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ABSTRACT

Histological classification and staging are the gold standard for the prognosis of 
endometrial cancer (EC). However, in morphologically intermediate and doubtful cases 
this approach results largely insufficient, defining the need for better classification 
criteria. 

In this work we developed an algorithm that based on EC genetic alterations 
and in combination with the current histological classification, improves EC patients 
prognostic stratification, in particular in doubtful cases. A panel of 26 cancer related 
genes was analyzed in 89 EC patients and somatic functional mutations were 
investigated in association with different histology and outcome. 

An unsupervised hierarchical clustering analysis revealed that two groups of 
patients with different tumor grade and different prognosis can be distinguished by 
mutational profile. In particular, the mutational status of APC, CTNNB1, PIK3CA, PTEN, 
SMAD4 and TP53 resulted to be principal drivers of prognostic clustering. Consistently, 
a decisional tree generated by a data mining approach summarizes the consequential 
molecular criteria for patients prognostic stratification. 

The model proposed by this work provides the clinician with a tool able to 
support the prognosis of EC patients and consequently drives the choice of the most 
appropriated therapeutic strategy and follow up.
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INTRODUCTION

Endometrial cancer (EC) is the most common 
gynecological cancer in industrialized countries. About 
142000 new cases of EC are diagnosed every year 
worldwide, and about 42000 women die every year from 
EC [1]. Most ECs are diagnosed after the menopause, with 
the highest incidence around the seventh decade of life [1]. 
The early onset of symptoms explains why, at the time of 
the diagnosis, 70% of the patients present an early-stage 

disease, thus far resulting in a favorable prognosis with 
77% 5-year overall survival rate (OS). On the contrary, 
women with advanced or recurrent disease present a 
low response rates to conventional chemotherapy and 
extremely poor outcomes [2]. 

Traditionally, EC is classified into two types according 
to Bokhman model based upon clinical-pathologic features 
[3]. Type 1 ECs are endometrioid cancer, associated with 
hyperestrogeneism and typically preceded by endometrial 
hyperplasia. They are often diagnosed at an early stage, 

              Research Paper



Oncotarget25518www.oncotarget.com

and have a good prognosis. Type 2 EC includes non-
endometrioid cancers such as serous, clear cell, mixed cell, 
undifferentiated and carcinosarcoma. These neoplasms 
not estrogens correlated, often occur in the presence of an 
atrophic endometrium and have a poor prognosis. The 5-year 
OS rate of patients with endometrioid adenocarcinoma (type 
1) range from 75% to 86%, in contrast to 50% to 60% of 
patients with non-endometrioid cancer (type 2).

Genetically, Type 1 endometrioid ECs present 
high percentage of mutations in PTEN, KRAS, ARID1A 
and CTNNB1, as well as defects in DNA mismatch 
repair. Type 2 non-endometrioid ECs frequently show 
aneuploidy, p53 mutations and HER2 amplification. 
PIK3CA mutations are frequent in both EC histotypes 
[4]. Well known prognostic factors are age, International 
Federation of Gynaecology and Obstetrics (FIGO) stage, 
depth of myometrial invasion, tumor differentiation grade, 
tumor type and lymphovascular space invasion (LVSI) [5, 
6]. Moreover, new prognostic factors were investigated 
[7–9] to identify tumor with poor outcome. Although 
more than one risk-based classification of EC have been 
proposed numerous EC cases, in particular those with 
intermediate phenotype and grading (e.g. endometrioid 
tumor G2) still have uncertain prognosis.

Recently, The Cancer Genome Atlas Research 
Network (TCGA) reported a comprehensive genomic 
and transcriptomic analysis of EC based on next-
generation sequencing (NGS) technologies, analysis 
of DNA methylation, reverse-phase protein array, and 
microsatellite instability [10]. The study categorized 
the most common histotypes into four genomic classes: 
ultra-mutated tumors (POLE) with a favorable prognosis, 
microsatellite-instable tumors (microsatellite hyper-
mutated) and low copy number tumors (microsatellite-
stable) both with an intermediate prognosis and high 
copy number tumors (serous-like) with a poor outcome. 
Moreover the TCGA study revealed also that a subset of 
ECs diagnosed as high-grade endometrioid carcinomas 
harbored copy number and mutational profiles more 
similar to those of serous ECs and in general no mutations 
(excluding POLE) were identified as unique to any of 
the four genomic classes. In view of the substantial 
genetic and morphological heterogeneity in EC, these 
data suggested that the current histopathology-based 
classification approach requires a revision, which could 
take into account also the complicated molecular profiles 
of EC [4]. While offering a complete overview of the EC 
genetic and molecular landscape, the TCGA classification 
was only partially associated with prognosis, giving 
results that seem to be in contrast with literature data and 
would need further investigation. Furthermore, the use of 
this type of screening in clinical routine, where a rapid 
prognostic prediction and treatment choice it’s needed, 
appears still not feasible because too expensive in terms 
of time, cost and interpretation of the results, due to its 
elevated complexity.

In this study we investigated a novel molecular-
based approach to predict prognosis in EC. The model, 
based on DNA sequencing of few genes, subdivides EC 
in “good prognosis” and “bad prognosis“ and can be 
applied in the investigation of ambiguous cases, and to 
support Bokhman’s model and histological grading when 
the canonical approach is not sufficient to predict tumor 
outcome.

RESULTS

Study population 

In this study 89 EC patients were analyzed. Clinical 
and pathological features of the patients enrolled in this 
study are shown in Supplementary Table 1. Mean age of 
this cohort was 65 years (range 42–85 years) and mean BMI 
was 32 (range 19–59). Fifty patients had hypertension and 
19 were affected by diabetes. Eighty-two patients presented 
endometrioid type 1 EC while the remaining 7 patients 
had type 2 EC. Among the 82 type 1 tumors, 33 had a well 
differentiated G1 histotype, 16 had a G2 histotype and 33 
patients had an undifferentiated G3 histotype. According to 
FIGO classification, 13 tumors were staged as IA, 36 as IB, 
17 as IC; eight patients were staged as II, 14 as III (5 IIIA, 
1 IIIB and 8 IIIC) and one as IV. In compliance with Lax 
Kurman classification, 49 cases were low grade, 36 were 
high grade and 4 cases remained unclassified.

Mean follow up was 79 months (range 6–192 
months), 14 patients had a recurrence during follow up 
(14/89, 15.7%) and 11 patients died because of the tumor 
(11/89, 12.3%). 

Next generation sequencing analysis revealed 
a massive genetic mutations frequency in 
endometrial cancer population 

A next generation sequencing approach was applied 
to investigate mutations in a panel of 26 oncogenes and 
onco-suppressors genes. In order to outline a molecular 
profile with prognostic potential we considered only genetic 
variants known to have a frequency lower than 1% in total 
population and supposed to have an effect on protein coding. 
Supplementary Table 2 summarizes all 893 genetic alterations 
identified by sequencing. Variants classified as synonymous, 
intronic, non coding, polymorphic or localized in 3’UTR 
regions (608) were excluded while variants classified as 
missense, frameshift, stop-gain or affecting splicing sites 
(285) were included in further analysis. Seventy-six of 89 
ECs (85.4%) presented at least one somatic mutation in 
one of the 26 genes analyzed while 13 ECs (14.6%) didn’t 
present any somatic mutation in the considered genes. PTEN 
and PIK3CA resulted the most mutated genes: 56/89 (62.9%) 
patients presented at least one mutation in PTEN, 37/89 
(41.6%) in PIK3CA. 20 patients had more than one somatic 
mutation in PTEN and 12 had more than one in PIK3CA. 
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Even 4 mutations for gene in the same patient were identified 
for PIK3CA and PTEN. 

Thirteen genes (APC, BRAF, CTNNB1, EGFR, 
FGFR2, FBXW7, KRAS, MET, NRAS, PIK3CA, PTEN, 
SMAD4, TP53) were mutated in at least 5 patients. Five 
genes (AKT1, ALK, CDH1, GNAS, PDGFRA) were 
mutated in only one patient. Genes APC, CTNNB1, EGFR, 
FBXW7, KRAS, MET, NRAS, PDGFRA, PIK3CA, PTEN, 
TP53 showed in some patients the coexistence of more than 
one variant (Supplementary Table 3). Four genes (ERBB2, 
FOXL2, MAP2K1, SRC) presented no mutations in any of the 
89 cases analyzed and were excluded from further evaluation. 

Unsupervised hierarchical clustering based on 
patients’ genetic profile distinguished tumors 
with different grading 

A hierarchical clustering analysis based on 
Euclidean distance between samples and Ward 
agglomerative procedure was applied to perform an 
unsupervised subdivision of the EC cohort taking into 
account only genetic characteristics. Variables considered 
were expressed as the number of mutations occurred in 
each gene (range 0 ÷ 4).

Two clusters derived from this analysis: Cluster 1 
with 23 EC samples and Cluster 2 with 66 (Figure 1A). 
Table 1 summarizes the clinical features frequencies within 
the two clusters. Intriguingly, a strong association between 
clusters and tumor grading (P value < 0.001) was observed. 
In particular the molecular model efficiently identifies type 
1 G1 tumors, positioning them all in cluster 2. Lax Kuman 
histological classification likewise resulted significantly 
associated with cluster subdivision; about 85% of the 
low grade tumors were grouped in cluster 2. By contrast, 
no differences in age, BMI, FIGO stage, lymph nodes 
positivity between the two clusters were observed.

Molecular based clustering distinguished 
two groups of patients with different trend of 
survival

Next, we sought to investigate whether molecular 
clustering could be effective to distinguish patients with 
different prognosis. To this purpose, a Cox proportional 
hazard model was applied to compare the overall survival 
and the disease free survival between the two clusters.

At first, we performed the analysis over all 89 EC 
patients. Table 2 summarizes the number of events of death 
and recurrence registered in total population and reported 
the hazard ratio between the two clusters. The obtained 
differences between the two groups were not statistically 
significant (Figure 1B). However, due to the tumor type, 
where deaths and recurrence are quite rare, the changes in 
terms of recurrence between the two clusters (from 22% of 
cluster 1 to 14% of cluster 2) are indeed clinically relevant. 

The same analysis was then performed on selected 
cases, composed of 82 type 1 ECs included in the genetic 
profiling (Figure 1C). When restricted to an histologically 
homogenous cohort, the Cox proportion hazard model 
demonstrated that the molecular clustering, inferred on the 
basis of the genetic profile, correlates significantly with 
patient’s disease specific survival (Logrank P value = 0.033). 
In particular, cluster 2 presented a 4 times lower risk 
of death because of the tumor (HR = 0.26) (Table 2).  
By contrast disease free survival probability was not 
significantly different between the two clusters (Logrank 
P value = 0.108). 

Overall, these data seem to indicate that the 
molecular based clustering, proposed in this model, is 
suitable to distinguish “poor prognosis” EC patients 
(cluster 1) from “good prognosis” EC patients (cluster 2). 

Mutational status of a small group of genes 
influences tumor grading and patients prognostic 
classification

In order to investigate which genes were the most 
relevant in this model and for the clustering of EC patients, we 
generated an heatmap to represent the number of mutations 
occurred in each gene for any single case (Figure 2). 

Interestingly, heatmap representation shows that no 
mutations in APC gene were found in cluster 2 patients, 
while 9 mutations (corresponding to 5 out of 23 patients: 
21.7%) were observed in cluster 1. By contrast, no 
mutations in KRAS were observed in cluster 1, while 14 
patients in cluster 2 presented at least one KRAS mutation 
(14/66, 21.2%). Mutations in PIK3CA were observed in 
23/23 (100%) patients in cluster 1 and 14/66 (21.2) in 
cluster 2, but all tumors presenting more than one variant 
for PIK3CA were localized in cluster 1. In cluster 1 19/23 
(82.3%) patients presented both PIK3CA and PTEN 
mutation. In cluster 2 the coexistence of these mutated 
genes was observed only in 9/66 (13.6%) cases.

In order to statistically investigate these observations 
we analyzed the frequencies of mutations of each gene in 
the two clusters (Table 3). Statistical univariate analysis 
confirmed the significantly different distribution of 
APC, CTNNB1, KRAS, PIK3CA, PTEN, as observed 
in the heatmap. Furthermore, multivariate analysis 
confirmed a significant different distribution of CTNNB1 
and PIK3CA mutations, suggesting a possible role of 
these gene mutational profiles as drivers of the cluster 
generation. In addition, total mutational load (calculated 
considering all 26 Trusight tumor genes) was found to be 
statistically different in the two clusters: while in “bad 
prognosis” cluster 1 a mean of 6 mutations for patient was 
observed, in cluster 2 the mean mutational load was only 
2, suggesting as expected that the coexistence of a larger 
number of mutations could influence the development of 
a worse tumor phenotype. 
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Finally, we explored the correlation between genes 
mutations and EC tumor grade (Table 3). In a univariate 
analysis KRAS, PIK3CA and TP53 mutations presented 
a frequency distribution significantly different among the 

distinct tumor grades. In particular KRAS mutations were 
more recurrent in low grade type 1 EC (p = 0.043) while 
single or double mutations of PIK3CA and TP53 occurred 
with higher frequency in high grade EC (p = <0.001). The 

Figure 1: Unsupervised hierarchical clustering and survival analysis. (A) Binary unsupervised hierarchical clustering 
performed on the total EC cohort. In x axis sample ID and relative tumor grade were reported, in y axis height expresses the distance 
between clusters. Cluster 1 and cluster 2 were respectively colored in red and blue. (B) Total EC cohort (89 patients) considered. Kaplan 
Meier curves were used to compare overall survival and disease free survival of patients in cluster 1 with those of patients in cluster 2. (C) 
Type 1 EC cohort (82 patients) considered. Kaplan Meier curves were used to compare overall survival and disease free survival of patients 
in cluster 1 with those of patients in cluster 2. 
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specific association of PIK3CA and TP53 mutations and 
tumor grade was also confirmed in the multivariate analysis.

A data mining tool based on few genes mutation 
analysis could support the prognosis of EC 
patients

All together, these data indicate that mutation analysis 
in a limited number of genes could generate a model to 
improve risk-based stratification of EC patients. In order 
to provide the clinician with an easy and useful tool for the 
EC patients prognostic classification, we used a data mining 
approach to define a consecutive sequence of rules and to 
generate a schematic representation of the model.

Figure 3A shows a classification tree that was 
created to summarize principal rules that drove patients 
clusterization. PIK3CA, PTEN and CTNNB1 mutational 

status appears to be the main drivers in cluster generation. 
In particular, patients presenting more than one mutation in 
PIK3CA are predicted to have a bad prognosis (cluster 1) 
while patients with no mutation in PIK3CA can be 
automatically classified in good prognosis group (cluster 2).  
Instead, in patients with only one mutation in PIK3CA, 
the evaluation of PTEN and CTNNB1 will be necessary: 
coexistence of mutations in PIK3CA, PTEN and CTNNB1 
can be considered a marker of bad prognosis (cluster 1)  
while women with one mutation on PIK3CA but no 
mutation in PTEN are predicted to have a better survival 
(cluster 2). A 10-fold cross validation was used to evaluate 
this data mining method. The decision tree proposed above 
had 90% classification accuracy, 76% Matthew Correlation 
Coefficient, 74% sensitivity and 97% specificity. 

However, 14 out of 89 patients were not classified 
in accordance with the proposed model, suggesting the 

Table 1: Distribution of clinical features within the two clusters
CLUSTER

1
N, (%)

2
N, (%) P value

Tot 23 66

Age 64.8 ± 10.1 66.6 ± 11.7 64.1 ± 9.6 0.328

BMI 30.7 ± 8.4 31.8 ± 10.0 30.4 ± 7.9 0.523

Grade <0.001

G1 33 0 (0.0) 33 (100.0)

G2 16 7 (43.8) 9 (56.2)

G3 33 13 (39.4) 20 (60.6)

Histotype 2 7 3 (42.9) 4 (57.1)

Lax Kurman 0.037

Low 49 7 (14.3) 42 (85.7)

High 36 13 (36.1) 23 (63.9)

NA 4 3 1

FIGO Stage 0.522

I -II 74 18 (24.3) 56 (75.7)

III-IV 15 5 (33.3) 10 (66.7)

Lymph node positivity 1

0 80 21 (26.2) 59 (73.8)

At least 1 9 2 (22.2) 7 (77.8)

Adjuvant therapy 0.253

No 23 4 (17.4) 19 (82.6)

Yes 44 15 (34.1) 29 (65.9)

NA 4 18

P value were calculated performing Fisher test.
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need of improving the sensibility of this tool through the 
analysis of additional mutational hotspots. 

DISCUSSION

To date histological characterization and staging 
are the gold standard for EC prognosis. Different tumor 
histological criterion such as Bockman typing, FIGO stage, 
grading and Lax Kurman binary classification [3–5, 11, 12] 
can be used to predict EC outcome. Nevertheless, in some 
morphologically intermediate and doubtful cases, anatomo-
pathological classification and risk based stratification turns 
out to be insufficient and inefficient.

In this study we explored the mutational profile of a 
selected cohort of EC with the aim of developing a simple 
genetic-based tool to improve the accuracy of the current 
stratification methods for EC patients. We investigated the 
occurrence of mutations in a panel of 26 cancer related 
genes, in a population of 89 EC with different histological 
characteristics and different outcome. An unsupervised 
hierarchical clustering analysis demonstrated that the 
mutational profiles obtained from this analysis effectively 
separate endometrial tumors in two groups characterized 
by different tumor grades and different prognosis.

Statistical analysis were performed to define which 
of the genes investigated could be considered principal 
drivers of the prognostic clustering: APC, CTNNB1, 
PIK3CA, PTEN, SMAD4 and TP53 resulted as the most 
influencing mutated genes. Moreover, rules definition 
indicates that not only the presence or absence of somatic 
and damaging mutations on these genes, but also the 
number of variants occurred on the same gene in each 

sample can be determinant in predicting patient outcome. 
Finally a data mining strategy based on the generation of 
a decision tree was used to summarize a consequential 
list of classification rules applicable to perform EC risk 
stratification based only on molecular data (Figure 3B). 

The PI3K pathway activation regulates key 
aspects of cancer biology including metabolism, cellular 
growth, survival and resistance to apoptosis [13]. PTEN 
counteracts the activation of PI3K pathway by hydrolyzing 
and inactivating phosphatidylinositol 3,4,5- triphosphate 
(PIP3), the molecule responsible for the activation of the 
signalling cascade [14]. The PI3K/AKT/mTOR pathway is 
also involved in cross-talk with other signalling pathways, 
including the RAS/RAF/MEK [15] and estrogen receptor 
(ER) [16, 17]. Data from the literature, indicate that 
constitutive activation of the PI3K/AKT pathway in EC 
occurs mostly through mutational inactivation of PTEN or 
by mutational activation of PIK3CA [18]. A high frequency 
of PIK3CA and PTEN mutation and often coexistence of 
mutations in both these genes have already been described 
as frequently occurring in EC [19]. Interestingly, in our 
analysis, PIK3CA and PTEN mutations were identified as 
the principal determinants of patients prognostic clustering 
further highlighting the fundamental role of this pathway 
in EC. Moreover we showed that two PIK3CA mutations 
or the coexistence of PIK3CA and PTEN mutations are 
needed to influence endometrial cancer prognosis. Our 
observations, in accordance with data presented by Oda 
et al. [19] that described the lack of influence of a single 
PIK3CA mutation on EC, indicated that in EC more than 
one mutational event in PI3K/AKT pathway genes is 
necessary to functionally influence this pathway and to 

Table 2: Cox proportional hazard model for overall survival and disease free survival comparison between the 2 
clusters
Total Population (89)

Patients Events
N, (%) HR Logrank P value

Overall Survival
Cluster 1 23 4 (17%) - -

Cluster 2 66 7 (11%) 0.46 0.205

Disease Free 
Survival

Cluster 1 23 5 (22%) - -

Cluster 2 66 9 (14%) 0.42 0.119
Histotype 1 Population (82)

Patients Events
N, (%) HR Logrank P value

Overall Survival
Cluster 1 20 4 (20%) - -
Cluster 2 62 5 (8%) 0.26 0.033

Disease Free 
Survival

Cluster 1 20 4 (20%) - -

Cluster 2 62 7 (11%) 0.38 0.108

Total population (89 patients) and only histotype 1 population were considered.
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induce a constitutively activated cascade fostering tumor 
aggressiveness.

Given the frequency of abnormalities in the PI3K/
AKT pathway, this signaling pathway represents one 
of the most promising targets for EC therapy. Thus, the 

identification of genetic mutations within key genes of 
this pathway could represent valuable markers for patient 
selection and therapy response monitoring. 

The third gene involved in the proposed prediction 
model was CTNNB1. For its high mutation frequency, the 

Figure 2: Gene mutations heatmap. Y axis show clusters dendrogram, each row represent a patient and a color codify for the 
histological grade of the tumor. X axis reports the gene list. In each column the number of mutations of a gene in each samples are 
represented. Blue box identifies samples in cluster 2, while red box identifies samples in cluster 1.
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Table 3: Univariate and multivariate statistical analysis of distribution of genes mutations in population clusters and 
tumor grades

Clusters Tumor Grading

Gene mutations 1 2 P Adjusted 
P G1 G2 G3 Type 2 P Adjusted 

P
Total patients 89 23 66 33 16 33 7
APC <0.001 0.003 0.048 0.744
0 84 (94.4) 18 (78.3) 66 (100.0) 33 (100.0) 15 (93.8) 30 (90.9) 6 (85.7)
1 2 (2.2) 2 (8.7) 0 (0.0) 0 (0.0) 1 (6.2) 1 (3.0) 0 (0.0)
More than 1 3 (3.4) 3 (13.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (6.1) 1 (14.3)
BRAF 1 0.382 0.924 0.130
0 84 (94.4) 22 (95.7) 62 (93.9) 31 (93.9) 16 (100.0) 30 (90.9) 7 (100.0)
1 5 (5.6) 1 (4.3) 4 (6.1) 2 (6.1) 0 (0.0) 3 (9.1) 0 (0.0)
More than 1 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
CTNNB1 0.001 0.006 0.742 0.420
0 65 (84.3) 14 (60.9) 61 (92.4) 32 (97.0) 8 (50.0) 28 (84.8) 7 (100.0)
1 13 (14.6) 8 (34.8) 5 (7.6) 1 (3.0) 7 (43.8) 5 (15.2) 0 (0.0)
More than 1 1 (1.1) 1 (4.3) 0 (0.0) 0 (0.0) 1 (6.2) 0 (0.0) 0 (0.0)
EGFR 0.298 0.786 0.710 0.398
0 84 (94.4) 21 (91.4) 63 (95.5) 31 (93.9) 16 (100.0) 30 (90.9) 7 (100.0)
1 4 (4.5) 1 (4.3) 3 (4.5) 2 (6.1) 0 (0.0) 2 (6.1) 0 (0.0)
More than 1 1 (1.1) 1 (4.3) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.0) 0 (0.0)
FBXW7 0.787 0.317 0.905 0.426
0 73 (82.0) 18 (78.3) 55 (83.3) 26 (78.8) 15 (93.8) 27 (81.8) 5 (71.4)
1 11 (12.4) 4 (17.4) 7 (10.6) 5 (15.2) 1 (6.2) 3(9.1) 2 (28.6)
More than 1 5 (5.6) 1 (4.3) 4 (6.1) 2 (6.0) 0 (0.0) 3 (9.1) 0 (0.0)
FGFR2 1 0.409 0.608 0.714

0 79 (88.8) 21 (91.3) 58 (87.9) 29 (87.9) 14 (87.5) 29 (87.9) 7 (100.0)

1 10 (11.2) 2 (8.7) 8 (12.1) 4 (12.1) 2 (12.5) 4 (12.1) 0 (0.0)
More than 1 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
KRAS 0.021 0.222 0.043 0.348

0 73 (82.0) 23 
(100.0) 50 (75.8) 23 (69.7) 16 (100.0) 27 (81.8) 7 (100.0)

1 14 (15.7) 0 (0.0) 14 (21.2) 8 (24.2) 0 (0.0) 6 (18.2) 0 (0.0)
More than 1 2 (2.3) 0 (0.0) 2 (3.0) 2 (6.1) 0 (0.0) 0 (0.0) 0 (0.0)
MET 0.322 0.380 0.612 0.183
0 78 (87.6) 20 (87.0) 58 (87.8) 28 (84.8) 16 (100.0) 28 (84.8) 6 (85.7)
1 7 (7.9) 3 (13.0) 4 (6.1) 2 (6.1) 0 (0.0) 4 (12.1) 1 (14.3)
More than 1 4 (4.5) 0 (0.0) 4 (6.1) 3 (9.1) 0 (0.0) 1 (3.1) 0 (0.0)
NRAS 0.106 0.192 0.151 0.583
0 84 (94.4) 20 (87.0) 64 (97.0) 33 (100.0) 14 (87.5) 31 (94.0) 6 (85.7)
1 4 (4.5) 2 (8.7) 2 (3.0) 0 (0.0) 2 (12.5) 1 (3.0) 1 (14.3)
More than 1 1 (1.1) 1 (4.3) 0 (0.0) 0 (0.0) 0 (0.0) 1 (3.0) 0 (0.0)
PIK3CA <0.001 <0.001 <0.001 0.009
0 52 (58.4) 0 (0.0) 52 (78.8) 26 (78.8) 7 (43.8) 17 (51.5) 2 (28.6)
1 25 (28.1) 11 (47.8) 14 (21.2) 7 (21.2) 8 (50.0) 6 (18.2) 4 (57.1)
More than 1 12 (13.5) 12 (52.2) 0 (0.0) 0 (0.0) 1 (6.2) 10 (30.3) 1 (14.3)
PTEN 0.049 0.264 0.503 0.251
0 33 (37.1) 4 (17.4) 29 (43.9) 12 (36.4) 4 (25.0) 14 (42.4) 3 (42.9)
1 36 (40.4) 11 (47.8) 25 (37.9) 11 (33.3) 11 (68.8) 11 (33.3) 3 (42.9)
More than 1 20 (22.5) 8 (34.8) 12 (18.2) 10 (30.3) 1 (6.2) 8 (24.3) 1 (14.2)
SMAD4 0.106 0.594 0.057 0.743
0 84 (94.4) 20 (87.0) 64 (97.0) 32 (97.0) 16 (100.0) 31 (93.9) 5 (71.4)
1 5 (5.6) 3 (13.0) 2 (3.0) 1 (3.0) 0 (0.0) 2 (6.1) 2 (28.6)
More than 1 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)
TP53 0.186 0.153 <0.001 0.024
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role of CTNNB1 mutations has been often investigated 
in association with EC. In particular, mutations occurred 
in CTNNB1 exon 3 as in our cases were associated with 
an accumulation of B-catenin in nucleus [20] and with a 
consequent activation of Wnt/β-catenin pathway that was 
already associated with worse survival in type 1 EC [21]. 

The same observation on CTNNB1 were reported in a 
recent work that showed an association between CTNNB1 
mutation in low grade EC patients and a higher risk of 
tumor recurrence [22]. 

The method described in this work will need to 
be corroborated in separates sets of ECs and with a 

0 67 (75.3) 15 (65.2) 52 (78.8) 30 (90.9) 13 (81.2) 22 (66.7) 2 (28.6)
1 19 (21.3) 6 (28.1) 13 (19.7) 3 (9.1) 3 (18.8) 10 (30.3) 3 (42.8)
More than 1 3 (3.4) 2 (8.7) 1 (1.5) 0 (0.0) 0 (0.0) 1 (3.0) 2 (28.6)

Figure 3: Schematic decision model. (A) Decision tree for tumors classification in two prognostic clusters. In squares: first row 
reports the majority class, second row expresses the frequency of the majority class, third row reports the number of instances considered 
in that leaf, fourth row shows the class of destination or the next attribute that should be evaluated. (B) Flowchart of the molecular model 
for EC risk stratification.
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bigger cohort of patients to strengthen the prognostic 
differences obtained with our model. These data suggest 
that the approach described by this work could became a 
double function tool. First of all it represents an easy and 
relatively economic molecular profiling of EC that could 
be associated to histological classification to make patients 
prognosis in particular in doubtful and intermediate cases. 
Secondly, the development of a small NGS panel based on 
the mutational analysis of the few genes emerged from this 
model could represent a rapid method to investigate those 
genes that are considered the most promising molecular 
target for EC therapy.

Currently, in the most recent guidelines, some 
management recommendations for EC patients such as 
use of adjuvant therapy are still based on scant evidences 
[23]. The genetic-based model proposed in our study 
could provide a more appropriated and tailored treatment 
to patients diagnosed with EC. In particular, this clustering 
strategy could help to identify a genetic subgroup of 
patients that would benefit for adjuvant therapy and closer 
follow-up but that based on the current classification 
remain undertreated. Moreover, the application of this tool 
could help sparing low risk EC patients from aggressive 
therapy and intensive follow-up.

MATERIALS AND METHODS

Patients selection

Clinical annotations of EC patients treated and 
followed at the Azienda USL -IRCCS di Reggio Emilia 
(Italy) from 2000 to 2016 were checked for cohort 
selection. Patients with histological diagnosis of type I 
and type II EC who received surgery were included in 
the study protocol. Exclusion criteria were: inadequate 
EC management according to internal and international 
guidelines [24, 25], neoadjuvant chemotherapy performed 
before surgery, less than 18 years of age, non-Caucasian 
ancestry, inadequate follow-up according to internal 
guidelines, absence of written informed consent, diagnosis 
of a previous or concurrent cancer(s) and unavailable 
follow-up data. A follow-up was defined “adequate” in 
case of adherence to the following schedule: type I EC at 
stage IA and grading G1/G2 - physical and gynecological 
examination, and transvaginal ultrasound every 6 months 
for the first 2 years, then every 12 months for at least 3 
years; type I EC at stage IB and/or any grading G3 and any 
type II tumor - physical and gynecological examination, 
and transvaginal ultrasound every 6 months for the 
first 5 years. Further investigations such as abdominal 
ultrasound, chest X-ray, computed tomography scan, 
and serum CA 125 levels were performed if clinically 
indicated. 105 patients responded to inclusion criteria 
and were considered for the study. Eighty-nine out of 105 
patients had FFPE tumor tissue useful for genetic analysis.

Clinical, pathological and genetic data of every 
patients remained anonymous and were recorded in an 
electronic password-protected database. The study was 
approved by the Local Ethical Committee and all patients 
provided written informed consent to take part to the study.

Next generation sequencing

DNA was extracted from Formalin fixed paraffin 
embedded (FFPE) EC tissues using Maxwell nucleic 
acid extractor (Promega) and then quantified and quality 
evaluated using Kapa SYBR Fast qPCR kit. 

Trusight tumor 26 kit (Illumina) was used for 
libraries preparation and sequencing was performed on 
Miseq V2 cartridge 300 cycles (2x121).

MiSeq Reporter software was used to elaborate 
MiSeq row data and produce fastq and vcf files. Variant 
studio software (Illumina) was used to visualize list of 
mutations occurred in each sample, annotate them and 
apply selection filters. Mutation were considered reliable 
if presenting a minimum frequency of 5% and a minimum 
coverage of 500×.

Statistical analysis

All analysis performed in this study were elaborated 
using R software.

To generate the unsupervised hierarchical clustering 
it was taken into account the number of non-silent 
mutations occurred in each gene for each patient. Variables 
were expressed as ordinal values with a range from 0 (no 
mutation) to 4. Only data obtained from sequencing were 
used as attributes in the analysis, no clinical variables were 
included. Euclidean distance was used to compute distance 
measures between samples. Ward agglomerative hierarchical 
clustering procedure was applied. A two clusters subdivision 
was chosen to obtain numerically comparable groups.

Analysis of association between clusters, clinical 
characteristics and gene mutations were performed 
using Fisher test and generalized linear models. Survival 
analysis was conducted applying Cox proportional 
hazard model and Kaplan Meier curves were generated. 
Associations and differences were considered statistically 
significant if presented a P value lower than 0.05

Classification tree generation

Orange Canvas software [26] was used to generate 
the classification tree. Mutational status of genes were the 
only attributes considered in the analysis and “cluster 1” 
and “cluster 2” were the two decision class. All attributes 
were defined as continuous. Gain ratio was used as 
attribute selection criterion. For pre-pruning, a minimum 
of 5 instances for leave was fixed. For post-pruning the 
recursively merging of leaves with the same majority 
class was performed and m parameter was fixed to 1. 
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Classification accuracy, sensitivity and specificity of these 
method were calculated after a 10-fold cross-validation. 
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