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Abstract: SARS-CoV-2 infection has caused a global pandemic that has severely damaged both public
health and the economy. The nucleocapsid protein of SARS-CoV-2 is multifunctional and plays an
important role in ribonucleocapsid formation and viral genome replication. In order to elucidate
its functions, interaction partners of the SARS-CoV-2 N protein in human cells were identified via
affinity purification and mass spectrometry. We identified 160 cellular proteins as interaction partners
of the SARS-CoV-2 N protein in HEK293T and/or Calu-3 cells. Functional analysis revealed strong
enrichment for ribosome biogenesis and RNA-associated processes, including ribonucleoprotein com-
plex biogenesis, ribosomal large and small subunits biogenesis, RNA binding, catalysis, translation
and transcription. Proteins related to virus defence responses, including MOV10, EIF2AK2, TRIM25,
G3BP1, ZC3HAV1 and ZCCHC3 were also identified in the N protein interactome. This study
comprehensively profiled the viral–host interactome of the SARS-CoV-2 N protein in human cells,
and the findings provide the basis for further studies on the pathogenesis and antiviral strategies for
this emerging infection.

Keywords: viral–host interactome; ribonucleocapsid; SARS-CoV-2

1. Introduction

By July 2021, the global pandemic caused by COVID-19 had resulted in 190,860,860
confirmed cases and more than 4,101,400 deaths, according to WHO data [1]. The disease
is caused by a novel strain of coronavirus named severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), which contains four structural proteins; spike (S) glycoprotein,
envelope (E) protein, membrane (M) protein and nucleocapsid (N) protein. These proteins
share high levels of sequence similarity with corresponding sequences in SARS-CoV and
MERS-CoV, which may reflect a common mechanism of pathogenesis [2]. The N protein of
this virus is the most abundant protein, and it performs multiple functions during viral
infection. The primary function of the SARS-CoV-2 N proteins is to package the viral
genome into ribonucleocapsid (RNP). It is also involved in viral replicase components to
modulate viral RNA transcription and replication [3].

It is well known that virus replication relies heavily on the complex protein–protein
interaction (PPI) network formed by specific viral–host interactions. In response, host
cells employ antiviral defences through the PPI network. Several individual proteomic
studies have mapped the PPI network between SARS-CoV-2 proteins and human proteins,
extending our knowledge of viral pathogenesis [4–8]. Given the multiple functions of the
N protein, and its high expression during SARS-CoV-2 infections, we applied a systematic
affinity tag purification and mass spectrometry (AP-MS) approach to identify host proteins

Pathogens 2021, 10, 1155. https://doi.org/10.3390/pathogens10091155 https://www.mdpi.com/journal/pathogens

https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://doi.org/10.3390/pathogens10091155
https://doi.org/10.3390/pathogens10091155
https://doi.org/10.3390/pathogens10091155
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pathogens10091155
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens10091155?type=check_update&version=1


Pathogens 2021, 10, 1155 2 of 12

that interact with the nucleocapsid protein of SARS-CoV-2. A total of 160 high-confidence
human proteins with various biological functions were identified in HEK293T and/or Calu-
3 cells. Our results present a comprehensive interaction landscape for the N protein and
human proteins, and provide valuable clues for understanding the pathogenic mechanisms
of the N protein inside human cells.

2. Results
2.1. Affinity Purification of SARS-CoV-2 N Protein in HEK293T and Calu-3 Cells

In order to explore the potential partners interacting with the N protein, a 2× Strep tag
sequence was appended to the C-terminus of the SARS-CoV-2 N protein-coding sequence,
and plasmids were transfected into HEK293T and Calu-3 cells. Tagged proteins were
affinity purified via a coimmunoprecipitation approach. The SARS-CoV-2 N-Strep fusion
protein was found to be highly expressed in both HEK 293T and Calu-3 cells (Figure 1A).
Silver staining showed the specific enrichment of the SARS-CoV-2 N protein and its
associated factors (Figure 1B).
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Figure 1. Identification of potential cellular proteins that interact with SARS-CoV-2 N protein by
transient transfection and affinity purification from HEK293T and Calu-3 cells. (A) Detection of
2x Strep-tagged N protein in lysates and immunoprecipitates by western blotting with anti-Strep
antibodies. (B) Protein complexes immunoprecipitated using Strep beads separated by SDS-PAGE
and subjected to silver staining.

2.2. Identification of Host Factors That Interact with SARS-CoV-2 N Protein in HEK293T and
Calu-3 Cells

The N-interacting proteins were analysed by liquid chromatography-MS (LC-MS). We
obtained 1347 and 2549 proteins in HEK293T and Calu-3 cells, respectively (Table S1). In
order to eliminate false positive interactions, strict screening criteria were set, including the
following: (1) fold change >8; (2) significance analysis of interactome (SAINT) [9] score >0.9;
(3) mass spectrometry interaction statistics (MiST) [10] score >0.85; (4) protein detection
frequency <30% in AP-MS Strep control datasets obtained from the contaminant repository
for affinity purification (CRAPome) [11] database. Finally, 160 unique high-confidence
protein interactions (85 in HEK293Tcells, 92 in Calu-3 cells) were identified and visualised as
a protein–protein interaction (PPI) network (Figure 2, Table S1). Several protein components
involved in specific protein families or pathways were identified and displayed as coloured
subnetworks, including mitochondrial ribosome, spliceosome, nop56p-associated pre-
rRNA complex, telomerase holoenzyme and DDX27-PeBow complex, all of which are
closely associated with ribosome biogenesis and RNA processes in eukaryotes. Spliceosome
components that bind directly to nucleocapsid proteins of other coronaviruses have been
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reported [12,13]. Notably, recent proteomics research revealed 25 spliceosome components
upregulated following SARS-CoV-2 infection, and inhibition of splicing could prevent viral
replication [14]. Thus, splicing is an essential pathway for SARS-CoV-2 replication.
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Figure 2. SARS-CoV-2 N-human protein–protein interaction network. An interaction network (Cytoscape) between host
factors and N proteins was generated. Interactomes in two cell lines were integrated (yellow nodes = interactors in HEK293T
cells, orange nodes = interactors in Calu-3 cells, pink nodes = common interactors in both cell types). Curated host–host
protein interactions from the CORUM and STRING databases are displayed as coloured subnetworks. Select human
protein–protein complexes that are represented by at least three nodes are labelled.

We identified 17 shared human proteins in HEK293T and Calu-3 cells (Table 1), includ-
ing ribosome biogenesis proteins BOP1, MRPL22, RRP15, NOP16, NOP10 and NHP2; RNA
catalytic proteins POLRMT and POLR1G; virus defence proteins G3BP1, G3BP2, ZC3HAV1
and TRIM25, and various others. Five of the overlapping proteins, G3BP1, G3BP2, BOP1,
ZNF346 and TRIM25 have been present in previous studies [4–8,15]. TRIM25 is an E3 ubiq-
uitin ligase, which activates the type I interferon (IFN) pathway through the ubiquitination
of RIG-I and ZC3HAV1 [16,17]. ZC3HAV1 can significantly restrict virus replication [18].
TRIM25 was also found to interact with the N protein of SARS-CoV and MERS-CoV. The N
protein can impede RIG-I ubiquitination and activation to inhibit the production of IFN
by interacting with TRIM25 [19,20]. Since SARS-CoV-2 is more than 82% identical at the
genome level to SARS-CoV [21], it may evade the host’s innate immune response through
a similar mechanism.
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Table 1. Overlapping SARS-CoV-2 N protein interactors in HEK293T and Calu-3 cell lines.

Gene ID Gene Symbol Protein Name Biological Process (GO)

23246 BOP1 Block of proliferation 1 protein Endonucleolytic cleavage
involved in rRNA processing

79169 C1orf35 Multiple myeloma
tumour-associated protein 2

Neutrophil-mediated
immunity

5442 POLR1G DNA-directed RNA
polymerase I subunit G

Positive regulation of gene
expression

10146 G3BP1 Ras GTPase-activating
protein-binding protein 1 Stress granule assembly

9908 G3BP2 Ras GTPase-activating
protein-binding protein 2 Stress granule assembly

29093 MRPL22 Mitochondrial large ribosomal
subunit protein uL22m Ribosome assembly

65005 MRPL9 Mitochondrial ribosomal
protein L9

Mitochondrial translational
elongation

55651 NHP2 H/ACA ribonucleoprotein
complex subunit 2

snRNA/rRNA
pseudouridine synthesis

55505 NOP10 Nucleolar protein 10 snRNA pseudouridine
synthesis

51491 NOP16 Nucleolar protein 16 Ribosome biogenesis

5442 POLRMT DNA-directed RNA
polymerase, mitochondria Mitochondrial transcription

51018 RRP15 Ribosomal RNA-processing
protein 15

Ribosomal large subunit
biogenesis

6748 SSR4 Translocon-associated protein
subunit delta

Protein processing in
endoplasmic reticulum

7706 TRIM25 Tripartite motif containing 25 Ubiquitin E3 ligase and
ISG15 E3 ligase

84305 PYM1 Partner of Y14 and mago Positive regulation of
translation

56829 ZC3HAV1 Zinc finger CCCH-type
antiviral protein 1

Antiviral defence, Immunity,
Innate immunity

23567 ZNF346 Zinc finger protein 346 Positive regulation of cell
death

2.3. Functional Annotation of Proteins in the SARS-CoV-2 N Protein Interactome

To further explore the functions of these host cellular proteins, gene set enrichment
analysis was performed using Pfam, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG). We observed three enriched protein domains including RNA
recognition motif, DEAD/DEAH box (DDX) helicase and oligonucleotide/oligosaccharide-
binding fold (Figure 3A, Table S2). A variety of DDX helicase family members (DDX54,
DDX18, DDX27, DHX36, DHX37, DDX47, DDX19A, YTHDC2 and DHX57) were observed
in our AP-MS interactome. DDXs have been described as key players in viral replication
since they can positively or negatively modulate innate immunity and viral proliferation
at different levels [22]. RNA recognition motif was the most highly-represented domain
among host proteins, present in 11 host proteins including LARP7, RBM28, RBM47, EIF4B,
EIF3G, MSI2, ZCRB1, G3BP1, G3BP2, HNRNPA0 and TRA2A (Table S2). This may imply
that interactors of the N protein preferentially bind with RNA.

Functional analysis, also revealed strong enrichment for ribosome biogenesis and
RNA-associated processes, including ribonucleoprotein complex biogenesis, ribosomal
large and small subunits biogenesis, RNA binding, catalysis, translation and transcrip-
tion (Figure 3B, Table S2). Consistent with these pathway terms, all domains of the
SARS-CoV-2 N protein are predicted to bind RNA [23]. Notably, we also observed virus
defence responses enriched in the N protein interactome. Several antiviral proteins such
as MOV10, EIF2AK2, TRIM25, G3BP1, ZC3HAV1 and ZCCHC3 were included in this
pathway (Table S2). Furthermore, N protein-associated host factors also participate in
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protein processing in the endoplasmic reticulum (ER). The transcription and replication
of SARS-CoV-2 vRNA occurs in double membrane vesicles (DMVs) derived from ER [24].
Proteins involved in these biological processes may play a role in the N protein mediated
regulation of viral genome replication and vRNP assembly.
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2.4. Comparison of the N Protein Interactome with Other SARS-CoV-2-Induced Proteomes
and Transcriptomes

To comprehensively survey the potential repertoire of host cellular factors that interact
with the SARS-CoV-2 N protein, we obtained the currently known N protein interactions
from the BioGRID database [25], and compared it with our data. Our AP-MS analysis shares
~22% overlap (35 hits) with previous studies (Figure 4A). Most of the overlapping hits
were present in AP-MS studies and involved in ribosome biogenesis and RNA process (for
example FBL, BMS1, NOP56, BOP1, WDR12, DHX37 and DDX54) and immune response
(for example, MOV10, EIF2AK2, TARBP2, TRIM25, HERC5 and ZCCHC3) (Table S3). It
is important to note that two stress granule proteins, G3BP1 and G3BP2, were most con-
sistently identified in other studies [4–8,15,26–29]. G3BP1 and G3BP2 are downregulated
during SARS-CoV-2 infection, and inhibition of stress granule formation by the N protein
indicates that the N protein is involved in suppressing the host immune response to favour
virus replication [5,30].

To further analyse the variation in proteins interacting with the N protein during
SARS-CoV-2 infection, we compared our N protein interactome with host transcriptional
response datasets obtained following SARS-CoV-2 infection [31]. Forty-three proteins in
our dataset were significantly altered in the transcriptome dataset (fold change >2 and FDR
<0.05 in at least one cell lines), while the variation in transcripts differed between cell lines
(Figure 4B, Table S3). Nineteen genes were downregulated following SARS-CoV-2 infection
in all three cell lines. Meanwhile, 10 genes, including three antiviral factors, TRIM25,
HERC5 and EIF2AK2, were upregulated after SARS-CoV-2 infection. Since our N protein
interactome was enriched in RNA-related processes, we next compared our dataset with
recently reported SARS-CoV-2-induced RNA-binding proteome data [30]. Thirty-eight
RNA-binding proteins were present in our N protein interactome dataset, 12 of which
were upregulated after SARS-CoV-2 infection, including antiviral factors TRIM25 and
ZC3HAV1, consistent with host transcriptional responses in Calu-3 cells and A549-ACE2
cells (Figure 4B,C, Table S3).
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3. Discussion

In the present study, we identified 160 high-confidence N-interacting host factors
in HEK293T and/or Calu-3 cells via a proteomic approach. The PPIs of the N protein
differed between the two cell lines, and only 17 shared human proteins were identified in
both HEK293T and Calu-3 cells. Similarly, recent transcriptome studies revealed that host
transcriptional responses to SARS-CoV-2 infection in different cell lines were markedly
different [31,32]. Strong differences between the efficiency and productivity of SARS-CoV-2
infection across cell lines may explain the above phenomenon. For example, HEK293T cells
were relatively non-permissive to SARS-CoV-2 replication due to the low expression of the
viral receptor ACE2, compared with Calu-3 cells [33].

Interestingly, we also identified several mitochondrial proteins in the N protein inter-
actome. SARS-CoV-2 could evade the mitochondrial production of interferons through its
N protein [34]. The nucleocapsid protein induced apoptosis has been observed in transmis-
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sible gastroenteritis coronavirus (TGEV), porcine epidemic diarrhoea virus (PEDV) and
SARS-CoV virus [35–37]. The cleavage of the N protein by effector caspases induces the
intrinsic apoptotic pathway during SARS-CoV infection [37]. Additionally, the destruction
of the mitochondrial structure, such as loss of the mitochondrial matrix and the ridges and
rupture of the outer membrane, has been observed in the electron microscopy of COVID-19
patients’ tissue [38]; although it has been proved that SARS-CoV-2 viral RNAs, such as
S, M, E, N and various others, were enriched in the host mitochondria [39]. There is still
no evidence that N proteins affect the structure and function of mitochondria via directly
interacting with mitochondrial proteins. Thus, the role of the interaction of N with these
mitochondria proteins is either a false positive or could indicate a novel interaction with
the mitochondria, and that more experiments are needed to validate this result.

Comparison of our data and previous interactomic studies showed 35 overlapping
interactions. Several immune response proteins, such as MOV10, EIF2AK2, TARBP2,
TRIM25, G3BP1, HERC5 and ZCCHC3 were included in the dataset. Ubiquitin-like protein
ISG15 is an interferon-induced protein and is known to have a direct antiviral effect on a
wide spectrum of virus families [40]. HERC5 and TRIM25 are major E3 ligases for ISG15
conjugation, and mediate ISGylates to activate the antiviral response [41,42]. EIF2AK2
has a broad antiviral spectrum and could upregulate type-1 interferon production via the
integrated stress response [42–44]. It has been proved that the N protein can significantly
repress the activation of IFN signalling [34].

Overall, the number of overlapping proteins between different datasets was limited. A
couple of reasons may explain this. Firstly, the experimental methods, such as cell line selec-
tion, choice of affinity tag and screening criteria for high-confidence PPIs were different in
each AP-MS experiment. Transcriptome studies have revealed different host transcriptional
responses to SARS-CoV-2 infection in different cell lines [31,32]. Additionally, nonspecific
interactions could be observed in AP-MS experiments, and each tag has its own specific
background protein profile [45]. Secondly, AP-MS is not entirely suitable for the detection
of protein complexes with weak affinity interactions or transient interactions, which might
be lost during stringent rinsing procedures [46].

While differences were expected between the specific interactions of different studies,
there is an overall consistency at the functional level. Functional analysis revealed strong
enrichment for the RNA process, and the translation and transcription process. These
data strongly suggest that the N protein plays an important role in viral transcription,
translation and genome replication. Recent studies have pointed out that the SARS-CoV-2
N protein is capable of forming or regulating biomolecular condensates by interacting with
RNA and key host cell proteins [47,48]. These structures are considered to play important
roles in viral replication and assembly [49]. Thus, we compared our dataset with recently
reported SARS-CoV-2-induced RNA-binding proteome and host transcriptional response
datasets, and many proteins overlapped with these two datasets. These results indirectly
confirmed that some of the proteins in our interactome are involved in biological processes
during SARS-CoV-2 infection.

SARS-CoV-2 N protein may be an important virulence factor since it not only plays
critical roles in virus replication, transcription and translation but has also been proposed
to perform roles in modulating the host cellular machinery [50]. Our current work provides
an overview of potential host proteins that interact with the N protein. Although N
protein interactomes differed between the two cell lines, the overlapping PPIs between
different interactomes are more likely to represent physiologically relevant interactions.
The identified PPIs provide valuable information at the molecular level for the virus
replication cycle and pathogenesis. The findings also reveal potential druggable targets
that may assist the development of new antiviral drugs, or the repurposing of existing
drugs. While the identified proteins were not verified in this study, their specific roles
during SARS-CoV-2 infection should be further explored in the future.
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4. Materials and Methods
4.1. Cell Culture

Human embryonic kidney (HEK293T) cells (ATCC CRL-3216) and human lung ade-
nocarcinoma (Calu-3) cells (ATCC HTB-55) were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; Gibco BRL, Grand Island, NY, USA) or minimum essential medium
(MEM; Gibco BRL) supplemented with 10% foetal bovine serum (FBS; Gibco BRL), 1%
penicillin–streptomycin (Gibco BRL), 1% sodium pyruvate (Gibco BRL) and 1% non-
essential amino acids (Gibco BRL) at 37 ◦C in a humidified 5% CO2 incubator.

4.2. Plasmids and Transfection

The coding sequence of SARS-CoV-2 N (GeneID: 43740575) was cloned into the
mammalian expression vector pcDNA3.1 (+) harbouring a C-terminal 2xStrep II affinity
tag. The pcDNA3.1 (+)-2xStrep vector alone served as a control. 1–1.2 × 107 HEK293T
and Calu-3 cells were plated in 15 cm dishes and allowed to adhere overnight prior
to transfection with 15 µg plasmids using FuGENE HD transfection reagent (Promega
Corporation, Madison, WI, USA). At least three independent biological replicates were
performed in each cell line.

4.3. Anti-Strep Tag Affinity Purification

At 48 h post-transfection, cells were dissociated from the plate surface with 1×
phosphate-buffered saline (PBS) containing 10 mM EDTA, subsequently washed with
cold 1× PBS, and lysed in IP buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA)
supplemented with 0.5% Nonidet P40 substitute (NP-40; Solarbio, Beijing, China) and
cOmplete mini EDTA-free protease and PhosSTOP phosphatase inhibitor cocktails (Roche,
Bransburg, NJ, USA). Cells were lysed on ice for 30 min then cleared by centrifugation at
17,000× g for 10 min at 4 ◦C. After centrifugation, the supernatant was incubated with 30 µL
Strep-Tactin Sepharose beads (IBA Lifesciences, Göttingen, Germany) diluted in IP Buffer
for 2 h. Beads were then washed three times with 1 mL IP buffer supplemented with 0.05%
NP-40 and transferred to a new tube with a final wash in 1 mL IP buffer. Proteins were
eluted by agitating beads in 40 µL IP buffer supplemented with 2.5 mM D-desthiobiotin
(IBA Lifesciences) on a vortex mixer at room temperature for 30 min. We reserved 10% of
each eluate for western blotting and silver staining. The remaining eluate was removed for
mass spectrometry (MS).

4.4. Peptide Preparation

Eluates were incubated in 10 mM dithiothreitol (DTT) for 45 min and subsequently
alkylated with 30 mM iodoacetamide (IAA) for 30 min at room temperature in the dark.
IAA was quenched by DTT (20 mM final concentration). Samples were then cleaned up
using four volumes of acetone for precipitation, and pellets were resuspended in 50 mM
ammonium bicarbonate. Trypsin (Promega) was added to samples at a ratio of 1:50 (trypsin–
protein) and incubated overnight at 37 ◦C to digest protein. Peptides were acidified with
fluoroacetic acid (FA) and desalted using a C18 desalting column equilibrated in 200 mL
acetonitrile (ACN), then twice with 200 mL 60% ACN followed by 200 mL 0.1% FA. Samples
were loaded onto the C18 column, washed three times with washing buffer (0.1% FA, 2%
ACN), then eluted with 60% ACN. Eluents were collected and lyophilised in a vacuum
lyophilizer (Labconco, Kansas City, MO, USA) before LC-MS/MS analysis.

4.5. Protein Identification by LC-MS/MS

Samples were resuspended in 2% ACN and 0.1% FA and separated by nano liquid
chromatography (LC)-MS/MS using an UltiMate 3000 RSLCnano system (Thermo Scien-
tific, Grand Island, NY, USA)) at a flow rate of 400 nL/min. Solvent A was 2% ACN and
0.1% FA, and solvent B was 98% ACN and 0.1% FA. Gradient elution was performed at
50 ◦C using linear gradients of 120 min as follows: 1–4 min 3% (v/v) B, 4–6 min 3% to
5% (v/v) B, 6–70 min 5% to 15% (v/v) B, 70–90 min 15% to 30% (v/v) B, 90–100 min 30%
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to 80% (v/v) B, 100–110 min 80% (v/v) B, 110–120 min 3% (v/v) B. Eluted peptides were
analysed using a Q Exactive HF-X instrument (Thermo Scientific) to acquire MS spectra at
a resolution of 120,000 FWHM with a mass range of 300–1500 m/z and an AGC target of
3E6. The top 20 precursors were then fragmented by HCD with a collision energy of ~32%
NCE and MS2 spectra were acquired at a resolution of 45,000 FWHM.

Raw LC-MS/MS data were analysed by MaxQuant (version 1.6.2.10) against a database
containing the UniProt Homo sapiens protein sequences (192,321 sequences, updated on 2
July 2020) and the SARS-CoV-2 N protein sequences. All peptide and protein identifications
were filtered by false discovery rate (FDR) <1%.

4.6. Protein-Protein Interaction (PPI) and Enrichment Analyses

Proteomic data were scored with the MiST [10] and SAINT [9] scoring algorithms
using spectral counts as the quantifying feature. The selected high-confidence PPIs were
visualised by Cytoscape (version 3.8.0). Metascape [51] and DAVID [52] databases were
used for gene annotation, visualisation and enrichment analysis. Terms from GO, specifi-
cally molecular function (MF) and biological process (BP) categories, as well as Pfam,
KEGG and the comprehensive resource of mammalian protein complexes (CORUM)
were considered. CORUM complexes were analysed with STRING [53] (version 111.0,
https://string-db.org/cgi/input.pl, accessed on 20 July 2021) and visualised in the PPI net-
work. Statistical significance of each gene function category was scored using the standard
accumulative hypergeometric probability function. Enrichment factors were calculated
and used for filtering. Remaining significant terms were further clustered into groups
based on similarities measured by Kappa statistics, similar to the method used in DAVID.
Terms with p-value < 0.05 or FDR < 0.05 were considered significantly enriched.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10091155/s1, Table S1: Proteins identified by LC-MS/MS analysis and high-
confidence PPIs of N protein interactome. Table S2: Functional enrichment of host factors. Table S3:
Overlapping data between our N protein interactome and other SARS-CoV-2-induced proteomes
and transcriptomes.
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