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In the wake of recent advances in artificial intelligence research, precision psychiatry
using machine learning techniques represents a new paradigm. The D-amino acid
oxidase (DAO) protein and its interaction partner, the D-amino acid oxidase activator
(DAOA, also known as G72) protein, have been implicated as two key proteins
in the N-methyl-D-aspartate receptor (NMDAR) pathway for schizophrenia. Another
potential biomarker in regard to the etiology of schizophrenia is melatonin in the
tryptophan catabolic pathway. To develop an ensemble boosting framework with
random undersampling for determining disease status of schizophrenia, we established
a prediction approach resulting from the analysis of genomic and demographic variables
such as DAO levels, G72 levels, melatonin levels, age, and gender of 355 schizophrenia
patients and 86 unrelated healthy individuals in the Taiwanese population. We compared
our ensemble boosting framework with other state-of-the-art algorithms such as
support vector machine, multilayer feedforward neural networks, logistic regression,
random forests, naive Bayes, and C4.5 decision tree. The analysis revealed that
the ensemble boosting model with random undersampling [area under the receiver
operating characteristic curve (AUC) = 0.9242 ± 0.0652; sensitivity = 0.8580 ± 0.0770;
specificity = 0.8594 ± 0.0760] performed maximally among predictive models to infer
the complicated relationship between schizophrenia disease status and biomarkers.
In addition, we identified a causal link between DAO and G72 protein levels in
influencing schizophrenia disease status. The study indicates that the ensemble
boosting framework with random undersampling may provide a suitable method to
establish a tool for distinguishing schizophrenia patients from healthy controls using
molecules in the NMDAR and tryptophan catabolic pathways.

Keywords: ensemble boosting, multilayer feedforward neural networks, N-methyl-D-aspartate receptor,
precision psychiatry, schizophrenia
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INTRODUCTION

Precision psychiatry, an emerging interdisciplinary paradigm
of psychiatry and precision medicine, is progressing into the
cornerstone of public health practice (Katsanis et al., 2008;
Snyderman, 2012). In terms of diagnostic and therapeutic
decisions, precision psychiatry is tailored to the specific patient
with psychiatric disorders (Katsanis et al., 2008; Snyderman,
2012). More generally, multiple data types such as genomics
and protein data are integrated with state-of-the-art artificial
intelligence and machine learning algorithms. Thereby, these
integrated frameworks are able to correspondingly learn to
provide proper clinical decisions during nearly every stage
of patient care in an individual manner, such as diagnosis
and treatment of psychiatric disorders (Lin and Chen, 2008a;
Lane et al., 2012; Lin and Lane, 2015, 2017). For example,
a recent study utilized machine learning models to optimize
prediction of antidepressant treatment outcome in patients with
major depressive disorder by using genetic and clinical datasets
(Lin et al., 2018a).

The N-methyl-D-aspartate receptor (NMDAR) pathway has
been a focus of attention in schizophrenia research. The D-amino
acid oxidase (DAO) protein and its putative activator, the
D-amino acid oxidase activator (DAOA, also known as G72)
protein, are two proteins in the NMDAR pathway. In vitro
studies reported that the G72 protein activates and binds to
the DAO protein (Chumakov et al., 2002; Sacchi et al., 2008).
Next, the DAO protein in turn oxidizes D-amino acids such
as D-serine, an agonist of NMDAR (Chumakov et al., 2002;
Sacchi et al., 2008). It has been hypothesized that patients who
over-yield the G72 protein may reduce the NMDAR activities,
thereby inclining them to schizophrenia (Hashimoto et al.,
2003; Lin et al., 2014; Lin and Lane, 2019). Furthermore, it
has been suggested that plasma G72 protein levels are notably
higher in patients with schizophrenia than in healthy individuals
(Lin et al., 2014). Moreover, it has been indicated that the
agonist activities in the NMDAR pathway possess appropriate
importance in developing novel drug targets for treatment
of schizophrenia (Coyle et al., 2003; Goff, 2012; Javitt, 2012;
Moghaddam and Javitt, 2012; Ermilov et al., 2013; Lane et al.,
2013; Lin et al., 2017a, 2018; Chang et al., 2019). To distinguish
healthy individuals from patients with schizophrenia, a previous
study also utilized machine learning algorithms (such as logistic
regression, naive Bayes, and C4.5 decision tree) to construct
predictive models by using the G72 protein and genetic variants
(Lin et al., 2018b).

Melatonin, which has an impact on the tryptophan catabolic
pathway, is another probable factor with respect to the
developmental etiology of schizophrenia (Anderson and Maes,
2012). It is proposed that melatonin plays a role as a biomarker of
schizophrenia although the findings were controversial (Morera-
Fumero and Abreu-Gonzalez, 2013). It has been reported that
plasma melatonin levels were higher, lower, or similar in
patients with schizophrenia as compared to healthy controls
(Morera-Fumero and Abreu-Gonzalez, 2013). Schizophrenia is
also linked with both circadian and metabolic disorders, which
are modulated by melatonin (Wulff et al., 2012).

Here, in order to distinguish schizophrenia patients from
healthy controls in the Taiwanese population, we employed
an ensemble boosting algorithm to build predictive models
of schizophrenia disease status by using DAO and G72
protein levels in the NMDAR pathway as well as by using
melatonin levels in the tryptophan catabolic pathway. To
deal with imbalanced data, we also utilized the random
undersampling method at the data level (Galar et al., 2011).
To the best of our knowledge, no previous studies have been
performed to evaluate predictive models for schizophrenia
disease status by using ensemble boosting techniques with
random undersampling. We selected the ensemble boosting
algorithms because these algorithms are regularly applied to
solve complex problems in classification and predictive modeling
owing to their superiority in reduction of overfitting, consistency,
robust prediction, and better generalization (Yang et al., 2010;
Galar et al., 2011; Zhang et al., 2019). This study directly
compared the performance of the ensemble boosting models
to widely used machine learning algorithms, including support
vector machine (SVM), multi-layer feedforward neural networks
(MFNNs), logistic regression, random forests, naive Bayes,
and C4.5 decision tree. Our analysis demonstrated that our
ensemble boosting approach with random undersampling led to
better performance.

MATERIALS AND METHODS

Study Population
The study cohort consisted of 355 schizophrenia patients and
86 unrelated healthy controls, who were recruited from the
China Medical University Hospital in Taiwan. In this study,
both schizophrenia patients and healthy controls were aged
18–65 years, were healthy in the neurological and physical
conditions, and had obtained normal laboratory assessments
(such as blood routine and biochemical tests). Details of the
diagnosis of schizophrenia were published previously (Lin et al.,
2014). Briefly, the research psychiatrists evaluated both patients
and healthy volunteers by using the Structured Clinical Interview
for DSM-IV (SCID) for diagnosis (Lin et al., 2014).

After presenting a complete description of this study to the
subjects, we obtained written informed consents in line with the
institutional review board guidelines. This study was approved
by the institutional review board of the China Medical University
Hospital in Taiwan and was conducted in accordance with the
Declaration of Helsinki.

Laboratory Assessments
Plasma G72 protein expression levels were measured by western
blotting (Lin et al., 2014). Shortly after 10 mL of blood was
collected into EDTA-containing blood collection tubes by using
sterile techniques, we processed the blood specimens shortly by
using centrifugation at 500 g. After centrifugation, we directly
dissected plasma and rapidly stored it at −80◦C until western
blotting. For western blotting, we depleted 100 µL plasma by
using ProteoPrep R© Blue Albumin and IgG Depletion Kit. All
western blot experiments were repeated for two times.
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DAO levels in the serum were measured using commercially
available enzyme-linked immunosorbent assay (ELISA) kits
according to the manufacture’s recommended protocol (Cloud-
Clone Corp, Houston, TX, United States). The detailed method
has been described elsewhere (Lin et al., 2017b).

Melatonin protein concentrations were measured using
commercially available enzyme-linked immunosorbent assay
(ELISA) kits according to the manufacture’s recommended
protocol (MyBioSource, San Diego, CA, United States). Briefly,
100 µL plasma samples and the standard were added to each
well of a 96-well plate. The solutions were incubated for 2 h
at 37◦C. The liquid was then removed. 100 µL Biotin-antibody
(1×) was added to each well and incubated for 1 h at 37◦C.
Each well was washed with buffer for three times. 100 µL HRP-
avidin (1×) was added to each well and incubated for 1 h at
37◦C. Each well was washed with buffer for five times and then
incubated with 90 µL substrate solution for 15–30 min at 37◦C
with the protection from light. 50 µL stop solution was added to
each well, and mixed thoroughly. A Benchmark Plus Microplate
Reader (Bio-Rad) was used to read the optical density at 450 nm.
The concentrations of melatonin in the samples were determined
according to a standard curve.

Statistical Analysis
The Student’s t-test was conducted to measure the difference
in the means of two continuous variables (Lin et al., 2019).
We performed the chi-square test for categorical data. The
Kruskal-Wallis test was used to determine if there is statistically
significant difference between schizophrenia patients and healthy
controls on DAO, G72, and melatonin levels. Furthermore,
we utilized multivariable logistic regression analysis to assess
causal links between DAO, G72, and melatonin levels with
adjustment for age and gender. The criterion for significance
was set at P < 0.05 for all tests. Data are presented as the
mean± standard deviation.

Ensemble Boosting Predictive Models
We employed a key ensemble boosting technique called
LogitBoost (Friedman et al., 2000) and utilized the Waikato
Environment for Knowledge Analysis (WEKA) software (which
is available from https://www.cs.waikato.ac.nz/ml/weka/)
(Witten et al., 2005) to carry out the predictive ensemble
framework. All the experiments were conducted on a computer
with Intel (R) Core (TM) i5-4210U, 4 GB RAM, and Windows 7.

The LogitBoost algorithm is an ensemble boosting approach,
which combines the performance of many weak classifiers (also
referred to as base classifiers) to achieve a robust classifier with
higher accuracy. Figure 1 shows the illustrative diagram of the
ensemble boosting method. The LogitBoost algorithm utilizes a
binomial log-likelihood method that changes the classification
error linearly so that LogitBoost tends to be robust in handling
outliers and noisy data. The base classifier we employed is a
decision stump, which is a one-level decision tree (that is, a
decision tree with a root node and two leaf nodes). Here, we used
the default parameters of WEKA, such as 1.0 for the shrinkage
parameter, 100 for the batch size, 3.0 for the Z max threshold,
and 10 for the number of iterations.

Furthermore, we utilized a random undersampling technique
which eliminates instances in the majority class to balance
class distribution (Galar et al., 2011). We further combined the
LogitBoost algorithm with the random undersampling technique.

Machine Learning Algorithms for
Benchmarking
For the benchmarking task in the present study, we utilized
six state-of-the-art machine learning algorithms including SVM,
MFNNs, logistic regression, random forests, naive Bayes, and
C4.5 decision tree to compare with the ensemble boosting model.
We carried out the analyses for these six machine learning
algorithms using the WEKA software (Witten et al., 2005)
and a computer with Intel (R) Core (TM) i5-4210U, 4 GB
RAM, and Windows 7.

The SVM algorithm (Vapnik, 2013) is a popular technique
for pattern recognition and classification. Given a training set
of instance-label pairs, the SVM algorithm leverages a kernel
function to map the training vectors into a higher dimensional
space (Lin and Hwang, 2008b; Vapnik, 2013). In this higher
dimensional space, the SVM algorithm then finds a linear
separating hyperplane with the maximal margin. In this study,
we used the Pearson VII function-based universal kernel (Üstün
et al., 2006) with the omega value of 1.0 and the sigma value of 0.5.

An MFNN framework consists of one input layer, one or
multiple hidden layers, and one output layer, where connections
among neuron structures consist of no directed cycles (Bishop,
1995). In the learning period of the MFNN framework, the
back-propagation algorithm (Rumelhart et al., 1996) is leveraged
for the learning strategy. In the retrieving period, the MFNN
framework repeats via all the structures to perform the retrieval
process at the output panel in keeping with the inputs of test
patterns (Kung and Hwang, 1998).

We used the logistic regression model, the standard method
for classification problems in clinical applications (Witten et al.,
2005), as a basis for comparison. In addition, we employed the
naive Bayes model that assumes the presence or absence of a
particular feature is unrelated to the presence or absence of
any other feature (Witten et al., 2005). The naive Bayes model
calculates the probability that a given instance belongs to a certain
class (that is, “schizophrenia patient” or “healthy control” in this
study) by using the Bayes’ theorem.

The random forests model is an ensemble learning method
that composes a collection of decision trees during training
and yields the class that is the mode of the classes among
the individual trees (Breiman, 2001). Here, we used the default
parameters of WEKA for the random forests model; for example,
100 for the batch size and 100 for the number of iterations.

The C4.5 decision tree model builds decision trees top-down
and prunes them using the concept of information entropy
(Witten et al., 2005). First, the tree is constructed by finding the
root node (for example, protein level) that is most discriminative
one for differentiating “schizophrenia patient” from “healthy
control.” Then, the best single feature test is decided by the
information gain and by choosing a feature (for example, protein
level) to split the data into subsets. Here, we used the default
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FIGURE 1 | The schematic illustration of the ensemble boosting method. The idea of the ensemble boosting approach is to train weak/base classifiers sequentially in
a way that each classifier tries to correct its predecessor. A higher weight is assigned to samples that were incorrectly classified by earlier rounds. That is, week/base
classifiers are produced in sequence based on a weighted version of the data during the training phase. The final classification prediction is then produced by a
weighted majority vote.

parameters of WEKA, such as 0.25 for the confidence factor
and 2 for the minimum number of instances per leaf node
(Huang et al., 2009).

Evaluation of the Predictive Performance
In this study, we utilized the receiver operating characteristic
(ROC) methodology and determined the area under the ROC
curve (AUC) to assess the performance of predictive models
(Linden, 2006; Lin and Hwang, 2008b; Huang et al., 2009). The
better the prediction model, the higher the AUC (Linden, 2006;
Huang et al., 2009). In additional, we calculated sensitivity (that
is, the proportion of correctly predicted responders of all tested
responders) as:

Sensitivity = True Positive/(True Positive + False Negative)

and specificity (that is, the proportion of correctly predicted non-
responders of all the tested non-responders) as:

Specificity = True Negative/(True Negative + False Positive).

Moreover, we utilized the repeated 10-fold cross-validation
method and leave-one-out cross-validation method to examine
the generalization of predictive models (Huang et al., 2009; Lin
and Hsu, 2009).

RESULTS

The Study Cohort in the Taiwanese
Population
The participants included 355 schizophrenia patients and 86
unrelated healthy individuals in the Taiwanese population.

As shown in Table 1, there was no significant difference
in gender (P = 0.101) and age (P = 0.136) distributions
between the two groups. The mean age (39.6 ± 10.0 years) of
schizophrenia patients was older than that of healthy controls
(37.8± 12.2 years). The mean level of DAO protein in the plasma
of schizophrenia patients was considerably higher than that of
healthy controls (37.64 ± 14.18 ng/mL vs. 28.03 ± 9.84 ng/mL;
P = 5.55 × 10−9) (Table 1). In addition, the mean level of G72
protein in the plasma of schizophrenia patients was markedly
higher than that of healthy controls (3.24 ± 1.80 ng/µL vs.
1.68 ± 0.81 ng/µL; P = 4.71 × 10−14) (Table 1). Moreover, the
mean level of melatonin in the plasma of schizophrenia patients
was notably higher than that of healthy controls (89.89 ± 46.07
pg/mL vs. 60.04± 42.72 pg/mL; P = 9.75× 10−7) (Table 1).

The significant Kruskal-Wallis test was shown for DAO,
G72, and melatonin levels (P = 3.12 × 10−9, 2.2 × 10−16,
and 3.35 × 10−6, respectively) between schizophrenia patients
and healthy controls. Supplementary Figure S1 shows the

TABLE 1 | Demographic characteristics of schizophrenia patients and
healthy individuals.

Characteristic Schizophrenia
patients

Healthy
individuals

P-valuea

No. of subjects (n) 355 86

Gender (male)% 61.9% 52.3% 0.101

Age (year) 39.6 ± 10.0 37.8 ± 12.2 0.136

DAO level (ng/mL) 37.64 ± 14.18 28.03 ± 9.84 5.55 × 10−9

G72 level (ng/µL) 3.24 ± 1.80 1.68 ± 0.81 4.71 × 10−14

Melatonin level (pg/mL) 89.89 ± 46.07 60.04 ± 42.72 9.75 × 10−7

aChi-square test for the categorical data; Student’s t-test for continuous variables.
Data are presented as mean ± standard deviation. DAO, D-amino acid oxidase;
G72 (also known as DAOA), D-amino acid oxidase activator.
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TABLE 2 | The results of repeated 10-fold cross-validation experiments for differentiating schizophrenia patients from healthy individuals using ensemble boosting with
random undersampling, ensemble boosting, SVM, MFNNs, logistic regression, random forests, naive Bayes, and C4.5 decision tree with biomarkers such as DAO
protein levels, G72 protein levels, melatonin protein levels, age, and gender.

Algorithm AUC Sensitivity Specificity Number of biomarkers

Ensemble boosting with random undersampling 0.9242 ± 0.0652 0.8580 ± 0.0770 0.8594 ± 0.0760 5

Ensemble boosting 0.9010 ± 0.0464 0.8442 ± 0.0447 0.5803 ± 0.1446 5

SVM 0.6720 ± 0.0837 0.8461 ± 0.0393 0.4979 ± 0.1364 5

MFNN with 1 hidden layer 0.8920 ± 0.0463 0.8343 ± 0.0457 0.5816 ± 0.1340 5

MFNN with 2 hidden layers 0.8949 ± 0.0455 0.8391 ± 0.0515 0.6121 ± 0.1383 5

MFNN with 3 hidden layers 0.8884 ± 0.0507 0.8359 ± 0.0463 0.6312 ± 0.1454 5

Logistic Regression 0.8677 ± 0.0566 0.8497 ± 0.0566 0.5660 ± 0.1295 5

Random Forests 0.8543 ± 0.0627 0.8229 ± 0.0379 0.4197 ± 0.1213 5

naive Bayes 0.8546 ± 0.0628 0.8320 ± 0.0473 0.6611 ± 0.1411 5

C4.5 decision tree 0.7701 ± 0.0721 0.8306 ± 0.0469 0.4526 ± 0.1272 5

AUC, the area under the receiver operating characteristic curve; DAO, D-amino acid oxidase; G72 (also known as DAOA), D-amino acid oxidase activator; MFNNs,
multilayer feedforward neural networks; SVM, support vector machine. Data are presented as mean ± standard deviation.

distribution charts of three features (such as DAO, G72, and
melatonin levels) and other variables for schizophrenia patients
and healthy controls. The distribution charts are grouped
separately by two subsets, namely schizophrenia patients (shown
in the red color) and healthy controls (shown in the blue
color). As shown in Supplementary Figure S1, the number of
schizophrenia patients was much larger than the number of
healthy controls.

Predictive Models for Schizophrenia
Disease Status
In this study, we used five biomarkers including DAO levels,
G72 levels, melatonin levels, age, and gender to build the
predictive models for differentiating schizophrenia patients
from healthy individuals by employing the ensemble boosting
framework. Table 2 summarizes the results of repeated 10-
fold cross-validation experiments by ensemble boosting (with
random undersampling), SVM, MFNNs, logistic regression,
random forests, naive Bayes, and C4.5 decision tree using
five biomarkers. To measure the performance of prediction
models, we used the ROC methodology and calculated the AUC,
sensitivity, and specificity for these predictive models using
five biomarkers.

Supplementary Figures S2–S4 show plots of ROC, precision-
recall, and sensitivity-specificity curves for ensemble boosting
with random undersampling using five biomarkers, respectively.
Supplementary Figures S5–S10 show plots of ROC, precision-
recall, and sensitivity-specificity curves for ensemble boosting,
SVM, MFNNs, logistic regression, random forests, naive Bayes,
and C4.5 decision tree using five biomarkers.

As shown in Supplementary Figure S2, the lower left point
(0, 0) on the ROC curve represents a false positive rate of 0%
(that is, no false positive errors) and a true positive rate of 0%
(that is, no true positives), indicating never having a positive
classification. On the contrary, the upper right point (1, 1)
represents a false positive rate of 100% and a true positive rate
of 100%, indicating completely having positive classifications.
Furthermore, if we assume that the point (0.1406, 0.858) is on the

ROC curve, the point (0.1406, 0.858) shows a false positive rate of
14.06% (or specificity of 0.8594) and a true positive rate of 85.8%
(or sensitivity of 0.858).

As shown in Supplementary Figure S3, if we assume that
the point (0.858, 0.8546) is on the precision-recall curve, the
point (0.858, 0.8546) shows a true positive rate of 85.8% (or
recall/sensitivity of 0. 858) and a precision value of 85.46%.
Additionally, as shown in Supplementary Figure S4, if we
assume that the point (0.8594, 0.858) is on the sensitivity-
specificity curve, the point (0.8594, 0.858) shows a true negative
rate of 85.94% (or specificity of 0.8594) and a true positive rate of
85.8% (or sensitivity of 0.858).

In addition, Supplementary Tables S1–S3 summarize
the results of repeated 10-fold cross-validation experiments
by ensemble boosting (with random undersampling), SVM,
MFNNs, logistic regression, random forests, naive Bayes, and
C4.5 decision tree using individual features such as DAO
(Supplementary Table S1), G72 (Supplementary Table S2), and
melatonin (Supplementary Table S3) levels, respectively.

Ensemble Boosting Model for
Schizophrenia Disease Status
For the ensemble boosting model for forecasting schizophrenia
disease status, we performed a series of different datasets using
five biomarkers as well as individual features. As indicated
in Table 2, the average value of AUC for the ensemble
boosting prediction model with random undersampling was
0.9242 ± 0.0652 using five biomarkers including DAO levels,
G72 levels, melatonin levels, age, and gender. As indicated
in Supplementary Tables S1–S3, the average values of AUC
for the ensemble boosting prediction model with random
undersampling were 0.6471 ± 0.1062, 0.7314 ± 0.1121, and
0.8462 ± 0.0873 using individual features such as DAO levels,
G72 levels, and melatonin levels, respectively.

Benchmarking
To evaluate the performance of our approach for predictive
models for schizophrenia disease status, we compared the
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ensemble boosting model with other state-of-the-art methods,
including SVM, MFNNs, logistic regression, random forests,
naive Bayes, and C4.5 decision tree.

For MFNN models for forecasting schizophrenia disease
status, we performed a series of different architectures containing
1, 2, and 3 hidden layers. Supplementary Figures S11–S13 show
an example of architecture of the MFNN model with 3, 2, and
1 hidden layer(s), respectively. As indicated in Table 2, the
average values of AUC for the MFNN prediction models of 1,
2, and 3 hidden layers were 0.8920 ± 0.0463, 0.8949 ± 0.0455,
and 0.8884 ± 0.0507, respectively. Supplementary Figures
S14–S16 show cost/loss function measurement plots of the
MFNN model with 3, 2, and 1 hidden layer(s), respectively.
Of all the MFNN prediction models, the MFNN model with
2 hidden layers yielded better performance than the other
two models in terms of AUC. Thus, there was no significant
improvement in the sensitivity with the increase in hidden layers.
Moreover, the specificity was low, indicating that the model
provides more false positives. This may have been due to an
imbalance in the dataset.

Supplementary Table S4 shows WEKA’s hyper-parameters
for training the MFNN models with 1–3 hidden layers. For
example, we used the following WEKA’s parameters for training
the MFNN model with one hidden layer: the momentum = 0.01,
the learning rate = 0.05, the batch size = 100, and the number
of epochs = 500.

As shown in Table 2, the ensemble boosting model with
random undersampling performed maximally in all cases.
The best AUC was 0.9242 ± 0.0652, which was based on the
ensemble boosting model with random undersampling (Table 2).
Our analysis indicated that the ensemble boosting model with
random undersampling was well-suited for predictive models
for schizophrenia disease status. Furthermore, the ensemble
boosting model with random undersampling performed
best in both sensitivity (0.8580 ± 0.0770) and specificity
(0.8594± 0.0760) (Table 2).

Leave-One-Out Cross-Validation
Experiments
In this study, we also explored the generalization of predictive
models using the leave-one-out cross-validation method.
Supplementary Table S5 summarizes the results of leave-
one-out cross-validation experiments by ensemble boosting
(with random undersampling), SVM, MFNNs, logistic
regression, random forests, naive Bayes, and C4.5 decision
tree using five biomarkers such as DAO levels, G72 levels,
melatonin levels, age, and gender. In addition, Supplementary
Tables S6–S8 summarize the results of leave-one-out cross-
validation experiments by ensemble boosting (with random
undersampling), SVM, MFNNs, logistic regression, random
forests, naive Bayes, and C4.5 decision tree using individual
features such as DAO (Supplementary Table S6), G72
(Supplementary Table S7), and melatonin (Supplementary
Table S8) levels, respectively.

As indicated in Supplementary Table S5, the AUC value
for the ensemble boosting prediction model with random

undersampling was 0.937 using five biomarkers including
DAO levels, G72 levels, melatonin levels, age, and gender. As
indicated in Supplementary Tables S6–S8, the AUC values
for the ensemble boosting prediction model with random
undersampling were 0.603, 0.610, and 0.826 using individual
features such as DAO levels, G72 levels, and melatonin
levels, respectively.

As shown in Supplementary Table S5, the best AUC was
0.937, which was based on the ensemble boosting model with
random undersampling using five biomarkers such as DAO
levels, G72 levels, melatonin levels, age, and gender. Furthermore,
the ensemble boosting model with random undersampling
performed best in both sensitivity (0.855) and specificity (0.855)
(Supplementary Table S5).

Causal Links Between Protein Levels
Finally, we assessed causal links among DAO levels, G72
levels, and melatonin levels in predicting schizophrenia disease
status with age and sex as covariates. In our analysis, there
was a significant causal link involving DAO levels and
G72 levels (P = 0.0036) in influencing schizophrenia disease
status. However, there were no causal links either between
DAO levels and melatonin levels or between G72 levels and
melatonin levels.

DISCUSSION

To our knowledge, this is the first study to date to leverage
an ensemble boosting approach with random undersampling
for building predictive models of schizophrenia disease status
among Taiwanese individuals. Moreover, we performed the
first study to predict schizophrenia disease status by utilizing
protein data in both the NMDAR and tryptophan catabolic
pathways. The findings pinpointed that the ensemble boosting
model with random undersampling using five biomarkers
outperformed other state-of-the-art predictive models in terms
of AUC for distinguishing schizophrenia patients from healthy
controls. The five biomarkers encompassed DAO levels, G72
levels, melatonin levels, age, and gender. In addition, we found
that a significant causal link between DAO and G72 protein
levels possessed a strong potential to reflect schizophrenia
disease status. By leveraging the molecular data in the
NMDAR and tryptophan catabolic pathways, we establish the
predictive models of schizophrenia disease status by using the
ensemble boosting framework with random undersampling.
Our data also suggest that our ensemble boosting models
with random undersampling may provide a suitable approach
to create predictive models for forecasting schizophrenia
disease status with clinically meaningful accuracy. Therefore,
the ensemble boosting approach with random undersampling
in this study is a proof of concept of a machine learning
predictive tool for discriminating schizophrenia patients from
healthy individuals.

Remarkably, an intriguing finding was that we further
inferred the causal link between DAO and G72 protein levels
in influencing schizophrenia disease status. To our knowledge,
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scanty human studies have been conducted to evaluate causal
links between DAO and G72 protein levels. The biological
mechanisms of these causal links in schizophrenia disease
status remain to be elucidated. In line with our results,
an in vitro study identified a physical interaction between
DAO and G72 proteins using yeast two-hybrid experiments
(Chumakov et al., 2002). Moreover, a recent study found a
putative correlation between DAO and G72 protein expressions
in the brain regions such as the brainstem, cerebellum,
amygdala, and thalamus (except for the frontal cortex) by
using post-mortem brain samples in normal human subjects
(Jagannath et al., 2017).

In this study, the dataset is highly imbalanced because the
class of schizophrenia patients is significantly larger in terms
of instances than the class of healthy controls. To overcome
this limitation, we employed the random undersampling method
to balance class distribution. Without random undersampling,
the predictive models tend to have lower specificity values. In
line with previous findings (Chawla et al., 2004; Galar et al.,
2011), we found that the ensemble boosting model with random
undersampling is highly suitable for handling class imbalances. It
has also been suggested to use more accurate measures such as
AUC to evaluate predictive models in the case of class imbalances
(Chawla et al., 2004).

Furthermore, it is worthwhile to bring the discussion on
the random undersampling method for dealing with the
imbalanced data (that is, the bigger number of schizophrenia
patients vs. the smaller number of healthy controls) in our
study. Due to the imbalanced data, the models without the
random undersampling method showed predictions that were
clearly biased toward higher sensitivity and lower specificity.
For example, without random undersampling, sensitivity was
around 80% and specificity was around 50–60% for the
models using the combined biomarkers of DAO, G72, and
melatonin protein levels (Table 2). On the contrary, ensemble
boosting with random undersampling had sensitivity of 85.8%
and specificity of 85.94% for the combined biomarkers
(Table 2). The models with individual biomarkers were
also in the similar situation (Supplementary Tables S1–S3).
For instance, without random undersampling, sensitivity was
around 80% and specificity was around 40% for the models
using individual melatonin protein levels (Supplementary
Table S3). On the other hand, ensemble boosting with random
undersampling had sensitivity of 77.19% and specificity of
77.44% for melatonin protein levels (Supplementary Table S3).
Therefore, predictions were no longer biased toward higher
sensitivity and lower specificity by using ensemble boosting
with random undersampling. Our improved results demonstrate
that the ensemble boosting model with random undersampling
provides an effective way to solve the imbalanced data
problem in our study.

CONCLUSION

In conclusion, we created an ensemble boosting predictive
framework with random undersampling for estimating

schizophrenia disease status in Taiwanese subjects by using
DAO and G72 protein datasets in the NMDAR pathway as
well as by using melatonin dataset in the tryptophan catabolic
pathway. The analysis indicates that our ensemble boosting
framework with random undersampling could contribute
a conceivable way to construct predictive algorithms for
determining schizophrenia disease status in terms of clinically
purposeful performance. Consequently, we would foresee that
the findings of this study may be generalized for genomic
medicine studies in precision psychiatry to forecast disease
status and treatment response for psychiatric disorders.
Furthermore, the findings may be potentially adopted to
provide molecular diagnostic and prognostic tools in the
coming years. It is indispensable to unfold further discoveries
into the role of the machine learning predictive framework
explored in this study by using replication studies with
independent samples.
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