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Background
The University of Tennessee (UT) and the Kentucky Biomedical Research
Infrastructure Network (KBRIN) have collaborated over the past sixteen
years to share research and educational expertise in bioinformatics. One
result is an annual regional summit for researchers, educators, and stu-
dents. The Sixteenth Annual UT- KBRIN Bioinformatics Summit was held
at Montgomery Bell State Park in Burns, Tennessee from April 21-23,
2017. A total of 243 participants pre-registered, with 113 from Kentucky,
111 from Tennessee, and the remainder from various states and inter-
national locales. Among the registrants were 93 students, 90 faculty, 39
staff, and 21 postdocs. The conference program consisted of two work-
shops on R, a free software environment for statistical computing and
graphics, and two days of plenary presentations and short talks. In
addition, a poster session with 40 posters was held on Saturday evening.
Friday Workshops
The University of Kentucky R Team opened the Summit with a two-
part workshop. The first part of the workshop, “Introduction to Data
Analysis with R”, led by Katherine Thompson and Arnold Stromberg,
focused on some basics of using the R language. Among the topics
covered were opening data in R, visualizing data, and some basic
data analyses in R. Part 2 of the workshop, “How to Use and Create
Interactive Shiny Applications”, led by Joshua Lambert, covered how
to create Shiny applications. These applications allow for the con-
struction of web-based interfaces to allow users to run R software
without programming or installing R.
Session I: Biomedical Informatics
The Summit keynote speaker, Peter Laussen (University of Toronto),
opened the first scientific session, Biomedical Informatics, on Saturday
morning with a presentation on “Reducing Modifiable Risk in Critical
Care: The Promise of Harnessing Physiologic Data Streams.” This pres-
entation focused on integrating technology and data scientists with cli-
nicians to provide both a safe and efficient patient journey through
their care. Dr. Laussen focused on some specific examples where real
time integration of data science is likely to have a positive influence on
both clinical care and cost reduction in the context of cardiac critical
care [1, 2]. He explored many of the challenges with this data, and dis-
cussed techniques for visualizing the data with methods similar to
those used by NASCAR to monitor drivers during a race.
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Oguz Akbilgic (University of Tennessee Health Science Center - UTHSC)
followed with a talk titled “Probabilistic Symbolic Pattern Recognition
(PSPR) in Clinical Decision Making.” This presentation focused on the
use of the PSPR method for identifying predictors of pathophysiology
from a number of clinical features. He gave a specific example of their
use in detecting paroxysmal atrial fibrillation using clustering of ECGs.
Arash Shaban-Nejad (UTHSC) continued the session with the presen-
tation “Urban Health Intelligence for Public Health Planning and Pol-
icy Development.” This talk discussed the correlations between
socioeconomic status and population health. Dr. Shaban-Nejad dis-
cussed PopHR [3], a knowledge-based platform for integrating, ana-
lyzing, and visualizing population health data.
Rishi Kamalsweran (University of Tennessee Health Science Center)
closed the Biomedical Informatics Session with the presentation “Dy-
namic Visual Analytics and Event Stream Processing.” In this talk, Dr.
Kamalsweran discussed the prospects of bringing analytics to the
bedside in order to predict the onset of disease. A number of ap-
proaches that have been developed for bringing earlier, personalized
care to patients [4-6] were discussed in addition to methods for visu-
alizing dynamic streaming data [7].
Session II: Systems Biology
Session II: Systems Biology began with a presentation by Qui Liu
(Vanderbilt University) on “Translating Multi-Omics Data into Colorec-
tal Cancer Biology.” In this presentation, Dr. Liu focused on the two
aims of integration of multi-dimensional data, including understand-
ing the relationships between the different types of data and under-
standing both the latent and observable phenotypes. She discussed
integrative techniques they have used for transcriptomics, proteo-
mics, and miRNA [8] as well as other methods for integrating multi-
omics data with clinical applications, such as the determination of
the cause of resistance to chemotherapeutics in colon cancer [9, 10].
Bruce Ramshaw (University of Tennessee, Knoxville) followed with
the presentation “Complex Systems Science Applied to Health Care.”
Dr. Ramshaw discussed how many of the issues with health care
today are due to a reductionist view, which leads to increasing frag-
mentation and administration. He suggested that rather than view
clinical health care through a reductionist view, a complex systems
science view is needed in order to change the assumptions and
resulting tools for clinicians and clinical researchers. He showed how
implementation of such a collaborative team led to substantial sav-
ings in a health care system due to decreased length in post-
operative stay and reduction in material costs [11].
The third speaker in the Systems Biology section, Rachel McCord
(University of Tennessee-Knoxville), presented “The 3D Genome:
Folding, Misfolding, and Unfolding.” In this talk, Dr. McCord discussed
how DNA folding leads to biological function when the genome folds
itself into a 3-dimensional shape, leading to a number of different inter-
actions, or 3D compartments, between chromosomes. In cancer and
other diseases, translocataions interrupt these interactions. She also in-
troduced the methods they have employed for measuring genome
folding, including Hi-C [12, 13]. These techniques were used to study
the loss of 3D genome compartments in progeria patients [14].
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David Ussery (University of Arkansas for Medical Sciences) continued
with the presentation “What can 100,000 Bacterial Genomes Teach Us
about Evolution?” in which he discussed the genetic diversity in the
bacterial genome, and showed that no single protein is conserved
among all living organisms, but that functional domains are conserved
[15]. This analysis has been made possible through 20 years of bacterial
genome sequencing [16] as well as increased availability of high
throughput sequencers such as the Minion nanopore sequencers.
Robert Flight (University of Kentucky) finished off the Systems Biology
session with his presentation “Meta- and Multi-Omic Analyses Using
Annotations.” In this presentation, Dr. Flight discussed the use of anno-
tation enrichment, which can be applied to various –omics data sets,
for analysis of a particular phenotype. He discussed categoryCompare
[17] an approach he developed for such analysis, and its extended
version to show its utility for analyzing the effects of three different
gene knockouts on Juvenile Batten Disease.
Session III: Metabolomics
Richard Higashi (University of Kentucky) kicked off the Metabolomics
session on Sunday morning. During his presentation, Dr. Higashi dis-
cussed methods developed for measuring the flux of labeled metab-
olites through a system, and the corresponding issues with modeling
such flux as well as visualizing the resulting data sets [18-23] with a
specific example of cancer.
Christine Fillmore Brainson (University of Kentucky) closed the Meta-
bolomics session with a presentation “Integrating Epigenetics, Tran-
scriptomics and Metabolomics Datasets from a Lung Cancer Model.”
This presentation, which takes a systems-approach to modeling dis-
ease, looked at how different tri-methylation events are affected by
carcinomas and how they correlate with transcription. In addition,
she discussed how metabolism affects stability.
Session IV: Single Cell Omics and Other NGS
The final scientific session of the summit focused on the use of
high-throughput sequencing datasets to analyze data in such a way
that could not previously be studied. Corey Watson (University of
Louisville) began this session with a talk “Genomics of the Func-
tional Antibody Response in Human.” During this presentation, Dr.
Watson discussed the high degree of variability determined within
the IgH region, both in terms of longer variants and SNPs, and how
high throughput sequencing can be used to resolve some of these
[24-28]. He discussed how these regions also have high variation in
copy number, and conveyed how his lab is beginning to use long
sequencing reads to address issues with reassembling this highly
variable region.
Eric Rouchka (University of Louisville) followed with the presentation
“Identification of Cleavage Site Intervals for Alternative 3’ UTR
dynamics.” During this presentation, Dr. Rouchka discussed devel-
opment of an algorithm for detecting 3’ UTR lengthening and
shortening events [29], which was motivated by some previous
findings for localization based on alternative 3’ UTR usage [30] and
detection of a number of alternative 3’ UTR events within nervous
system processes [31, 32].
Arthur Hunt (University of Kentucky) followed with the presentation
“The Intersection of Alternative Polyadenylation and RNA Quality
Control.” During this presentation, Dr. Hunt described the prevalence
of polyadenylation within plant genomes [33-35]. He also introduced
methods his lab has developed for inexpensive library construction
for high-throughput sequencing [36, 37].
Juw Won Park (University of Louisville) ended the session with his
talk on alternative splicing and circular RNAs. He showed that an or-
ganism’s protein diversity is not determined solely by the number of
genes it possesses, but also by its ability to utilize alternative splicing
of its genes. It was also shown that circular RNAs, which participate
in biological function such as gene regulation via modulating micro-
RNAs activity [38], can exhibit alternative splicing [39]. He discussed
the software that he developed that can detect differential alterna-
tive splicing events from RNA-Seq data [40-42]. He also introduced
an approach that can estimate the abundance of circular RNAs with
respect to linear forms from RNA-Seq data.
Poster Session
A poster session and reception was held on Saturday evening with
a total of 41 posters presented across 14 categories. The largest
represented categories included transcriptomics, bioinformatics algo-
rithms, phylogenetics, protein structure and proteomics, and systems
biology and networks. Nineteen of the poster abstracts along with
one speaker abstract are highlighted within this supplement. Prior to
the poster session, 34 of the posters were presented during a one-
minute blitz session used to introduce the posters and their topics.
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Background
In recent years, knowledge extraction from the biomedical data has
become major challenge [1]. Machine learning has presented ad-
vanced tools for representation learning in biomedical field. But the
performance of conventional machine learning algorithms is feature
dependent. These features are designed by a human expert in those
domains, and identifying which features are more appropriate for
the given task remains a difficult problem. Deep learning is an ad-
vancement in machine leaning to deal with such a problem.
Materials and methods
We have used a deep neural network using a Takagi-Sugeno fuzzy
inference system to learn data representation in the form of fuzzy
structures [2]. A generic architecture built from connecting layers of
Takagi-Sugeno fuzzy inference system as nodes is elaborated and
various parameters involved in it are discussed. This architecture has
an input layer, multiple hidden layers and an output layer. But the
last two layers of the network have a Takagi-Sugeno fuzzy inference
system as its fundamental building unit [3]. Training is carried out
using gradient descent to achieve the identification of all parameters
in the architecture according to training data. The proposed architec-
ture is implemented in two class Prostate Cancer data [4] containing
102 samples and 10509 genes. Individual training error ranking is
used for selecting best features. These features are then passed to
the network to learn intricate fuzzy representation in the form of
multiple distinct fuzzy rule bases which are intelligible to a human.
The identified fuzzy rule bases consist of linguistic information of IF-
THEN rules which may turn out to be helpful in diagnosis of disease
at the time of examination of patient.
Results and conclusions
The result of the proposed network is compared on the basis of AUC
(Area under ROC curve) performance with respect to deep learning
model using neural network with softmax fine tuning. The use of



Table 1 (abstract P3). Multivariate regression models on asthma
prevalence

Socio-
Economic I

Socio-
Economic II

Neighborhood I Neighborhood II

Population .008 *** -.00009 -.00042 .00002

Poverty level 702.72 *** 325.50 114.18 137.41

African American .00927 ** .00746 ** .00782 **

Blight .18930 **

Broken Windows .74535 **

Constant -230.305 ** -55.856 -23.398 -34.671

Adj R2 0.5890 0.7002 0.7671 0.7652

NOTE: *p < .05; **p < .01; ***p < 0.001
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Takagi-Sugeno fuzzy inference system may improve the performance
of deep neural network on transcriptome-based cancer classification.
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Background
Socio-economic risk factors -race, urban residence and poverty- sig-
nificantly contribute to pediatric asthma prevalence [1-3]. However,
direct assessments on built-environment and neighborhood effects
have not been thoroughly examined due to the scarcity and hetero-
geneity of available data. According to the theory of Social determi-
nants of health [4], in order to systematically analyze the prevalence
of asthma in children and understand its underlying etiology, direct
examination of residential factors is crucial. Using knowledge-based
platforms enables integration of multiple data sources into a smart
and consistent population health surveillance system [5].
Methods and Results
Using a knowledge-based population health analytics platform we
compare localized pediatric asthma prevalence in 32 zip-code areas
in Memphis, TN, combining 6,538 encounter data from Le Bonheur
children’s hospital in Memphis and Shelby County Health Depart-
ment, US census data, and neighborhood quality survey data pro-
vided from our partners. Expanding the existing socio-economic
models, we explore the neighborhood effects on localized asthma
prevalence, which is measured through a number of pediatric
asthma encounters observed in each zip-code area. We find that
asthma encounters are disproportionately distributed. We use the
population size of each zip-code area as control variable. Poverty is
known to have a positive association with asthma in the U.S. [4].
Thus, we include the poverty ratio of each zip-code area into socio-
economic model. Furthermore, the encounter data shows that 86.2%
of encounters are associated with African-American and 8.5% cases
are of White. Correspondingly, we add the African-American popula-
tion ratio into the socio-economic model to control the unique com-
position of the urban area and our sample. For the neighborhood
model, we introduce blight and broken window variables whether
living condition of the neighborhood have significant influence to
the degree of pediatric asthma prevalence. To predict the preva-
lence, we run multivariable regression models (Table 1). The base-
line model agrees with previous studies showing that the poverty
level is positively associated with the asthma prevalence. However,
when the racial factor is introduced, it loses its statistical significance.
Furthermore, in the neighborhood models, blight phenomenon and
broken window variables are positively and significantly associated
with the prevalence even after controlling all socio-economic vari-
ables. We found that the asthma prevalence is more sensitive to
environments. Explanatory power of neighborhood models also in-
creases to 77% approximately.
Conclusions
The integration of multiple data sources allows us to unpack the
systematic prevalence patterns and broaden our comprehension of
asthma epidemic in urban area. Pediatric Asthma is disproportion-
ately prevalent in poor and bad quality neighborhood. Using the
socio-environmental indicators public health organizations can im-
plement intelligent surveillance systems for neighborhood-level
monitoring of major upstream determinants of health. It is worth
mentioning that our sample is an exaggerated composition consid-
ering that 53.5% of African American and 42.0% of White at the
city-level racial composition (2015 Census) and, therefore, much
caution is needed when making inferences about broader contexts.
We are in the process of acquiring additional data sets to resolve
the current limitation of the study.
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Background
Direct infusion Fourier-transform mass spectrometry (FTMS) allows
for high-throughput detection of thousands of metabolites. Typically,
the majority of the observed spectral features does not correspond
to known metabolites and thus cannot be placed into existing
metabolic networks. Without accurate metabolite assignment, dis-
cerning their roles in biological systems is not possible. MS Assign-
ment remains difficult due to the low abundance of some detected
metabolites, the volume of data produced by FTMS, the small m/z
differences between isotopologues, and the lack of sufficient chem-
ical structural information. Additional phenomena producing large
numbers of spectral artifacts further complicate FTMS assignment.
False assignments including those made on artifact peaks can cre-
ate large interpretative errors.
Materials and Methods
Through manual inspection of FTMS spectra, we identified FTMS-
unique artefacts that result in regions of abnormally high peak dens-
ity (HPD) that we collectively refer to as HPD artefacts. We have im-
plemented an algorithm in Python3 to identify regions of spectra
with the HPD property and likely contain a large number of artefac-
tual peaks. First, our algorithm divides a spectrum into a number of
overlapping chunks approximately 1 m/z in width and for each win-
dow, the peak density is calculated (number of peaks/window width
in m/z). Second, the peak density of each chunk is then compared
against the peak density of neighboring sets of chunks and a modi-
fied chi-squared statistic calculated for each comparison. High statis-
tic values correspond to regions of spectra with the HPD property.
This approach robustly identifies HPD artefacts and is tolerant to
changes in signal-to-noise, peak densities, etc. that can vary between
different FTMS instruments and experimental designs. Once identi-
fied, these artefacts can be excluded from subsequent analyses.
However, in the case that HPD artefact location correlates with
sample class or other experimental variable, more complex
methods of artefact removal must be employed to avoid confounds
and additional interpretative errors.
Results and conclusions
Using our HPD detector, we have identified three types of HPD ar-
tefacts:: i) fuzzy sites representing small regions of m/z space with a
‘fuzzy’ appearance due to the extremely high number of peaks
present; ii) ringing due to a very intense peak producing side bands
of decreasing intensity that are symmetrically distributed around
the main peak; and iii) partial ringing where only a subset of the
side bands are observed for an intense peak. Fuzzy sites and partial
ringing appear to be novel artifacts previously unreported in the lit-
erature and we hypothesize that all three artifact types derive from
Fourier transformation-based issues. We have developed a set of
tools to detect these artifacts and are developing new methods to
mitigate or eliminate their effects on FTMS spectra and down-
stream analyses.
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Background
Supervised feature selection for high-dimensional biological data is
a critical component in the development of accurate diagnostic/
prognostic molecular classifiers for complex diseases. Wrapper
methods and other embedded techniques closely linked to learning
algorithms have been widely applied to this task, while feature se-
lection methods incorporating prior biological knowledge are less
commonly used. However, these knowledge-driven methods have
the potential to simultaneously improve classification performance
as well as model interpretability.
Materials and methods
We adopted a Bayesian strategy for knowledge-driven feature se-
lection to improve gene expression-based classification. By col-
lecting and analyzing microarray gene expression profiles across
hundreds of thousands of samples from the Gene Expression
Omnibus (GEO), we have estimated prior probabilities of differen-
tial expression for each gene in the human genome. Using these
probabilities, we have created a novel feature selection scheme
based on the empirical Bayesian limma framework. Use of this
knowledge-driven approach leads to the selection of qualitatively
different features compared to those selected by knowledge-
agnostic approaches.
Results
We have applied our feature selection approach to two publicly
available gene expression datasets studying leukemia and asthma.
Using both our knowledge-driven feature selection approach as
well as a knowledge-agnostic method, we applied supervised sup-
port vector machine and logistic regression classifiers. We evalu-
ated classification performance by measuring the area under the
receiver operating characteristic curve (AUC). In the asthma dataset,
our preliminary results suggest an improvement in AUC resulting
from knowledge-driven feature selection. Current work involves
applying our method to additional high-dimensional datasets, in-
cluding recently collected data interrogating posttraumatic stress
disorder (PTSD).
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Fig. 2 (abstract P6). Example alpha and beta carbon shift bivariate
distributions. Cα shifts are shown along the x-axis, while Cβ shifts are
shown along the y-axis. Distributions are shown cysteine distribution
is dramatically different from the rest amino acid types, and treated
it as single residue is incorrect. The bottom row shows the separated
cysteine basing on oxidation states, which provide more usage to
estimating reference of protein NMR
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Background
Protein Nuclear Magnetic Resonance (NMR) plays an important role
in the biophysical analysis of proteins, especially in the determination
and study of their 3D structure. The accuracy of chemical-shifts as-
signments is a vital requirement for many aspects of NMR, especially
protein structure determination. Traditional protein NMR technology
relies on manual chemical shift referencing procedures that are
prone to human error [Fig. 1] and cannot be validated until after the
resonance assignment step. We present a Bayesian Model Optimized
Reference Correction approach (BaMORC) that can provide correction
to referencing before resonance assignment.
Materials and methods
We are developing a statistical-based algorithm to correct referen-
cing by:

1. Computing composition probabilities of 20 amino acids of
investigating protein Cα and Cβ resonance pairs from the
NMR data;

2. Summing the probabilities across all resonance pairs to give an
estimate of amino acid (AA) composition; and

3. Minimize L1 errors between predicted and actual protein AA
composition via a grid search method to estimate a minimum
difference (correct referencing value) between.

Results and conclusions
From our results, we identified that cysteine residues should be
treated separately basing on its oxidized/reduced states [Fig. 2]. And
the covariance between Cα and Cβ resonance is a potent but long
ignored statistic that should be utilized in the NMR referencing meth-
odology. We have demonstrated that the overall approach is feasible.
With applying BaMORC to the Re-referenced Protein Chemical shift
Database RefDB [1], the 90% confidence range is 0.60 ppm, which
suggest the estimated reference value is between -0.24 ppm and
0.45 ppm and assuming correct reference value is at 0 ppm.
Currently we are developing a shiny web app that will further sim-
plify this protein NMR reference correction procedure. In the web
interface, users can upload or paste their NMR peal list data directly
into the app. The web app automatically groups the peaks into spin
systems and applies the reference correction algorithm I have devel-
oped. The results of the analysis are returned as an html report and
corrected peak list file.
The shiny web app will provide the biomolecular NMR field with a
unique tool that allows NMR protein spectra referencing to be cor-
rected and refined at the beginning of NMR protein experiments
without using chemical shift assignments or protein 3D structure,
which is the current retrospective referencing correction paradigm.
Therefore, our method should improve both the speed and quality
of protein resonance assignment and downstream NMR-based ana-
lyses including structure determination.
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Model Optimized Reference Correction approach
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Background
We present a bioinformatics application, MutChart, which streamlines
the mutation identification and verification processes. We are using
polymerase chain reaction-based random mutagenesis to generate a
comprehensive library of mutations in the KCNH2 potassium channel
gene that is responsible for ensuring proper heart rhythmicity. As part
of this project, it is necessary to sequence a large number of PCR prod-
ucts to assess mutation density and spectrum. While candidate muta-
tions can be identified by comparing the sequence data to a reference,
each mutation should be manually validated to ensure its veracity.
Materials and methods
Many software programs are available for viewing raw sequence data
for manual verification but none are designed in a way that facilitates
high throughput visualization and validation steps. MutChart takes as
input raw sequence trace data and the results of a blast search against
the reference sequence. It then displays each mutation in a window
that provides relevant information about the reference and alternate al-
lele, the sequence quality score and, most importantly, a sequence
trace plot for a few nucleotides on either side of the query nucleotide.
The user views the trace plot to assess the candidate mutation’s ver-
acity and then accepts the mutation, rejects it, or marks it as question-
able. This action automatically advances the plot window to the next
mutation, thereby eliminating the need for further user navigation.
Conclusion
MutChart is a result of a collaboration between computer scientists,
who solved a number of challenges related to the processing and
visualization of large datasets, and biologists who provided domain
expertise in DNA sequence analysis and interpretation. Among inter-
esting software solutions, the implementation utilizes caching to
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prevent from redundantly parsing previously used datasets, and uses
dynamic loading to render the voluminous datasets.
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Background
Organellar genomes are commonly inherited uniparentally, leading to a
single genome being passed down without variation. Any recombin-
ation, biparental inheritance, or mutation of the organellar genomes
leads to variation within the individual, known as heteroplasmy. Hetero-
plasmy has been observed in many species and is known to have
phenotypic consequences, often resulting in reductions of fitness. In
humans, it is associated with mitochondrial diseases and cancer. Re-
search on the effects of heteroplasmy on the fitness of plants is limited,
but studies suggest such genomic variation to be pervasive; wild carrot
(Daucus carota) was found to be 60% heteroplasmic [1].
Materials and methods
MToolBox is an automated pipeline for the identification of hetero-
plasmy in humans that requires a complete human reference gen-
ome [2]. We have adapted this pipeline for more generalized use by
allowing the input of any reference nuclear genome. Using a high-
quality mapper (Bowtie 2), a duplicate marker (Picard Tools), and the
assembler and VCF output generator from MToolBox, we are able to
identify heteroplasmy frequencies and locations in a sample without
requiring a reference of known heteroplasmic variants.
Results
Using whole genome shotgun (WGS) sequencing of four individuals
of wild carrot, D. carota, we have identified high-confidence hetero-
plasmic sites in the mitochondrial and chloroplast genomes. Ongoing
work involves searching for patterns of heteroplasmy within the
population (e.g., if it is more prevalent in exons or introns) and docu-
menting the effects of heteroplasmy on fitness. In the future, we plan
to scale up our analysis to over 190 samples of D. carota.
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Background
Predicting phenotype based on genetic variation has long been a
goal of genetic studies. Deep learning, including deep neural net-
works (DNN), has emerged as a superior method in many fields
where machine learning was applied, such as image or speech
recognition. Inspired by its success, We explored the potential of
DNN in learning phenotype and genotype associations.
Materials and methods
We used a well-characterized data set of heterogeneous stock rats
[1] that contained 1407 individuals and many phenotypes. We
choose to focus on coat color because it has the most complete data
and has a strong QTL, which is located on chr 1. We used the Keras
library (ver 2.0.2) with the Theano backend (v 0.9.0) to train DNNs on
the 46,943 chr 1 SNPs. A GPU (GeForce GTX 1070, 8 GB) running
CUDA (8.0.61) was used to accelerate calculation.
Results
A simple neural network with one hidden layer of 200 neurons
achieved an accuracy of 99.24% in predicting coat colors after 100
training epochs. Accuracy was reduced to 60.23% when new samples
were tested, indicating model overfitting. Using five hidden layers in-
creased test accuracy slightly to 61.93%. Further increasing the depth
of the network reduced test accuracy. Adding dropout layers did not
improve test accuracy. However, augmenting samples by swapping
20% of SNPs and then adding these swapped samples to the training
set increased test accuracy to 63.07%. Test accuracy remained at
60.8% when the augmented samples were trained on a network with
five hidden layers. In contrast to chr 1, the test accuracy was approxi-
mately 20% when these networks were trained on chr 2 data, which
had no QTL for the phenotype. In summary, our data showed that
DNN could learn genotype-phenotype associations directly from the
raw genotype data. Further performance improvement likely will re-
quire much larger training data set. The code for this exercise is avail-
able in a GitHub repository (https://github.com/chen42/DNN4G2P/)
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Background
GeneNetwork [www.genenetwork.org] is a web tool that enables
analysis of genetic and gene expression datasets across large panels
of recombinant inbred mice [1]. Analysis of GeneNetwork data is
challenging due to variability in microarray platforms, normalization
methods, and biological factors. The goal of this project was to
develop an analysis pipeline using literature-derived functional
cohesion to evaluate GeneNetwork output and to extract mean-
ingful insights.
Materials and methods
The workflow for our analysis pipeline is shown in Fig. 3. Using Gene-
Network, we identified the top 200 genes whose expression levels
correlated with Sirt3 expression in liver tissues across BXD recombin-
ant inbred mice. We examined Sirt3 correlated gene networks in
seven liver datasets derived from different microarray platforms and
normalization methods. For two datasets, two different Sirt3 probe-
sets were analyzed. Literature cohesion p-values (LPv) were calcu-
lated for the top 200 Sirt3 correlated genes using GeneSet Cohesion
Analysis Tool [http://binf1.memphis.edu/gcat/] that was developed
by our group previously [2]. To evaluate our approach, we used a
gold-standard set of 429 Sirt3 target proteins, which were previously
reported to be differentially acetylated in liver tissues from Sirt3
knockout mice compared with wildtype controls [3]. Recall refers to
the number of overlapping genes between Sirt3-correlated gene net-
work and the gold-standard set. Functional enrichment analysis was
performed using DAVID [https://david.ncifcrf.gov/].

https://github.com/chen42/DNN4G2P/
http://www.genenetwork.org/
http://binf1.memphis.edu/gcat/
https://david.ncifcrf.gov/


Fig. 4 (abstract P10). Correlation between literature cohesion and
gold-standard gene recall for Sirt3 gene networks in liver. Literature
cohesion p-value (LPv) and recall were calculated for nine Sirt3 gene
networks (each included 200 Sirt3 correlated genes) derived from
seven different BXD recombinant inbred mouse datasets
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Results
We found a very high correlation (R2 = 0.97) between literature co-
hesion of Sirt3-correlated gene networks and recall of the gold-
standard set (Fig. 4). Functional enrichment analysis of the network
with the lowest LPv revealed that the Sirt3 correlated genes belong
to the following Gene Ontology classifications among many others:
Mitochondrion (p-value = 4.3E-42), Oxidoreductase Activity (p-value =
2.3E-40), Lipid Metabolism (p-value = 1.2E-12), and Synthesis of
Amino Acid (p-value = 1.7E-7). These results are consistent with pre-
vious reports that Sirt3 is a key regulator of mitochondrial meta-
bolic processes [3].
Conclusions
Our results provide proof-of-concept that literature cohesion analysis
can rapidly identify biologically meaningful gene networks from the
vast amount of genomic data accumulating in publicly available re-
sources such as Genenetwork.org and Gene Expression Omnibus
(GEO). We posit that our approach will facilitate discovery from high
throughput genomic data.
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Background
As disease states are either precipitated by or result in metabolic
dysregulation, metabolite concentrations can be utilized for deter-
mining physiological processes that are differentially impacted
across disease states. For example, while coagulation is a homeo-
static response to vascular injury, dysregulation can lead to patho-
logical thrombosis, the cause of acute myocardial infarction—a
leading cause of death in humans. To determine such dysregula-
tion a representation of the metabolome in a non-pathological
state or a reference phenotype is needed. We sought a Gaussian
Graphical Modeling (GGM) approach for constructing a reference
metabolome that incorporates prior knowledge of biochemical
structural similarity. A full joint distribution representation was
sought to facilitate inference regarding partial correlation structure.
We evaluated the method for constructing a plasma metabolome
for a stable, yet diseased state from human subjects presenting
with Coronary Artery Disease (CAD). This representation will pro-
vide a reference for systems-level comparisons across the disease
state transition from stable to acute myocardial infarction.
Materials and methods
The Graphical Lasso (gLASSO: graphical least absolute shrinkage and
selection operator) was proposed for the estimation of sparse inverse
covariance matrices for multivariate Gaussian distributions. The
gLASSO algorithm estimates the inverse of the covariance matrix
by maximizing the L1 penalized log-likelihood function via coordin-
ate descent. Ambroise, et al. proposed modifying the regularization
term to incorporate an adaptive penalty. In previous applications,
the adaptive penalization for estimating concentration matrices
was predicated on assuming a latent clustering of the variables, to
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be estimated by expectation maximization or other clustering
approaches. We instead devise an adaptive penalty that varies in-
versely with molecular similarity. Molecular similarity was defined
via the Tanimoto distance measure using bitwise atom-pair finger-
printing and was used for generating adaptive penalties in con-
structing a plasma metabolome for the phenotype of interest.
Results
We constructed a reference plasma metabolome for a CAD pheno-
type. We observed that for a fixed number of edges in the Gaussian
Graphical Model (GGM). As expected, adaptive penalization increased
the likelihood of edge was formation between metabolites that are
structurally related.
Conclusions
While our evaluation does not provide evidence that biochemical
fingerprint-based adaptive penalization increases the overall likelihood
of a GGM in representing a metabolome, a theoretical evaluation is
needed. A framework for the probabilistic integration of prior bio-
chemical knowledge in constructing metabolomics-based graphical
models remains desirable for facilitating pathway and biochemical
process level inference.
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