan-Runx. 

Anti-HMG1 was used as loading control. Data shown are representative of more than 3 

independent experiments.
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Figure 5. ThPOK is dispensable for differentiation of CD4SP thymocytes
(a) HSA and TCRβ expression in total thymocytes (top), and CD4 and CD8 expression in 

HSAlo/− TCRβhi mature thymocytes (middle) and TCRβ+B220− peripheral T cells (bottom) 

in the absence of ThPOK, CBFβ, or both. The CD4−CD8+ cells shown with asterisks in Lck-

cre+CbfbF/F and Lck-cre+ CbfbF/FZbtb7bGFP/− panels are those that escaped Cre-mediated 

inactivation of Cbfb and hence have normal Cd4 silencing. Data shown here are 

representative from two independent experiments with similar results. (b) Absolute numbers 

of HSA+CD69+ positively selected thymocytes and HSAlo/− mature CD4SP thymocytes in 

the absence of ThPOK, CBFβ, or both. Each column shows cell numbers in a mouse with 

each of the genotypes.
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Figure 6. De-repression of CD8+ lineage-specific genes in MHCII-restricted cells in the absence 
of ThPOK or in the presence of insufficient amount of ThPOK
(a) MHCII-restricted HSAhiCD69+CD4+CD8lo/− ThPOK-GFPhi thymocytes from 

Zbtb7bGFP/+ (black columns) or Zbtb7bGFP/− (white columns) were purified using gates as 

shown in Fig. 3, and expression of CD4+ lineage-specific genes (Cd4, St8si6, Zbtb7b and 

Gata3) and CD8+ lineage-specific genes (Cd8a, Itgae, Prf1, Gpr114, Nkg7 and Cd160) was 

examined by qRT-PCR. mRNA expression of individual genes was normalized against 

Hprt1 expression and average expression in Zbtb7bGFP/+ cells was set as 1. (b) Intracellular 

staining for IFN-γ and IL-4 in Zbtb7bFN/− CD4+CD8− T cells following 3 days of 

stimulation with anti-CD3 and anti-CD28 in the absence of IL-12. (c) Expression of the 

CD8+ lineage-specific IFN-γ regulator Eomes in CD4+ T cells from wild-type and 

Zbtb7bFN/− mice and in wild-type CD8+ T cells, as quantified by q-RT-PCR. Hprt1-

normalized Eomes mRNA expression is shown as average and standard deviations from 

three independent samples. Statistical difference was tested by two-tailed T test with 

assumption of unequal variance. Genes that showed a P value smaller than 0.05 are marked 

with asterisks in (a). Actual P values for individual genes were as follows: Cd4: 0.28, 
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St8sia6: 0.13, Zbtb7b: 0.01, Gata3: 0.5, Cd8a: 0.04, Itgae: 0.04, Prf1: 0.01, Gpr114: 0.09, 

Nkg7: 0.04, Cd160: 0.02.
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