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1. Summary
Nucleosomes are the basic structural units of chromatin. Most of the yeast genome

is organized in a pattern of positioned nucleosomes that is stably maintained

under a wide range of physiological conditions. In this work, we have searched

for sequence determinants associated with positioned nucleosomes in four

species of fission and budding yeasts. We show that mononucleosomal DNA fol-

lows a highly structured base composition pattern, which differs among species

despite the high degree of histone conservation. These nucleosomal signatures

are present in transcribed and non-transcribed regions across the genome. In

the case of open reading frames, they correctly predict the relative distribution

of codons on mononucleosomal DNA, and they also determine a periodicity in

the average distribution of amino acids along the proteins. These results establish

a direct and species-specific connection between the position of each codon

around the histone octamer and protein composition.
2. Introduction
Nucleosomes facilitate the packaging of the genome inside the nucleus and

modulate the access of regulators to the DNA molecule. In addition, histones

can harbour a large variety of posttranslational modifications that play an

essential role in genome regulation [1]. Nucleosome positioning along the

genome depends on the combined contribution of several factors. For example,

ATP-dependent nucleosome remodellers improve nucleosome positioning

around the transcription start sites in chromatin reconstitution experiments per-

formed in vitro [2] and are essential for maintaining the organization of the

nucleosomal pattern in vivo [3–6]. As regards the contribution of transcription

factors to nucleosome positioning, comparative analysis of the closely related

Saccharomyces cerevisiae and Saccharomyces paradoxus species has shown that

shifts in nucleosomal arrays between orthologous genes are associated with

differences in the size of the nucleosome depleted region (NDR) at their promo-

ters, suggesting that factors bound to them could act as the border elements

postulated in the statistical positioning model [7,8]. A third factor contributing

to nucleosome positioning is the DNA sequence itself. The strong bending

imposed on the double helix due to its tight association with the histone octa-

mer [9,10] means that the affinity between histones and DNA varies depending

on the different flexibility of dinucleotides in mononucleosomal DNA [11]. AA

and TT dinucleotides favour bendability and have been reported to be distrib-

uted on mononucleosomal DNA with the 10-bp periodicity of the helical repeat

of DNA [12–15]. More recent studies have described a similar periodicity in

other dinucleotides that either contributes or disfavours nucleosome position-

ing, such that different combinations could modulate the interaction between

specific nucleosomes and DNA [16].
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In S. cerevisiae and Schizosaccharomyces pombe, the biological

outcome of all the factors contributing to nucleosome position-

ing is that approximately 80% of their genomes are organized

in positioned nucleosomes. Such a pattern remains largely

invariable under a broad range of transcription rates and

also during meiosis, despite the major structural processes

undergone by the chromosomes [17,18].

Based on the extensive positioning of nucleosomes in yeast

genomes [18–22], we have searched for sequence determinants

associated with positioned nucleosomes in four species of

fission and budding yeasts. We found that the distribution

of the four mononucleotides along mononucleosomal DNA

follows a species-specific pattern, which in the case of open

reading frames (ORFs) overlaps with the distribution of

amino acids in proteins.
 :140218
3. Material and methods
3.1. Strains and growth conditions
Genomic nucleosome maps of asynchronous exponential S.
pombe wild-type 972h2 cells have been reported previously

[18]. Nucleosome maps of Schizosaccharomyces octosporus
CBS1804 and Schizosaccharomyces japonicus var. japonicus
ade122 FY53 were generated from 400 ml cultures grown in

rich medium (YES) at 328C up to a density of 1.5 �
107 cells ml21. Nucleosome maps of S. cerevisiae W303-1a

were generated from cultures grown in 200 ml of rich

medium (YEPD) at 308C up to a density of 107 cells ml21.

3.2. Preparation of mononucleosomal DNA
Mononucleosomal DNA was isolated as described [23].

The amount of Zymolyase 20 T used to prepare spheroplasts

was optimized experimentally for each species to generate an

80 : 20 ratio of mononucleosomes to dinucleosomes, as described

in [24]. Cell suspensions of cultures of S. octosporus and S. japoni-
cus were treated with 5 mg ml21 and 1.2 mg ml21 of Zymolyase

20 T, respectively, for 30 min at 308C. Spheroplasts were treated

with 200 units ml21 of micrococcal nuclease at 378C for 45 min.

Cells of S. cerevisiae were treated with 0.5 mg ml21 of Zymolyase

20 T for 10 min at 308C. Permeabilized cells were treated with

45 units ml21 of micrococcal nuclease at 378C for 10 min.

Mononucleosomal DNA was recovered from 1.5% agarose gels.

3.3. Sequencing and alignment of sequence reads
Mononucleosomal DNA was sequenced with an Illumina

Genome Analyzer IIx using the single-read sequencing proto-

col. A total of 18 261 406 (36 bp) (taken from [18]), 17 901 356

(40 bp), 11 817 458 (40 bp) and 18 269 690 (40 bp) sequence

reads were aligned to the S. pombe, S. octosporus, S. japonicus
and S. cerevisiae genomes, respectively, using BOWTIE 1.0.0

[25] with two mismatches permitted, and multireads were

discarded. This represents a genome average coverage of

52-, 62-, 42- and 59-fold. The following reference genomes

were used for the alignments: S. pombe (ASM294v2.20, assem-

bly 13 August 2013) from PomBase; S. octosporus (SO6,

assembly 7 June 2012) and S. japonicus (SJ5, assembly 7 June

2012) from the Broad Institute Schizosaccharomyces group

Database, and S. cerevisae strain S288C (R64-1-1, assembly 3

February 2011) from the Saccharomyces Genome Database.
3.4. Generation of genomic nucleosome occupancy
maps

After mapping the sequence reads to the corresponding refer-

ence genomes, the signals for each strand were smoothed

using a five-level one-dimensional discrete biorthogonal 3.1

wavelet (bior3.1) decomposition and an additional multilevel

reconstruction of the signal using only the approximation

coefficients [26]. The de-noised profile facilitates the straight-

forward identification of individual peak maxima using a

simple hill-climbing method. To estimate the value for the

shifting of signal between both strands, we calculated the

average distance between peaks from the complementary

strands that corresponded to the boundaries of the same indi-

vidual nucleosomes. Only peaks from each strand along the

genome whose height was higher than twice the genome-

wide mean depth coverage and that mapped at least 100

nucleotides away from other peaks of the same height were

selected. Next, the original signal profile of the complemen-

tary strands was shifted in the 30 direction for both strands

by half of the previous calculated distance to generate a

first version of the nucleosome occupancy map. The resulting

signal was smoothed using the same wavelet process

described above and was normalized relative to the average

genome-wide depth coverage to generate the final nucleo-

some occupancy map. This protocol has been recently

incorporated into a bioinformatic tool based in wavelets

(NUCwave) for the automatic generation of nucleosome

occupancy maps [27].

3.5. Identification of well-positioned nucleosomes
After wavelet-smoothing, the centre of well-positioned nucleo-

somes was defined as peak positions whose level of occupancy

was above the genome average occupancy and the nearest

maximum on each direction was at least 120 nucleotides

away. According to this criterion, we selected the following

mononucleosomal DNA sequences from nucleosomes in the

whole genome, in ORFs and in intergenic regions (IGRs),

respectively, in the four species: S. pombe: 38 154, 18 629 and

4581; S. octosporus: 46 120, 23 657 and 5091; S. japonicus:

27 074, 13 085 and 2963; S. cerevisae: 34 526, 21 918 and 5277.

3.6. Generation of mono-, di-, trinucleotide and amino
acid profiles

Mononucleosomal sequences 150 bp long associated with

well-positioned nucleosomes were aligned to the nucleo-

some midposition (dyad). The frequencies of mononucleotides

(figure 1 and electronic supplementary material, figure S2)

were calculated for each position. The frequencies of di- (elec-

tronic supplementary material, figure S4) and trinucleotides

(figure 2 and electronic supplementary material, figures S5

and S6) and those of the sum of trinucleotides corresponding

to codons for each amino acid (figures 2 and 3, and electronic

supplementary material, figures S6 and S7) were also calcula-

ted for each position and normalized to the corresponding

genome averages. All frequencies were represented using a

smoothing window of nine nucleotides and a step of one nucleo-

tide. The amino acid profiles in coding regions (figure 3 and

electronic supplementary material, figures S7 and S9) were

represented using a smoothing window of three codons
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Figure 1. Patterns of nucleotide distribution across mononucleosomal DNA. (a) Base composition profiles of the four nucleotides across 38 154, 46 120, 27 024 and
34 526 mononucleosomal DNA sequences from the whole genome of S. pombe, S. octosporus, S. japonicus and S. cerevisiae, respectively, aligned to their central
position. (b) Profiles of the same number of DNA fragments of the same length as in (a) selected at random from the genome of each species. (c) A þ T content of
the mononucleosomal DNA sequences shown in (a). The x-axis indicates positions relative to the centre of mononucleosomal DNA.
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and a step of one codon. For the ORF analysis in figure 4, the

same analysis was performed on 1549 (S. pombe) and 2046

(S. cerevisiae) mononucleosomal DNA sequences corresponding

to each of the six groups of nucleosomes indicated in the text.
4. Results
4.1. Species-specific nucleotide patterns

in mononucleosomal DNA
To analyse the nucleotide composition of mononucleosomal

DNA, we initially selected 38154 DNA sequences 150-bp long

from well-positioned nucleosomes in the S. pombe genome

and aligned them to their central position to calculate the
percentage of the four nucleotides at each of the 150 positions.

Figure 1a shows that the distribution of the four mono-

nucleotides followed a highly structured profile, with strong

asymmetry in the distribution of adenine (A) and thymine (T)

in the same DNA strand relative to the dyad position. The

fact that the A and T profiles mirrored each other in the same

DNA strand implied that they were palindromic in the two

strands of DNA. The same applied to the cytosine (C) and

guanine (G) profiles although they showed a lower degree of

asymmetry than A and T. As a control that these patterns

were strictly associated with mononucleosomal DNA, the

alignment of another set of 38 154 sequences 150-bp long

selected at random along the S. pombe genome generated a

flat profile, in which the nucleotide composition coincided

with the average genome content (figure 1b).
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Figure 2. Trinucleotide profiles of mononucleosomal DNA. The frequencies of trinucleotides across mononucleosomal DNA (blue) corresponding to the codons for
alanine and lysine in S. pombe, S. octosporus, S. japonicus and S. cerevisiae were grouped in aggregated profiles (red). The y-axis indicates the relative frequency of
each trinucleotide (blue) or their aggregated value (red) normalized to the genomic average. The x-axis represents the distance relative to the central position
of mononucleosomal DNA. The complete set of profiles for the 61 coding codons corresponding to the 20 amino acids in the four species is shown in the electronic
supplementary material, figure S6.
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To determine whether these nucleosomal signatures

were also present in other genomes, we generated nucleo-

somal maps (electronic supplementary material, figure S1)

of S. octosporus and S. japonicus, which diverged from

S. pombe 119 and 221 Ma, respectively [28], and from
S. cerevisiae, whose phylogenetic distance from S. pombe is

comparable to that between either of them and mammals

[29]. The analysis of mononucleosomal DNA sequences

from these species also showed well-defined asymmetrical

and palindromic nucleotide patterns, although their
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Figure 3. Trinucleotide profiles predict the distribution of amino acids encoded by mononucleosomal DNA. The aggregated profile of trinucleotides corresponding to
codons for the 20 amino acids (red) coincides with the actual profile of amino acid distribution in proteins (blue) in S. pombe and S. cerevisiae. The y-axis indicates
the relative frequency of aggregated trinucleotides (red) normalized to the average genomic composition and the relative frequency of amino acids (blue) encoded
by mononucleosomal DNA in ORFs. The x-axis represents the distance relative to the central position of mononucleosomal DNA. Results for S. octosporus and
S. japonicus are shown in the electronic supplementary material, figure S7.
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individual shapes were different among them and also

relative to S. pombe (figure 1a). As in S. pombe, the alignment

of sequences 150-bp long chosen at random from their

genomes generated flat profiles that coincided with the aver-

age genome composition of each species (figure 1b). The

differences in the nucleosomal signatures among the four

species are further highlighted in the aggregated represen-

tation of the A þ T content along mononucleosomal DNA

(figure 1c).

To check whether nucleosomal signatures were present in

transcribed and non-transcribed regions, we independently

analysed mononucleosomal DNA sequences mapping to

IGRs and to ORFs in S. pombe and S. cerevisiae. Comparable pro-

files were detected in both cases (electronic supplementary

material, figure S2), although the A and T content was lower

in ORFs than in IGRs, in agreement with the different overall

base composition of both types of region in the genome. In

the case of ORFs, the A þ T profile was maintained in the

three positions of the 150 codons along mononucleosomal

DNA (electronic supplementary material, figure S3), indicating

that it could not be accounted for by the higher sequence

degeneracy of the third codon position in the genetic code.

Well-defined and asymmetric patterns, consistent with those

of the four mononucleotides in figure 1, were also observed in

the distribution of dinucleotides (electronic supplementary

material, figure S4) and trinucleotides (electronic supplemen-

tary material, figure S5). Their palindromic distribution in the

two strands of DNA is clearly shown by the mirrored distri-

bution of the reverse complementary di- and trinucleotides
(blue and red diagrams in electronic supplementary material,

figures S4 and S5).
4.2. Genome-wide nucleosomal signatures parallel a
periodic distribution of amino acids in proteins

Since nucleosomal signatures are present in non-transcribed

and coding regions (electronic supplementary material,

figure S2), we wondered whether these genome-wide trinu-

cleotide patterns would have any impact on the distribution

of amino acids in proteins. To test this possibility, we generated

the profiles of the 64 trinucleotides from mononucleosomal

DNA (electronic supplementary material, figure S6, blue)

and grouped them on the basis of their identity with the

codons for each of the 20 amino acids in S. pombe, S. octosporus,

S. japonicus and S. cerevisiae (electronic supplementary

material, figure S6, red). It is important to note that these

profiles were generated directly from the distribution of trinu-

cleotides on genomic mononucleosomal DNA independently

from the distribution of codons along ORFs. The individual

and aggregated profiles of the trinucleotides corresponding

to the codons of alanine and lysine in the four species are

shown in figure 2.

To test whether there would be some connection between

the trinucleotide profiles and the actual distribution of amino

acids along ORFs, we generated the amino acid profiles of

mononucleosomal DNA fragments 150-bp long derived exclu-

sively from ORFs in the four species (see Material and
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methods). Figure 3 shows that the codon distribution profile

predicted by the frequency of trinucleotides (red line) matched

very closely to the actual distribution of the 20 amino
acids encoded by mononucleosomal DNA in S. pombe and

S. cerevisiae (blue line). The distribution of the 20 amino acids

in S. octosporus and S. japonicus is shown in the electronic
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supplementary material, figure S7. The distribution of some

amino acids encoded by A þ T-rich codons, such as tyrosine

(TAC/TAT), was symmetrical and comparable with the A þ T

mononucleosomal pattern (figure 1c), in sharp contrast with

the reverse profile of amino acids encoded by G þ C-rich

codons, such as alanine (GCN) (figure 3). Owing to the strong

asymmetry in the distribution of A and T in each DNA strand

(figure 1a), the amino acids encoded by A-rich codons such as

lysine (AAA/AAG) or glutamine (CAA/CAG) followed a

skewed distribution which was the reverse of that of T-rich

codons like phenylalanine (TTT/TTC) and cysteine (TGT/

TGC) (figure 3).

Recent comparative studies have shown that nucleo-

some mapping by MNase digestion using the single-read or

paired-end sequencing protocols or by chemical cleavage of

DNA at the dyad region generates comparable nucleosome

maps in S. cerevisiae [27,30]. In agreement with these obser-

vations, figure S8 in the electronic supplementary material

shows that the three approaches generate very similar maps

as regards the position of individual nucleosomes along the

genome in S. pombe and S. cerevisiae. Consistent with this scen-

ario, figure S9 in the electronic supplementary material shows

that the amino acid profiles along mononucleosomal DNA of

ORFs of the two yeasts independently identified by the three

methods are comparable. This degree of concordance indicates

that nucleosomal signatures are a robust feature of yeast gen-

omes that is detectable independently of the experimental

approach used to map the nucleosomes.

The aggregated pattern of codon distribution in mononu-

cleosomes (figure 3 and electronic supplementary material,

figure S7) raised the question of whether the same distribution

would be present in all the nucleosomes along the coding

regions. To test this possibility, we extracted the mononucleo-

somal sequences underlying six mutually exclusive groups of

nucleosomes at different positions along the ORFs and deter-

mined their codon distribution profile (figure 4). The groups

included the first and second nucleosomes immediately down-

stream from the ATG codon (A1 and A2), the two nucleosomes

closer to the central coordinate of the ORF (C1 and C2) and the

two nucleosomes immediately upstream from the STOP codon

(S1 and S2) of 1549 and 2046 ORFs in S. pombe and S. cerevisiae,

respectively. Figure 4 shows that, indeed, the species-specific

average pattern of amino acid distribution was present in all

the nucleosomes along the ORF, which resulted in an oscillat-

ing and periodic profile along its length. Taken together,

these results show that nucleosomal signatures across the

genome are paralleled by a periodic average distribution of

amino acids in proteins, depending on where their correspond-

ing codons are located relative to the dyad around the

nucleosome core.
5. Discussion
Several studies have described a link between the nucleosomal

organization of the genome and a periodic variation in base

composition or in the frequency of polymorphisms in DNA

[31–36]. The debate is still open as to whether these oscillating

sequence profiles have been selected by their contribution to

nucleosome positioning or whether they are a consequence of

the differential stability of the DNA molecule around the his-

tone core [37–39]. A role for selection is supported by the

detailed comparison between the intra- and intergenic rates
of sequence divergence around nucleosomal dyads in primates

[39]. This analysis detected signs of positive and negative selec-

tion in the maintenance of a higher and a lower than average

G þ C content in the dyad and linker regions, respectively.

Similarly, the finding that the linker DNA across genes in

S. cerevisiae evolves approximately 6% slower than core DNA

sequences led to the proposal that codons rich in A and T

could have been selected in linker sequences owing to their

contribution to excluding nucleosomes [40].

Other studies have pointed out that the different rates of

divergence and base composition between linker and core

mononucleosomal DNA could be due to a differential stability

of the DNA sequence around the histone core [33,37–39].

This possibility is consistent with the fact that the mutational

spectrum is not uniform along mononucleosomal DNA in

S. cerevisiae, where the substitution rate is higher than the

genome average in the dyad region and gradually declines to

a rate lower than average at both ends of mononucleosomal

DNA [33]. Interestingly, the central region shows the strongest

DNA–histone interaction, as measured by mechanical unzip-

ping of DNA molecules complexed with single nucleosomes

in vitro [41]. However, the selective or mutational origins of

the nucleosomal signatures are not mutually exclusive. It is

conceivable that structural differences in histone octamers,

repair complexes or other chromatin proteins among species

could determine a different rate or bias of mutation or repair

between different mononucleosomal DNA regions [33]. This

non-uniform mutational landscape is compatible with the

selective fixation of mutations favourable to stabilizing

DNA–histone interactions.

As regards the biological significance of nucleosomal sig-

natures, it is important to note that they represent a genome-

wide phenomenon (electronic supplementary material,

figures S1 and S2) whose influence on the amino acid compo-

sition of proteins is evidenced by their potential to predict the

relative distribution of codons along mononucleosomal DNA

(figure 3 and electronic supplementary material, figure S7).

The different profiles among species are likely to increase

protein diversity and could explain, for example, the paradox

that the high conservation of gene content, gene order and

gene structure among the three species of Schizosaccharomyces
studied here does not match the degree of divergence

between the amino acid composition of their proteins [28].

The diversity of nucleosomal signatures could contribute

to explaining the long known observation that the same DNA

is packed differently by nucleosomes of a different species

(e.g. [42–45]). Along the same lines, nucleosomal signatures

could also be very relevant for the interpretation of many

structural in vitro analyses of DNA–histone interactions

where synthetic or repetitive DNA molecules, or even the

entire genome of an organism, are reconstituted in vitro
with histones from a different species [46].
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