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Abstract: Many anti-cancer therapeutics lead to the release of danger associated pattern molecules
(DAMPs) as the result of killing large numbers of both normal and transformed cells as well as lysis
of red blood cells (RBC) (hemolysis). Labile heme originating from hemolysis acts as a DAMP while
its breakdown products exert varying immunomodulatory effects. Labile heme is scavenged by
hemopexin (Hx) and processed by heme oxygenase-1 (HO-1, Hmox1), resulting in its removal and
the generation of biliverdin/bilirubin, carbon monoxide (CO) and iron. We recently demonstrated
that labile heme accumulates in cancer cell nuclei in the tumor parenchyma of Hx knockout mice
and contributes to the malignant phenotype of prostate cancer (PCa) cells and increased metastases.
Additionally, this work identified Hx as a tumor suppressor gene. Direct interaction of heme with
DNA G-quadruplexes (G4) leads to altered gene expression in cancer cells that regulate transcription,
recombination and replication. Here, we provide new data supporting the nuclear role of HO-1 and
heme in modulating DNA damage response, G4 stability and cancer growth. Finally, we discuss an
alternative role of labile heme as a nuclear danger signal (NDS) that regulates gene expression and
nuclear HO-1 regulated DNA damage responses stimulated by its interaction with G4.

Keywords: G-quadruplex; heme; nuclear signaling; transcriptional control

1. Introduction

The evolution and maintenance of a permissive tumor immune microenvironment
(TIME) is essential for cancer evolution. The dynamics of the interactions among tumor
and resident immune and non-immune stroma cells is now appreciated to dictate clinical
outcomes in response to a variety of treatments. A primary axis that influences the functions
within the TIME and as well as response to treatment involves the production and response
to DAMPs. We and others have found that labile heme functions as a DAMP through its
interactions with toll like receptors (TLRs) and as a NDS via binding to regulatory DNA
structures that control stress, survival and proliferation related gene sets. In addition, many
genes associated with promoting transformed phenotypes are increasingly identified with
immune modulatory functions that also affect the TIME and have also been shown to be
regulated by heme.

Labile heme released from dying RBC or necrotic cells is scavenged by Hx and de-
livered to macrophages (Mφ) for its degradation by heme oxygenase-1 (HO-1, Hmox1)
to immunomodulatory products: carbon monoxide (CO), iron and the bile pigments,
biliverdin (BV)/bilirubin (BR) (Figure 1). Hmox1 is a stress-induced gene, but it is also
expressed basally in resident Mφ [1–4] and regulates inflammatory responses during
infection [5], tissue injury [5–7] and carcinogenesis [1,8]. We have recently shown that
Mφ either lacking Hmox1 (LysM-Cre:Hmox1flfl) or exposed to heme exhibited a marked
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senescent phenotype, increased p16INK4a expression and DNA damage [9,10]. Further, Mφ

lacking Hmox1 are deficient in their ability to undergo maturation and polarization [2,11], to
activate multiple inflammation-related signaling pathways [12,13] and to clear pathogens
as well as to release cytokines [5].
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Figure 1. A model explaining the role of heme metabolism in the regulation of heme levels and
cancer growth. Labile heme released from dying cells and/or erythrocytes (hemolysis) regulates gene
expression via G4 DNA binding, ROS generation and TLR4 binding. BLVR- biliverdin reductase.

Labile heme is a constituent of the cell debris or hemolyzed RBC and can drive
inflammation as a DAMP via binding to toll-like receptor 4 (TLR4) and promote oxidative
stress in the cell due to presence of reactive ferrous ions (Figure 1) [14]. Low levels of HO-1,
its altered subcellular localization (nuclear isoform), or low levels of Hx are associated
with increased labile heme levels within the TIME [15–17]. Repeated heme exposures may
occur due to bleeding during cancer progression, trauma, or hemorrhage (i.e., surgical
removal of the tumor). Recently, Panigrahy et al. has demonstrated that tumor cells killed
by chemotherapy or targeted therapy (“tumor cell debris”) stimulate cancer growth in a
model of tumor dormancy [18]. Our published data indicate that labile heme or lack of Hx
in the tumor stroma clearly promote cancer progression [10]. This might be in part due to
immune imbalance, but primarily due to altered gene expression in response to heme:G4
interaction within the promoter regions of key oncogenes including c-MYC [19] as well as
heme-induced HO-1 expression.

Our recent findings emphasize the importance of labile heme in the direct regulation
of gene expression via modulation of G4 stability [19] (Figure 1). G4 are well-defined sec-
ondary DNA or RNA structures resulting from Hoogstein hydrogen base pairings between
consecutive guanine nucleic acids coordinated with a metal cation [20,21]. G4 structures
are found throughout the genome and play regulatory roles during transcription [22],
recombination [23,24] and replication [25–27]. As such, G4 structures act as key regulators
of oncogenes and cancer-driving gene promoters including KRas, c-MYC, bcl2, PDGF-A,
Rb, VEGF-A, hTERT [28,29] and telomeres [30–35]. G4 structures form transiently during
S phase of the cell cycle when DNA is temporarily single stranded and are subsequently
unwound by endogenous helicases. G4 regions are known to drive genomic instability [36]
and application of G4 ligands (such as pyridostatin) in cell culture promotes DNA damage,
which is marked by increase in γH2AX staining [30].

Heme has been shown to stabilize G4 in vitro contributing to π-π planar stacking
interactions and metal coordination by the central Fe2+ atom of the porphyrin ring [37].
Recent studies further support this hypothesis and show that G4 DNA sequester free
heme [38] to prevent from its accumulation and pro-oxidant activity.
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Alteration of gene expression due to genetic mutation, deletion, amplification or
abnormalities in chromatin/DNA structure is a hallmark of cancer [39]. Programs of
gene regulation in normal cell are fundamental to coordinate synthesis of RNA and its
subsequent translation. This is achieved by a multi-step and highly interconnected mecha-
nisms involving transcriptional control, mRNA capping, splicing and editing and finally
exporting the mRNA from the nucleus to the cytoplasm for translation [40]. In addition to
the well-recognized changes in the DNA template, epigenetic modification such as histone
acetylation or methylation impact chromatin structure and define transcriptional profiles
in cancer cells [41]. The most studied epigenetic abnormalities in solid cancer are variation
in DNA methylation, alterations in histone proteins structure through post-translational
modifications and histone variants. Such changes in the epigenetic code are partially
caused by metabolic reprogramming in cancer cells [42]. One of the examples of the alter-
ations of gene expression checkpoint is amplification and transcriptional dysregulation of
c-MYC oncogene, which is accompanied by an anabolic transcriptional response driving
proliferation and metabolic adaptation [43]. Majority of transcriptional activity of the
c-MYC promoter is controlled by formation of G4 in the proximal region [28,29]. We have
demonstrated that heme intercalates into the G4 DNA structure in the c-MYC promoter
and affects its stability and function [19].

In this short communication, we will discuss the role of nuclear HO-1 and heme in
cancer, providing new evidence for their roles in DNA damage response, regulation of
G4 dynamics and cancer growth. Specifically, we found that overexpression of truncated
nuclear HO-1 promotes prostate cancer colony growth as efficiently as heme alone. It is
well-appreciated that heme promotes nuclear HO-1, adding to the possible mechanisms of
heme-induced anchorage independent growth. However, we did not see any measurable
effects of a knockdown of HO-1 on colony growth in the absence or presence of heme. We
demonstrated increased DNA damage marked by γH2AX foci in cells treated with heme
and its colocalization with HO-1 staining in the nucleus. Indeed, HO-1 and γH2AX co-
precipitated in cells treated with heme. We also demonstrated helicase activity associated
with these HO-1:γH2AX complexes. These data suggest a mechanism via which HO-
1/heme shape gene expression and downstream signaling during carcinogenesis.

2. Role of Heme Metabolism and Nuclear HO-1 in Gene Expression Control

Heme is both directly and indirectly involved in the control of transcription, DNA
replication and various aspects of cellular metabolism. Heme is a co-factor and regula-
tory element of hemoproteins including mitochondrial cytochrome complexes and several
nuclear transcription factors and nuclear enzymes such as Rev-Erbα, NPAS2, Bach1 and
Drosha [44–48]. The presence of labile heme in the nucleus has been shown using intracel-
lular heme sensors [49,50]. Further, multiple heme transporters have been identified [49,50].
A recently discovered nuclear heme receptor-transporter PGRMC2 has been described in
adipose tissues [51] but has not been studied in cancer or other cell types. Our most recent
data show that heme accumulates in the nucleus of cancer cells, with lower levels observed
in non-transformed cells and drives early-response G4-regulated gene expression. Interest-
ingly, in mice lacking Hx (Hx-/- mice) or treated with labile heme, orthotopic TRAMP C1
prostate tumors grew more rapidly and were more metastatic [19]. Moreover, analysis of
341 human prostate cancer specimens revealed a correlation between low stromal Hx or
low G4 levels in cancer cells and poor prognosis. We also demonstrated that 60% of the
heme-targeted genes displayed G-quadruplexes (G4)-rich promoters, supporting a possible
direct regulation of gene expression through heme binding to these structures [19].

Labile nuclear heme levels are controlled in part by the activity of HO-1, whose
expression is responsive to a variety of stimuli including ROS, endotoxins, heavy metals
and hypoxia and by heme itself [17]. Nuclear HO-1 possesses a lower catalytic activity
compared to cytoplasmic HO-1, which readily degrades heme [52–54]. While nuclear
HO-1 has limited enzymatic activity in cancer cells, it has been described as a downstream
mediator of the activating transcription factor-4 (ATF-4), controlling cancer cell death
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and metastasis through anoikis [52–54]. Of note, high expression of nuclear HO-1 has
been shown to correlate with poor prognosis of prostate, lung and skin cancers and
leukemia [53,55,56].

We have recently demonstrated the tumor-promoting role of labile heme in prostate
cancer colony soft agar cultures, which was associated with an increase in nuclear HO-1
translocation [19]. To define the role of HO-1 in supporting prostate cancer colony growth
in soft agar, we overexpressed a full-length HO-1 and truncated HO-1 (localized to the
nucleus) in PC3 cells (Figure 2A). Full length HO-1 did not affect PC3 colony growth in
soft agar, while nuclear truncated HO-1 (tHO-1) significantly increased the number of
PC3 colonies (Figure 2A,B) suggesting that heme-induced nuclear HO-1 may mediate
some of the effects of labile heme. Importantly, transfection with enzymatically inactive
full-length HO-1 (H25A) promoted growth of PC3 colonies in soft agar (Figure 2C) and
this synergized with heme to increase PC3 colony number (Figure 2C). Depletion of HO-1
by stable knockdown did not affect growth pattern of PC3 cells in the absence of heme, but
resulted in a trend towards slightly higher number and larger colony growth upon heme
treatment compared to control cell line; however, these differences were not significant
(Figure 2D–F). These data support the role for heme-induced HO-1 in cancer progression
and might be associated with early- and late-heme response gene expression [19].
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Figure 2. Nuclear HO-1 accelerates growth of PC3 cells. (A) Immunofluorescence analyses of PC3 cells overexpressing
the Figure 1. the C-terminal 23 amino acid truncated (tHO-1), or the enzymatically inactive (H25A HO-1) HO-1. The
C-terminal truncated tHO-1 localizes in the nucleus (bottom-left panel), while the full length (HO-1) and the enzymatically
inactive H25A HO-1 localize in the cytoplasm of PC3 cells (top-right and bottom-right panel, respectively) compared
to non-transfected cells (top-left panel). (B,C) Anchorage-independent growth in soft agar of PC3 cells overexpressing
HO-1, tHO-1 or H25A HO-1 with or without heme treatment (50 µM) for 3 weeks. n = 3 independent experiments in
triplicates. * p < 0.05, ** p < 0.01. (D–F). PC3 cells with knockdown of HO-1 (shRNA) or transfected with scramble shRNA
(control) were treated with heme (50 µM) for 3 weeks and the number of colonies growing in soft agar was measured.
Immunoblotting confirming the knockdown of HO-1 in the PC3 is shown in (E,F). The materials and methods part is stated
in Supplementary Materials.
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3. Heme and G4 Interaction: Resolution by Helicases

Heme is a high-energy prosthetic group of hemoproteins such as transcription factors,
gas carriers (i.e., hemoglobin), cytochromes and redox enzymes [57,58]. The mechanism by
which nuclear heme induces mutations and/or alters gene expression beyond its ability
to generate ROS due to the high reactivity of its ferrous ion in the Fenton reaction, is
unclear [59]. Maintenance of steady state cellular heme levels is regulated by de novo
heme synthesis by aminolevulinic acid (ALA) synthase (ALAS) and degradation of heme
by the HO family of enzymes [60]. HO-1 also degrades heme from extracellular sources
including aged erythrocytes and cellular debris [61]. Our previous work indicated the role
of HO-1 and heme metabolites in DNA damage responses, which is important mechanisms
controlling cancer development and progression [53,62]. The uptake of labile heme in a
form of heme:Hx complexes is mediated by the myeloid cell-expressed receptor, CD91 (Low
density lipoprotein receptor-related protein 1, LPR1) [63,64]. The liberated labile heme is
transported from phagolysosomes to the cytoplasm via the heme-responsive gene-1 (HRG1)
transporter [65], where it is degraded by HO-1. This is a well-established mechanism in
phagocytotic macrophages, but not studied in the tumor microenvironment or cancer cells.

Nuclear heme interacts with G4 structures embedded in the promoter regions of
key target genes, controlling their expression in cancer cells [19]. Previous work sug-
gested that the porphyrin ring intercalates into the G4 and can affect G4 stability and
function [37,66–70]. In vitro studies have shown that heme is able to coordinate with
d(TTGAGG) oligonucleotides that form G4 structures. Further, G4 are known to sequester
free heme but no molecular mechanisms of such interaction were provided [38]. We have re-
cently demonstrated that heme binding to G4 mitigates the interaction between the c-MYC
promoter and the G4-interacting proteins nucleolin, NM23-H2 and hnRNPK, resulting in
increased c-MYC expression and facilitating tumor growth and metastasis [28]. This effect
is transient, however, and limited by degradation of heme by HO-1, which is induced at
6–8 h upon heme treatment. This negative feedback mechanisms may be lacking in cancer
cells due to low enzymatic activity of nuclear HO-1.

By employing RNAseq, we found that a wide variety of genes such as cell cycle regula-
tors (growth factor signaling, cyclins and S-phase regulators) or epithelial to mesenchymal
transition (EMT) inducers, including TGF-β and Wnt pathway proteins, were transiently
up-regulated in response to heme. We were able to identify G4-rich promotor regions in
sixty percent of these heme-responsive genes, which supports the hypothesis that heme
directly intercalates into G4 within promoters of key genes to regulate tumor growth and
metastatic spread.

G4 structures are resolved by members of the helicase superfamilies, including SF1,
Pif1 or SF2, RecQ, Fanconi anemia group J protein (FANCJ), Bloom syndrome protein
(BLM) and Werner syndrome protein (WRN) [71–73]. Pif1 helicase has been recently shown
to be essential for G4 unwinding [74]. The absence or a non-functional Pif1 helicase (Pfh1)
with an alcohol-alanine-alcohol (SAT) motif mutation is known to result in unresolved G4
structures, causing fork pausing and DNA damage as often seen in human tumors [75,76].
Nuclear heme may regulate a broad variety of genes by directly interacting with G4s in
their promoters. Moreover, we propose that heme-driven expression of nuclear HO-1
may lead to unwinding of G4 structures due to increased helicase-like activity of HO-1 or
HO-1-associated proteins in the nucleus. Interestingly, our analysis revealed that HO-1 has
a highly conserved alcohol-alanine-alcohol (SAT) motif (Figure 3A). This SAT sequence
(173–175 aa in human HO-1) is present in well-known DNA and RNA helicases and is
similar to the SAT motif of Pif1 (Figure 3A). To investigate a possible role of nuclear HO-1 in
resolving G4 complexes, we precipitated HO-1 from the nuclear and cytoplasmic fractions
of PC3 cells using specific antibodies and found that a significant helicase activity was
associated with HO-1 immunoprecipitates (Figure 3B–D). Significantly, heme treatment of
the cells prior to lysis resulted in a 3-fold increase in helicase activity in these precipitates
(Figure 3C). We also observed an increased helicase activity of HO-1 recombinant protein
(Figure 3E), which may suggest a direct unwinding capacity of HO-1. These data also
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suggest that rather than acting primarily as helicase in the nucleus, HO-1 likely recruits
more efficient helicases in vivo since the HO-1 immune precipitates exhibited 4–5-fold
higher helicase activity compared to the HO-1 recombinant protein.
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SAT motif of HO-1 is labeled. (B) Immunoprecpitation (IP) with antibody against HO-1 (α-HO-1, 1 µg) in the nuclear
and cytoplasmic fractions of PC3 cells treated with heme (Heme, 50 µM) or control cells. (C) (24 h). (C) Helicase activity
assays were performed in the lysates of PC3 cells treated with heme for 24 h as previously described [77]. * p < 0.05. Briefly,
1 µg sonicated genomic DNA was incubated with 1 mM ATP, 1× Sally Green, 10 g of protein lysates in the helicase buffer
(200 mM Tris HCl pH 7.6, 25 mM MgCl2, 20 mM DTT, 125 mM KCl, 10% glycerol, 0.5 mg/mL BSA). Reactions were
incubated at 37 ◦C for 30 min and fluorescence was measured at 492 and 530 nm. Percent of unwound substrate was
calculated as described in [77]. (D) Helicase activity assays were performed in the immunoprecipitates of HO-1 in the
nuclear and cytoplasmic fractions of PC3 cells treated with heme for 24 h. ** p < 0.01. n = 3 biological replicates. (E) Helicase
activity of the recombinant HO-1 (Enzo Life Sciences) using 1 g of recombinant protein in the helicase assay as described
above. *** p < 0.001.

The above data indicate that nuclear HO-1 is an important effector protein in response
to heme and may modulate G4 function by supporting temporary or permanent G4
unwinding. Our results are also in agreement with recent data showing that nuclear HO-1
co-localizes with G-quadruplexes and, similar to G4-unwinding helicases, it might be
associated with lower G4 staining [78].

4. Heme Metabolism and Control of DNA Damage-Associated with G-Quadruplexes

DNA is prone to damage by UV light, radiation and various chemicals that promote
generation of ROS. Double-stranded breaks (DSB) and single stranded breaks (SSB) are
recognized by the ATM and ATR kinases resulting in activation of homologous recom-
bination (HR) and non-homologous end joining (NHEJ). We have previously reported
that H2AX phosphorylation (γH2AX), a marker for ongoing DNA damage or repair, was
significantly increased in cells isolated from Hmox1−/− mice [79]. The elevated levels of
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γH2AX were not only seen under basal conditions but were also augmented in these mice
upon treatment with doxorubicin [79]. Knockdown of Hmox1 gene in HEK cells resulted
in the inhibition of ATM phosphorylation and delayed Brca1 activation in response to
DNA damage, suggesting decreased ability to repair DNA breaks in the cells lacking HO-1.
However, no significant change was observed in p53 phosphorylation. Similar effects were
observed upon irradiation of HEK cells with knockdown of HO-1. This indicates that HO-1
may have a significant role in regulating apoptosis, cell cycle progression as well as key
components in DNA damage repair pathway [79].

Heme generates ROS as a result of the Fenton reaction that can cause oxidative damage
and DNA breaks. Induction of HO-1 and generation of CO appear to act as limiting factors
in the DNA damage response signaling. We demonstrated that CO blocks chronic γH2AX
foci formation in irradiated mice. Indeed, we showed a strong induction of phosphorylated
p53, Brca1, or ATM and early induction of γH2AX in the bone marrow indicating early
resolution of DNA damage and longer survival rate of CO-treated mice [79]. This strongly
suggests that CO and HO-1 play a key role in eliciting a repair response after DNA damage.

G4 are linked to genomic stability and thus, are implicated in the etiology of cancer
and other pathologies [80]. We have shown that labile heme and HO-1 are key regulators of
DNA damage: lack of HO-1 or accumulation of labile heme promotes chronic γH2AX foci
accumulation [79]. Upon treatment with the G4 stabilizer, pyridostatin, genomic regions
that contain G4 are marked by γH2AX positive foci [80]. These data are in agreement
with our previous work showing that HO-1 knockout mice exhibited high levels of DNA
damage [79]. Interestingly, HO-1 expression was detected 4 h after heme treatment and
persisted for 24 h, while γH2AX phosphorylation was induced as early as 30 min after
heme treatment (Figure 4A). We found both γH2AX phosphorylation and HO-1 proteins
not only to overlap upon heme treatment (Figure 4A,B) but also to directly interact in the
nucleus (Figure 4C,D). HO-1 may be involved in recruiting other proteins and helicases to
the DNA damage foci or G4. Hence, heme:G4 or HO-1:heme:G4 complexes may attract
co-activators of transcription or helicases capable of regulating gene expression via G4
stability. These questions will be addressed in future studies. Prior work demonstrated
lower levels of G4 in normal hematopoietic cells deficient in HO-1 compared to wild type
cells, which correlated with higher overall helicase levels (i.e., Brip1, Pif1) [78]. By using
PLA technique in HEK293 cell line, it was demonstrated that HO-1 was localized in a
proximity to G4 in the cytosol and to the much lesser extend in the nucleus and did not
interact directly with G4 structures [78]. Here, we provided an explanation how HO-1 by
interacting with γH2AX foci in cancer cells may impact G4 structures as G4 are marked by
γH2AX positive foci [80]. Overall, these data suggest a strong link between the nuclear
HO-1 function and response to DNA damage in cancer cells upon heme treatment.

4.1. Heme:G4 as Therapeutic Targets in Cancer

We have shown a strong association of low Hx levels and G4 in the tumor stroma with
poor prognosis in a large cohort of prostate cancer biopsies. Moreover, we found higher
levels of heme and lower levels of Hx in the plasma of cancer patients compared to healthy
subjects. Mice lacking the peroxiredoxin-1 gene (Prdx1−/−) exhibit severe hemolysis and
die prematurely experiencing high rates of malignancies, including sarcomas, lymphomas
and carcinomas [81]. Heme was shown to induce hyperproliferation and aberrant atypical
foci in the colon [82]. Similarly, extravascular RBC and hemoglobin have been shown to
promote tumor growth by acting as DAMPs [83], through yet unknown mechanisms.
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There is a high degree of relevance for hemolysis in many cancer types due to excessive
angiogenesis and intra-tumoral hemorrhage. Repeated heme exposure may occur due to
hemolysis, cell death (i.e., in response to chemotherapy, radiation) or administration of
heme-arginate (to treat porphyrias). Increased vascular permeability, which is increased
in the tumor due to leaky vessels, may lead to accumulation of high numbers of RBC and
their poor re-cycling [84]. Therefore, it is possible that RBC poison the TIME with loads
of labile heme and hemoglobin (labile heme concentration of 19–23 mM in each RBC).
Hence, application of Hx to scavenge free heme might be a possibility as an adjuvant to
therapy for cancer patients. Hx has been used in pre-clinical models of sickle cell anemia
(SCD), which is characterized by hemolysis and increased load of labile heme, chronic
inflammation and vaso-occlusive/painful crisis. SCD being a hemolytic disease causes
lysis of erythrocytes which leads to the release of heme as a by-product from it pigment
component hemoglobin [85,86]. The inflammation and vaso-occlusion seem to be mainly
triggered by the excessive production of reactive oxygen species (ROS)- with heme as a
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major source. To counteract the toxic effects of heme, mammals are equipped with an
extracellular scavenging system: Hx that binds labile heme and renders it inactive. In
murine models, heme promotes inflammation by promoting the M1-pro-inflammatory
phenotype of macrophages. Addition of Hx counteracts this heme-mediated effects on
macrophage phenotype. Continued intraperitoneal injections with Hx into mice showed
decrease in M1 macrophage marker expression such as MHC-II, Cd86 and IL-6 in a mouse
model of SCD [87].

Increased microvascular stasis is counteracted by co-injection with haptoglobin (Hp)
(a scavenger of hemoglobin), though combined injection of both Hx and Hp show same
level of inhibition in stasis as they do individually [88]. Mechanistically, treatment with Hx
has shown reduced activation of NF-κB, resulting in lower levels of other pro-inflammatory
cytokines and higher expression of HO-1 [88]. Indeed, a dose dependent increase in
HO-1 expression was observed in both liver and kidneys of mice injected with Hx or Hp.
Furthermore, inhibition of vaso-occlusion was seen up to 48 h post injection with Hx, with
a 5-fold increase in HO-1 at stasis induced site. Notably, the ameliorating effects of Hp and
Hx were inhibited by the use of the HO-1 inhibitor protoporphyrin SnPP. Thus, Hp and Hx
appear to inhibit stasis in SCD-mice by inducing HO-1 activity [88].

Based on the strong preclinical data, a plasma-derived form of Hx, CSL889, is be-
ing tested in a clinical trial as a treatment option for SCD to decrease the incidence of
vaso-occlusive crisis and has been given Orphan drug status by both the European Com-
mission and the Food and Drug Administration in the USA (ClinicalTrials.gov Identi-
fier: NCT04285827).

4.2. Discussion and Future Directions

Labile heme within the nucleus can play roles in gene regulation via direct interaction
with G4 structures in DNA or RNA and DNA replication and repair. Importantly, not
only is labile heme detected in the nucleus, but nuclear HO-1 is also readily detected in
many types of cancer cells within tumors. Nuclear HO-1 has been shown to possess lower
enzymatic activity but perform regulatory functions such as stabilization of Nrf2 [89].
Our data indicate that heme promotes the accumulation of nuclear HO-1 as previously
reported [53] and further that nuclear tHO-1 increases prostate cancer colony growth in
soft agar (Figure 5). Importantly, nuclear HO-1 not only co-localizes with γH2AX foci
in response to heme, but our data strongly suggests that it promotes unwinding of G4
quadruplexes in the nucleus. These data indicate an increased genomic instability and shift
of gene expression in response to heme-induced HO-1 in cancer cells. We propose that early
heme-induced genes driven by heme:G4 interaction are a key drivers of carcinogenesis.
Heme-induced HO-1 re-directs transcriptional activity in cancer cells in part by unwinding
of heme:G4 complexes.

Moreover, reduction of HO-1 activity in the cytoplasm most likely allows for accu-
mulation of higher levels of heme in the nucleus and higher colony growth. Therefore,
enzymatically active HO-1 along with Hx might be a guardian against pathological cell
growth by removal of cytoplasmic heme and/or by prevention of accumulation of nuclear
heme.
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