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Traumatic brain injury (TBI) has been associated with the development of Alzheimer’s

disease (AD) because these conditions share common pathological hallmarks: amyloid-β

and hyperphosphorylated tau accumulation. However, given recent data it is uncertain

if a history of TBI leads to the development of AD. Moreover, chronic traumatic

encephalopathy (CTE), caused by repetitive mild TBI and characterized by progressive

neurodegeneration with hyperphosphorylated tau, has come to be recognized as distinct

from AD. Therefore, it is important to elucidate the clinical outcomes and molecular

mechanisms underlying tau pathology following TBI. We summarize the histopathological

features and clinical course of TBI in CTE, comparing the tau pathology with that in

AD. Following brain injury, diffuse axonal injury, and hyperphosphorylated tau aggregates

are observed within a shorter period than in AD. Hyperphosphorylated tau deposition

usually begins in the perivascular area of the sulci in the cerebral cortex, then spreads

unevenly in the cortex in CTE, while AD shows diffuse distribution of hyperphosphorylated

tau in the cortical areas. We also highlight the molecular profile of tau and the

implications of tau progression throughout the brain in both diseases. Tau contains

phosphorylation sites common to both conditions. In particular, phosphorylation at Thr231

triggers a conformational change to the toxic cis form of tau, which is suggested to

drive neurodegeneration. Although the mechanism of rapid tau accumulation remains

unknown, the structural diversity of tau might result in these different outcomes. Finally,

future perspectives on CTE in terms of tau reduction are discussed.

Keywords: tau, traumatic brain injury, chronic traumatic encephalopathy, cis p-tau, prion

INTRODUCTION

Traumatic brain injury (TBI) is defined as damage to the brain caused by an impact such as a
blow or jolt to the head. In contrast to the previous view that most people fully recover from
mild TBI, a recent scoping review revealed that approximately half of patients experience serious
long-term cognitive impairment, including problems with executive function, learning memory,
attention, processing speed, and language function (1). A large cohort study using data from 2.8
million medical records showed that a single mild TBI was associated with a 20% greater risk of
dementia (2). Moreover, emerging data have indicated that moderate and severe TBIs demonstrate
a dose-response trend as risk factors for neurodegenerative diseases, including cerebral atrophy
(3, 4), Alzheimer’s disease (AD) (5), chronic traumatic encephalopathy (CTE) (6–10), and
Parkinson’s disease (PD) (11–13). However, the underlying mechanisms between TBI and
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these neurodegenerative diseases remain unknown. While
tauopathy is a common pathological finding and there seems
to be a close association between tau pathology following
TBI and dementia, it has long been debated whether TBI
can specifically lead to AD, or whether CTE following
TBI can cause AD. Here we review both the pathological
and molecular features of tau in TBI, including prospective
therapeutic strategies.

TAU PATHOLOGY

Tau is an abbreviated or alternative term for the microtubule-
associated protein tau (MAPT). Microtubules are essential for
the normal trafficking of cellular cargo in neuronal axonal
projections (14). Under normal conditions, MAPT is a soluble
protein that facilitates microtubule stabilization in cells, and
is found in particularly high concentrations in neurons. In
pathological conditions, tau can be more phosphorylated than
normal (phosphorylation, Figure 1A). Hyperphosphorylated
tau molecules dissociate from microtubules in the axon,
translocate to the cell body and proximal dendrites, and
aggregate into intracellular inclusions termed neurofibrillary
tangles (NFTs), leading to impaired axonal function. Tau
hyperphosphorylation itself decreases tau binding to
microtubules and promotes tau fibrillization (15, 16).
Furthermore, there is growing evidence that tau aggregates
can recruit other tau aggregates to themselves and then spread to
surrounding regions (17).

The term “tauopathy” was used for the first time in 1997
in the context of familial multiple system tauopathy with
presenile dementia, a disease with abundant NFTs. Tauopathy is
currently a collective designation of diseases, such as AD, Pick’s
disease, frontotemporal lobar degeneration (FTLD), progressive
supranuclear palsy (PSP), and corticobasal degeneration,
in which abnormal accumulation of phosphorylated tau
(p-tau) protein in cell bodies is considered to be important
in pathogenesis. Accumulated p-tau protein is observed
as NFTs in neurons and glial cytoplasmic inclusions in
astrocytes and oligodendrocytes. There are six isoforms of
tau in the human brain (Figure 1B). Tau isoforms with
three microtubule-binding domains, designated as 3-repeat
tau (3R-tau), are generated by the splicing of exon 10 and
are observed in Pick’s disease (18), whereas tau isoforms
with four microtubule-binding domains, designated as 4-
repeat tau (4R-tau), accumulate in PSP and corticobasal
degeneration (19). All 3R- and 4R-tau isoforms are contained
in filamentous inclusions in AD, Down syndrome, CTE, and
the amyotrophic lateral sclerosis and parkinsonism-dementia
complex of Guam syndrome following TBI (details below)
[(20–22); Table 1].

Abbreviations: AD, Alzheimer’s disease; CTE, chronic traumatic encephalopathy;

DAI, diffuse axonal injury; FTLD, frontotemporal lobar degeneration; MCI, mild

cognitive impairment; p-tau, phosphorylated tau; TBI, traumatic brain injury;

TDP-43, TAR DNA-binding protein 43.

PATHOLOGICAL COMPARISON BETWEEN
TAU IN TBI AND ALZHEIMER’S DISEASE

Single TBI
One of the reasons why TBI has been considered to increase
the risk of AD is that they share similar pathological features
and a clinical course involving a dementing process. Two main
pathological hallmarks of AD are the extracellular deposition
of amyloid-β (Aβ) aggregates and hyperphosphorylated tau
(37). Diffuse axonal injury (DAI) and Aβ deposition were
identified in up to 30% of patients who died acutely following
a single TBI (38–41); these findings were present even just
a few hours after the TBI occurred (39). By contrast, several
studies with a short observation period failed to identify tau
pathology (40, 42). More recent studies, however, showed
that up to a third of patients with even a single episode of
TBI developed NFT pathologies, and there seemed to be an
association between even a single TBI and the development
of dementia (43, 44). Similarly, severe TBI in wild-type mice
induced progressive tau pathology that spread to the contralateral
side of the injury (43). A recent proteomics study comparing
diffuse and focal TBI patients showed heterogeneity among
the different subtypes of TBI (45). In that study, the presence
of DAI caused larger global alterations in the cortical tissue
than focal TBI, resulting in increased production of proteins
related to neurodegeneration and reduced protein production
related to antioxidant defense (45). These findings suggest
that even a single TBI can induce progressive tau pathology
for years after the initial injury, especially in the presence
of DAI.

Repetitive TBI
Hyperphosphorylated tau aggregates and NFTs are often
detected after TBI in combat-experienced military veterans and
professional sports players at high risk of repetitive head injury,
such as American football players, boxers, and wrestlers (6–10).
These patients present clinically with mood and behavioral
disorders and cognitive impairment known as CTE, previously
termed “punch-drunk syndrome” or “dementia pugilistica”
(7, 23, 46). Comprehensive analysis of post-mortem brains from
individuals who experienced repetitive mild TBI revealed a
strikingly high frequency of CTE (68/85 cases), with pathological
changes distinct from those of other neurodegenerative diseases,
including AD [Figure 1C; (8)]. As shown in Table 1, cavum
septum pellucidum and enlargement of the lateral and third
ventricles are often observed in CTE. Distinct diffuse cortical
atrophy, which is characteristic of AD, is not common in
CTE (47). Histologically, NFT is one of the most common
pathological findings in CTE, and has been observed focally
and perivascularly in the cerebral cortex, with a predilection
for deep sulci in the superficial neocortical layers (layers II
and III) [Figure 1C; (7–9, 24, 48)]. In the later stages of CTE,
NFTs typically spread irregularly to the neocortex, medial
temporal lobe, diencephalon, basal ganglia, and brainstem.
By contrast, NFTs in AD first develop in the brainstem
and entorhinal cortex (Braak stage I–II), then in the medial
temporal lobe (Braak stage III–IV), and finally in the neocortex
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FIGURE 1 | Formation of hyperphosphorylated tau aggregates. Under normal condition, the microtubule-associated protein tau is soluble and abundant in axons of

neurons. In pathological conditions, tau can be hyperphosphorylated and dissociates from microtubules. Then hyperphosphorylated tau translocates to the cell body

and aggregates into intracellular inclusions termed paired helical filaments (PHFs) and neurofibrillary tangles (NFTs). (B) Tau isoforms. There are six isoforms of tau in

human brain. Tau isoforms with four microtubule binding domains, designated as 4R-tau, are accumulated in progressive supranuclear palsy (PSP) and corticobasal

syndrome (CBS), whereas tau isoforms with three microtubule binding domains, designated as 3R-tau, are observed in Pick’s disease. All six tau isoforms are involved

in AD. This pattern is also detected in Down syndrome (DS), and amyotrophic lateral sclerosis and parkinsonism-dementia complex of Guam syndrome (ALS/PDC),

and chronic traumatic encephalopathy (CTE) following TBI. (C) Characteristic pathology in AD and CTE. Upper panels: AD brains show diffuse cortical distribution of

neurofibrillary tangles, preferentially distributed in laminae III and V without accentuation deep within sulci. Few fibrillary tangles exist around the small vessels. Double

immunostaining demonstrates the coexsistence of abundant amyloid-β plaques (red) and interspersed PHF-1 neurofibrillary tangles (brown). Lower panels: In CTE,

AT8 staining exhibits irregular cortical distribution of p-tau pathology with prominent subpial clusters of p-tau astrocytic tangles, focal accumulation deep within sulci,

and neurofibrillary tangles in superficial cortical laminae II–III. Perivascular distribution of astrocytic tangles and neurofibrillary tangles are prominent in the small vessels.

Double immunostaining reveals dense neurofibrillary tangles (brown) without amyloid-β plaques (red). Reproduced with permission from McKee et al. (8). (D)

Representative tau phosphorylation sites in AD and CTE. CTE shares common phosphorylation sites with AD. Phosphorylation of tau at Thr231 enables the cis-trans

conformational change of p-tau Cis and the trans formation of phosphorylated tau. Trans formation of p-tau, observed in healthy subjects, promotes microtubule

assembly, and is critical for normal neuronal function. Phosphorylation status is unstable and easy to be dephosphorylated. Cis p-tau is stable and resistant to binding

to microtubules, protein phosphatases, and degradation. In AD and TBI, cis p-tau is robustly accumulated and thereby causes and spreads tau aggregation,

contributing to the development of neurodegeneration.

(Braak stage V–VI), where NFTs are evenly distributed in
layers III and V (8, 25, 37, 49, 50). A previous study using 2-(1-
{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)

malononitrile ([F-18]FDDNP)-PET imaging, which identifies
NFTs in living humans, demonstrated that professional
American football players with suspected CTE had fibrillar
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TABLE 1 | Comparison of pathology between CTE and AD.

CTE AD

Regions of brain atrophy Cavum septum pellucidum, frontal lobe, temporal lobe

diencephalon, mammillary bodies, ventricular enlargement (23)

Diffuse (particularly medial temporal lobe) (21)

Tau protein All six isoforms

(3R- and 4R-tau) (24)

All six isoforms

(3R- and 4R-tau) (24)

Tau progression First perivascular area in the neocortex, locus coeruleus,

diencephalon, and medial temporal lobe(particularly layers II and

III) (6)

First in the brainstem, then the entorhinal cortex, amygdala,

hippocampus, basal temporal cortex, insular cortex, and

basal frontal cortex (particularly layersIII and V) (21)

p-tau deposition Patchy irregular distribution in superficial layers of adjacent

cortex (6)

Diffuse distribution in neocortex (21, 25)

Phosphorylation sites T175, S199, S202, S205, T231, Y394, Y396, S422 (26–30) T175, T181, S199, S202, S205, T212, T231, S262, Y394,

Y396, S422 (31–34)

Axonal injury Extensive in white matter tracts (6) Sparse

Aβ Relatively absent36) Prominent (21)

TDP-43–positive inclusions 85%

in the cortex, white matter, diencephalon, and brainstem (5–7)

15–75%

in the hippocampus and frontal cortex (35, 36)

Aβ, amyloid-beta; S, serine; T, threonine; TDP-43, TAR DNA-binding protein 43; Y, Tyrosine, 3R-tau, 3-repeat tau; 4R-tau, 4-repeat tau.

insoluble protein aggregates in the brainstem white matter tracts,
with axonal damage along subcortical and cortical brain areas.
This radiological deposition pattern is consistent with paired
helical filament (PHF)-tau distribution in the autopsy samples
from mild TBI patients. Importantly, these pathological changes
in TBI are not consistent with Braak stage in AD (51, 52). Given
these findings, it is plausible that CTE may occur frequently in
cases of repetitive TBI. Since CTE is characterized by the distinct
distribution of hyperphosphorylated tau pathology seen in AD,
we discuss the differences in tau levels in biofluids in these
diseases, including the possibility of utilizing tau as a biomarker.

TAU PROTEIN AS A BIOMARKER

The clinical features of CTE are wide-ranging, and its diagnosis is
made based on pathological findings in brain biopsy samples and
at post-mortem examination. Therefore, prognostic biomarkers
for CTE and TBI-related AD have been required.

The serum levels of total tau (t-tau) in concussed sports
players increased in the acute stage following TBI, and decreased
in the subacute stage (53). Similarly, serump-tau (T231 and S202)
and t-tau were elevated in severe human TBI and in a rodent
model of repetitive mild TBI during both the acute and subacute
periods (54–56). Acute elevation of both p-tau levels and the p-
tau/t-tau ratio was found in TBI patients with poor outcomes
(55). In addition, the recovery of serum t-tau to pre-injury levels
correlated well with good outcomes (57). Elevations of plasma t-
tau, p-tau (T231), and the p-tau/t-tau ratio were also observed in
the chronic phase (6–18 months) following moderate-to-severe
TBI and in military personnel with repetitive TBI (58, 59). While
these data can help predict the short-term outcomes of TBI, they
cannot clarify the long-term prognosis or identify CTE.

Stern et al. found that higher plasma exosomal tau levels in
professional football players were associated with poor memory
and psychomotor speed (60). Similar findings were seen in
military personnel (61). Since exosomes are very stable, cross the
blood–brain barrier, and reflect their cellular origin, exosomal

tau may serve as an ideal predictor of CTE. The ultrasensitive
tau seed amplification assay detected that seeding activity of tau
aggregates in AD and CTE was markedly higher than in other
tauopathies, such as Pick’s disease, and seed concentrations in
the brains of two CTE cases were comparable to the lowest
concentrations in AD brains (62). These methods might be useful
to distinguish CTE from AD.

CONFORMATIONAL VARIATIONS OF
HYPERPHOSPHORYLATED TAU

In most TBI cases, tau phosphorylation in the brain occurs
as early as a few hours after the injury and then spreads at
a high density within a shorter period than in AD (44). The
mechanism underlying the rapid protein accumulation following
TBI remains unknown. The molecular profile and function of tau
might be different between AD and other tau-related disorders,
including TBI. Analysis of tau phospho-epitopes in AD, FTLD,
PSP, and CTE has shown that each neurodegenerative disease
has a specific profile of p-tau formation (63–66). In addition,
the misfolding and hyperphosphorylation statuses of tau proteins
depend on mutations or different isoforms of tau, which may
result in phenotypic differences between AD and other tau-
related disorders (67). For example, mutated FTLD-tau proteins
change their conformation without hyperphosphorylation (16,
26), which has not been observed in AD (67, 68). Tau
phosphorylation sites in AD have been identified on serine
(Ser) or threonine (Thr) residues that precede a Pro residue
(31, 32). Three sites of tau phosphorylation, namely, Thr231,
Thr181, and Ser199, serve as biomarkers for AD (27, 33, 34). In
particular, hyperphosphorylation of tau at Ser199/Ser202/Thr205

or Thr212/Thr231/Ser262 is sufficient to induce microtubule
instability that results in cell death (33, 34). Additionally, tau
phosphorylated at Tyr394 has also been reported in PHFs from
AD brains (28). In CTE, phosphorylation at Thr175 and Ser422

has been reported in addition to that at Ser199and Thr231 (29–31).
A study in mice reported that TBI triggered calpain-2 activation
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and resulted in increased tyrosine phosphorylation of kinase
c-Abl at Tyr245, which enhanced its kinase activity and p-tau
at Tyr394 (69). Other common phosphorylation sites (Ser199,
Ser202/Thr205, and Ser396) were also found in both AD and CTE
(70). Whole RNA sequencing analysis of post-mortem brain
tissue revealed that the expression of PPP3CA, which encodes a
calcium-dependent, calmodulin-stimulated protein phosphatase,
was decreased in CTE compared to normal controls, and the
PPP3CA protein level was inversely correlated to the p-tau
(Ser202/Thr205) level (70).

The same tau epitopes were found to map to filamentous tau
inclusions in CTE and AD brains, although the abnormal tau
proteins fromCTE brains did not overlap with the six abnormally
phosphorylated tau isoforms in AD (25). Similarly, insoluble tau
protein from CTE brains contained all six isoforms, while an
AD case contained the three isoforms that comprise PHFs (31).
A recent study showed that phosphorylation of tau at Thr231

enabled the cis-trans conformational change of p-tau [Figure 1D;
(71)]. The cis conformation of p-tau appears in neurons within
hours after TBI, prior to the formation of tau oligomers, pre-
fibrillary tangles, and NFTs, and results in axonal disruption (71).
In both a TBI mouse model and TBI patients, cis p-tau not
only triggered neurotoxic effects, but also spread to other brain
regions, including the hemisphere contralateral to the injury,
causing cognitive impairment (71). These data suggest that cis
p-tau functions as a driver of neurodegeneration. Indeed, p-tau
with the cis conformation, but not the healthy, physiological
trans form, is detectable in both CTE and AD patients (72).
Since the molecular weight of insoluble p-tau (Ser199) differed
between CTE and epileptic brains (29), tau conformation may
differ depending on disease type. A more precise understanding
of the structural diversity of tau might clarify the basis for
the heterogeneity of tau-related pathologies and the molecular
differences between CTE and AD.

PRION-LIKE PROPAGATION OF TAU
PATHOLOGY IN TBI

In prion disease, misfolded prion proteins act as seeds to initiate
the misfolding and aggregation of the native prion protein (73).
Eventually, the long polymers undergo fragmentation to release
more seeds, which accelerate the rate of prion propagation (73).
Tau pathology (especially 4R-tau) in AD appears to develop
hierarchically along anatomical connections, which suggests cell-
to-cell transfer of toxic tau through neuronal cell contacts (74,
75). Studies of animal models imply that tau transfer may be
partly mediated by a prion-like templated misfolding of tau
(65, 76–80). Indeed, inoculated misfolded cellular prion protein
(PrPc) can promote Aβ aggregation in AD mice by cross-seeding
(81), accelerating tau hyperphosphorylation (82, 83). As such,
increased levels of total and phosphorylated tau following severe
TBI were associated with PrPc production levels (58). Inoculation
of brain homogenates from a mouse with severe TBI into the
hippocampus and cerebral cortex of wild-type mice enhanced
tau propagation and led to memory deficits; similar findings in
the same study were observed using brain homogenates obtained

contralateral to the side of the TBI, which supports a prion-
like propagation mechanism of tau (43). Since misfolded tau
aggregates in AD and CTE were replicated in cells expressing
both 3R- and 4R-tau isoforms, but not cells expressing either
3R-tau or 4R-tau, the propagation properties of misfolded tau
aggregates in AD andCTE are distinct from those in Pick’s disease
and PSP (22).

It is also plausible that hyperphosphorylated tau deposition
promotes the accumulation of other aggregate-prone proteins.
In addition to tauopathy, CTE is accompanied by other
proteinopathies such as amyloidopathy and TAR DNA-binding
protein 43 (TDP-43) proteinopathy (7–9), the latter of which
was originally thought to be a specific marker for ALS that
forms ubiquitinated inclusions (35, 36). TDP-43 inclusions were
found in 85% of CTE cases [(8, 84, 85); Table 1]. Especially
in the late stage of CTE, TDP-43 inclusions are severe in the
cortex, white matter, diencephalon and brainstem, a distribution
that is similar to that of NFTs. Partial co-localization of TDP-
43 with tau was detected in the late stage of CTE (8). Like in
AD, aggregated tau propagation in TBI might promote TDP-
43 accumulation. However, it is not yet fully clear why the
pathological tau distribution differs between these diseases.

DOES TBI ACCELERATE THE
DEVELOPMENT OF ALZHEIMER’S
DISEASE?

A retrospective analysis of TBI patients demonstrated that the
onset of AD was significantly earlier in those who survived
from TBI (86, 87), especially in men (88). Examination of
autopsy samples in a small cohort showed an AD prevalence
of 22% in TBI patients, which was significantly higher than
the 14% observed in the general population over age 70 (89).
Since the concept of mild cognitive impairment (MCI) was
accepted (90), it has been recognized that there is a link
between TBI and the early diagnosis of MCI, although no
significant association has been observed between TBI and the
rapid progression from MCI to AD (91). Similarly, retired
American football players with a history of at least three
concussions demonstrated a 5-fold greater prevalence of MCI
(92). Bothmoderate and severe TBI in military veterans were also
associated with an increased risk of developing AD, with onset
accelerated by 2 years (93–95). Accordingly, TBI is associated
with increased risks of MCI and AD, which also accelerate AD
development. Interestingly, Kanaan et al. have documented the
mixed phenotype of AD and CTE (32), where both AD and
CTE may be identified in the same patient. However, it remains
unclear whether ADdevelops concurrently with CTE or if instead
CTE induces AD.

FUTURE TBI TREATMENT PROSPECTS
CONSIDERING TAU PATHOLOGY

There is a growing interest in pathogenic tau as a therapeutic
target, since ablation or reduction of tau restores cognitive
impairment following TBI (96, 97). Different tau kinases have
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been shown to control the binding ability of tau to microtubules
(98). For example, when tau is first phosphorylated by glycogen
synthase-3 or cyclin-dependent kinase-5, its binding ability
to microtubules is inhibited by 79% (98). In addition, the
combination of these kinases accelerates phosphorylation at
Thr231 and Ser262. Replacement of these phosphorylation sites
or inhibition of phosphorylation kinases has been attempted
in vitro and in AD murine models (34, 99, 100). In
TBI, the finding that calpain-2 activation by TBI accelerates
tau phosphorylation at the Tyr394 site (28) suggests that
inhibiting calpain-2 or its pathway may be a promising
treatment strategy.

Given that cis p-tau is a precursor of tau pathology,
proline isomerase Pin1, which converts p-tau from pathogenic
cis to physiologic trans, may be a viable drug target (71,
101, 102). Remarkably, a neutralizing antibody for cis p-tau
that acts both extracellularly and intracellularly facilitated tau
binding to microtubules, restored normal tau function, and
prevented tau spread, axonal damage, and neuronal degradation
in mouse models of both AD and CTE (71, 102, 103).
The cis to trans transition mediated by Pin1 also enhanced
the degradation of p-tau (104, 105). In addition, therapeutic
administration of the cis p-tau neutralizing antibody after TBI
suppressed cis p-tau induction in a TBI mouse model (72).
Further development of therapeutics for clinical application
are expected.

CONCLUSION

We reviewed the distribution, molecular characteristics, and
development of tau pathology in TBI, with a particular emphasis
on CTE. Although the observed tau isoforms are common
between AD and CTE, the brain lesions involving tau are
distinct in both diseases, and each tau progression pattern is
different. Conformational variance may influence the rapid tau
development following TBI. Epidemiological studies have shown
that TBI may be a risk factor for AD as well as CTE, and
more interestingly, the mixed pathology of AD and CTE coexists
in some TBI patients. However, the reasons why clinical and
pathological outcomes differ between patients have yet to be fully
elucidated. Further investigation is needed to provide an effective
treatment for TBI.
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