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Metabolic phenotyping, nowadays most often termed

‘metabolomics’, is becoming increasingly applied in mo-

lecular epidemiology, particularly in concert with gen-

omics. Since Jeremy Nicholson and colleagues coined the

term ‘metabonomics’ in 1999,1 over 15 000 publications

have appeared under this conceptual and technological

umbrella (a Pubmed search on 15 August 2016 at [http://

www.ncbi.nlm.nih.gov/pubmed/] with metabonomics or

metabolomics or lipidomics). Most of the published works

have been, and still continue to be, methodologically ori-

ented2 and thereby bear little direct relevance to applied

epidemiology. Particularly the spectroscopy-based chemo-

metric approaches–typically aiming at classification of in-

dividuals with or without a particular disease–have for a

long time (mis)guided metabolomics research.3–9 Many of

the limitations of these types of multivariate metabolomics

applications are currently well understood: overtraining of

classification models with high numbers of variables (typ-

ically spectral data points), cross-sectional study settings

with very small numbers of individuals and no independent

replication.5,7,8 However, some lack of clarity still remains,

partly related to some misplaced conceptions as to the

scope of truly personalized medicine.10–13 Individual diag-

nostics of polygenic diseases, when both the disease liabil-

ity14 and the metabolic phenotypes15–17 are continuous,

fundamentally preclude diagnostic models that would pro-

vide both high sensitivity and high specificity.4,5,7,18–20 For

example, conditions like autism, long considered rigid

disease classifications, clearly involve a somewhat arbi-

trary division of a continuously distributed underlying li-

ability,21 limiting attempts at improved binary

classification. In addition, many metabolomics applica-

tions have ignored confounding in data analyses and inter-

pretations, though it is well established in observational

epidemiology that confounding–by lifestyle and socioeco-

nomic factors, or by baseline health status, treatment and

medication effects–is prone to affect many

associations.22,23

Getting quantitative and molecular

Recent technological developments resulting in increased

numbers of quantitative molecular applications of metabo-

lomics triggered the idea for this themed issue in metabolic

phenotyping in epidemiology. The pivotal role of absolute

quantification of identified molecular entities in epidemi-

ology and genetics is evident from a multitude of recent ap-

plications.6,24–28 The data analysis protocols in mass

spectrometry (MS) often build on a quantitative logic, i.e.

identification, assignment and evaluation of specific mo-

lecular signals. Though most of the MS-based studies have

been small or moderate in numbers from the epidemiolo-

gical perspective, multiple interesting studies have recently

been published,24,26,29–31 including comparisons between

two common commercial MS platforms.32 On the

other hand, a large number of the applications of
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nuclear magnetic resonance (NMR) spectroscopy in

metabolomics have been spectroscopy-based chemometric

approaches.5,33 Multiple highly implausible conclusions,

for example in relation to coronary heart disease and

cancer diagnostics, have been published.3,7 However, dur-

ing the past 20 years NMR-based lipoprotein subclass

profiling has been commercialized and become visible in

epidemiology and clinical applications.34,35 NMR spec-

troscopy can also be used as a general method to quantify

multiple molecular constituents in serum and in other bio-

fluids.6,28,36–38 However, few applications apart from

focused lipoprotein profiling,35,39 have been published in

epidemiological contexts: only one quantitative serum

metabolomics platform being systematically applied in

metabolic profiling studies of more than a thousand peo-

ple.6,28,40 The pros and cons of NMR and MS for meta-

bolic profiling have been extensively covered in multiple

reviews.2,6,41–44 MS-based lipidomics in epidemiology is

reviewed in this issue by Meikle and co-workers,45 with

the anticipation that further progress is in sight from large,

well-characterized cohorts. In addition, a compelling re-

minder of the current possibilities of in vivo metabolic phe-

notyping, and a vision of how to reach large-scale

neurochemical profiling in epidemiological research, is

provided in this issue by McKay and Tk�a�c.46

Combining MS and NMR and notes on
replication and causality

So far only a few epidemiological studies have combined

MS and NMR methodologies. These are important for

increasing the number of metabolic measures studied and

also to validate biomarker findings by different technolo-

gies. Recently Wahl and colleagues47 combined over 400

quantitative measures from serum MS and NMR platforms

for over 1600 participants, when studying a multi-omic

signature of body weight change in a population-based co-

hort. Würtz and colleagues15 corroborated NMR-based

cardiovascular biomarker associations with MS in two

population cohorts with 671 and 2289 individuals. In this

issue, Vogt and coauthors48 characterize associations be-

tween serum 25-hydroxyvitamin D concentrations and

those of 415 metabolite and lipid measures, quantified by

both NMR- and MS-based platforms in 1726 people from

a population-based study, KORA F4. Importantly, they

also replicated the majority of their findings in an inde-

pendent population-based study with 6759 individuals for

the NMR-based measures and 609 for the MS-based meas-

ures. In another study in this issue, Nelson and co-work-

ers49 also characterize associations between serum

25-hydroxyvitamin D and serum metabolites, using pri-

marily a non-targeted MS-based approach with eventually

940 compounds identified in eight mutually exclusive

chemical classes; lipids, amino acids, xenobiotics, peptides,

co-factors and vitamins, carbohydrates, energy metabolites

and nucleotides. This is a remarkable metabolic coverage

from a technical point of view. Nevertheless, the results are

weakened by the lack of replication. Comparison of the re-

sults from Nelson and co-workers49 with those of Vogt

and coauthors48 illustrates the importance of biologically

independent data; for example, the association of 3-car-

boxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF)

with 25-hydroxyvitamin D is similarly positive and strong

in all three cohorts; however, eicosapentaenoate (EPA) and

docosahexaenoate (DHA), which show strong positive

associations in the ATBC study,49 do not associate with

25-hydroxyvitamin D in KORA F4.48 Possible explanation

for this discrepancy is the finding in the ATBC study that

retinol influenced the associations between 25-hydroxyvi-

tamin D and EPA as well as DHA.49

There are of course many possible confounding factors

that complicate interpretations of cross-sectional epi-

demiological studies, particularly when aiming to infer

causality,22 which Mendelian randomization analyses can

attempt to circumvent. A recently published study, apply-

ing the Mendelian randomization framework50–53 to inves-

tigate potential causality in the association between

25-hydroxyvitamin D and schizophrenia, gives an exem-

plar of how, in certain cases, potential confounding by life-

style factors can be minimized.54 The study findings

suggested that associations between schizophrenia and

25-hydroxyvitamin D may not be causal, and, therefore

the evidential basis for vitamin D supplementation as a

candidate approach for preventing schizophrenia is weak-

ened. Similarly, a recent extensive Mendelian randomiza-

tion study provides no support for a causal role for

25-hydroxyvitamin D in the risk of coronary artery dis-

ease.55 On the other hand, in this issue Ong and co-work-

ers56 found that genetically lowered 25-hydroxyvitamin D

levels were associated with higher susceptibility to ovarian

cancer. Along the same lines, genetically lowered

25-hydroxyvitamin D levels have been found to be associ-

ated with increased susceptibility to multiple sclerosis.57

Thus, in relation to these outcomes, vitamin D sufficiency

may be important in delaying onset of or preventing the

disease and might thus merit further investigations in long-

term randomized controlled trials. These recent applica-

tions of the Mendelian randomization framework are

interesting examples of causal epidemiology and a wel-

come reminder that observational association studies, such

as those regarding 25-hydroxyvitamin D and circulating

lipids and metabolites in this issue,48,49 are often prone to

confounding and reverse causation.22 Furthermore, an im-

portant note here is that replication of observational
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associations does not mean causation, as previously illus-

trated in the case of sex hormone-binding globulin and sys-

temic metabolism.58 In relation to these key challenges,

also in this issue, Swerdlow and co-workers59 present im-

portant guidance on how to plan and interpret Mendelian

randomization studies on disease biomarkers: very relevant

in the current era of a wealth of genetic data from genome-

wide studies and the increasing number of quantitative

metabolomics studies in epidemiology.

The use of Mendelian randomization analysis or

randomized controlled trials to assess causality calls for

certain prerequisites to be feasible.53,60,61 One interesting

example in this issue is the study by Wang and co-work-

ers62 on the effects of hormonal contraception on systemic

metabolism. The difficulties in randomizing women to use

hormonal contraception or placebo, and randomizing to

hormonal or non-hormonal contraception, are obvious.

Use of Mendelian randomization analysis to assess the

causal effects of oestrogen and progestin is currently lim-

ited by the lack of genetic variants that are reliable and

consistent proxies for oestrogen and progesterone expos-

ure. Furthermore, even were such variants to be identified,

they might not mimic the effects of taking exogenous hor-

mones. To address these difficulties and strengthen causal

inference Wang et al.62 integrated findings from cross-

sectional and longitudinal study settings. They assessed a

comprehensive molecular profile of 75 metabolic measures

and 37 cytokines in up to 5841 women within three

population-based cohorts. Women using combined oral

contraceptive pills (COCPs) were compared with those

who did not use hormonal contraception. Metabolomics

profiles were also reassessed for 869 women after 6 years

to uncover the metabolic effects of starting, stopping and

persistently using hormonal contraception. The extensive

metabolic measurements allowed multiple novel findings

on the systemic effects of COCPs. Perhaps of greater im-

portance to public health, persistent use of COCPs did

not appear to produce cumulative effects over time and

the metabolic perturbations were reversed upon

discontinuation.62

The study by Wang and co-workers62 applied a quantita-

tive serum NMR metabolomics platform; one that has com-

monly been used in epidemiology and genetics.6,40 The

platform provides some 150 primary concentration meas-

ures. These include a fine-grained lipoprotein subclass

profiling, and quantification of circulating fatty acids,

amino acids, gluconeogenesis-related metabolites and many

other molecules from multiple metabolic pathways, in add-

ition to multiple biomarkers already routinely used in epi-

demiology.15–17,27,28,63–67 The primary measures can also

be used to calculate many derived measures and metabolic

ratios with potential biological importance. In addition to

the study by Wang and co-workers,62 three other papers in

this issue also apply this methodology, namely the above-

mentioned study on serum 25-hydroxyvitamin D by Vogt

and co-authors48 and two by Würtz and co-workers which

look at metabolic profiling of alcohol consumption68 and

metabolic signatures of birthweight in adulthood.69

Alcohol consumption in nearly 10 000 young adults (in

a cross-sectional setting in three population-based cohorts)

was associated with a complex metabolic signature, com-

prising both favourable and adverse effects in relation to

the risk of cardiovascular disease and type 2 diabetes.68 As

in the study by Wang and co-workers,62 Würtz et al.68 also

complemented the cross-sectional study setting with a lon-

gitudinal set-up to be able to better assess the potential

causality of the associations. In fact, the metabolic changes

associated with the changes in alcohol intake (during

6-year follow-up in 1466 individuals) matched well with

the cross-sectional results, increasing evidence that these

changes were, at least partly, due to alcohol consumption.

The results of Würtz et al.68 can be interpreted along the

lines of recent extensive Mendelian randomization ana-

lyses,70 suggesting that reduction of alcohol consumption,

even for light to moderate drinkers, is beneficial for cardio-

vascular health, with the obvious implication that

Mendelian randomization studies of the influence of alco-

hol on the metabolome would be a natural extension of

this work. The study looking at the metabolic signatures of

birthweight in adulthood in 18 288 people is one the larg-

est epidemiological metabolomics studies published to

date.69 These data show that lower birthweight is ad-

versely associated with a wide range of established and

emerging circulating cardiometabolic biomarkers in adult-

hood. However, the magnitudes of metabolic aberrations

were weak (although statistically significant) and the au-

thors questioned their public health relevance.69 The pat-

tern of metabolic deviations associated with lower

birthweight resembled the metabolic signature of higher

adult body mass index (R2 0.77) with 1 kg lower birth-

weight being associated with similar metabolic aberrations

as caused by 0.92 units higher body mass index in adult-

hood. The authors suggested that shared underlying meta-

bolic pathways may be involved and concluded that

birthweight is only a weak indicator of metabolic risk in

adulthood.69

Quantitative molecular data–the base for a
multitude of statistical and
clinical appoaches

When metabolomics gets quantitative,5,6 it no longer mat-

ters if the technology is based on MS or NMR (or whatever

methodology), the output just becomes a list of molecular
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concentrations, the length and details of which depend on

the method in question. This marks a fundamental distinc-

tion from diagnostics-oriented spectroscopy-based chemo-

metric approaches; moving from (potentially thousands of)

spectral data points to (typically up to a few hundred) iden-

tified molecular measures dramatically simplifies the statis-

tical analyses and interpretations of epidemiological data.

Of course, biological and clinical appreciation would need

to be integrated into the metabolomics study rationale to

change the search for non-existent binary disease states in

the case of polygenic outcomes.5,6,9 Although the trans-

formation from spectra to quantitative molecular measures

is a challenge in itself, it is not discussed here since the

topic falls into the domain of analytical chemistry and a

plentiful literature is available.6,34,36,42,71–75 Nevertheless

from the epidemiology perspective, with quantitative

metabolomics data, i.e. with that list of molecular concen-

trations, all is back to basics and business as usual, apart

from the fact that the list of molecular variables is longer

than it has usually been in epidemiological studies. All

standard statistical approaches can be applied in a straight-

forward manner, including adjustments for potential con-

founding factors.6,22,24,25,28 Of course, as with any

quantitative molecular data, the analyses are by no means

limited to standard approaches but, for example, multi-

variate non-linear approaches,76,77 network analyses,77,78

pathway approaches79,80 and integration of multi-omic

data26,47,75,81–86 are all feasible. In fact, this is in contrast

to spectral-based approaches in which these types of ana-

lyses, aiming for detailed biological understanding, would

mostly be impossible to perform and interpret at the mo-

lecular level. Fearnley and Inouye,87 in their review in this

issue, survey epidemiological studies that leverage metabo-

lomics and multi-omics to gain insight into disease mech-

anisms. Whereas they emphasize the role of quantitative

metabolic data in biomarker identification and in under-

standing the metabolic underpinnings of diseases, they also

underline limitations and discuss potential solutions in re-

lation to statistical power issues with respect to sample

sizes and limited coverage of relevant metabolites. They

advocate a conceptual shift from metabolite concentrations

towards experiments and graph-theoretical analyses based

on the reactions themselves, and envision the identification

of subgroups of individuals enriched for variation in rele-

vant subregions of a reaction network in population-level

epidemiological studies.87

In another review in this issue, Sattar and colleagues dis-

cuss the applications and use of metabolomics in cardiome-

tabolic intervention studies and trials.88 They express their

concerns regarding the small scale and focus on surrogate

outcomes in most metabolomics studies in the area.

Advancing a list of recommendations for future biomarker

studies, they call for multi-expertise research coalitions to

work together for rigorous experimental study designs, with

an early focus on truly relevant clinical questions:88 the lat-

ter an issue recently elaborated in relation to clinical re-

search in general by Ioannidis.89 They also present an

interesting and critical discussion on the potential role of

metabolomics in predicting drug responses, and elaborate

this in the case of statins. Their points are well made from

the clinical point of view and very valuable to consider.

Generally, the idea of individual metabolic phenotypes is

alluring90–92 and might in some cases provide additional

and predictive value, for not only drugs but dietary sub-

stances as well.41,93 However this does not necessarily trans-

late into clinical relevance or applicability and, as the review

by Sattar and colleagues88 indicates, applications of metabo-

lomics in clinical trials are scarce. Recently Würtz and co-

workers published a proof-of-concept study17–a, “natural”,

clinical trial of statin effects94–in which they overcame the

lack of metabolomics data in randomized controlled trials

by using serially collected blood samples in population-

based cohorts, in which a subset of individuals had started

to use statins during follow-up. To verify that the observed

metabolic changes were actually due to the effects of statins,

the analyses were corroborated via Mendelian randomiza-

tion analyses using a genetic variant in the HMGCR gene as

an unconfounded proxy for the pharmacological action of

statins. In fact, this type of combination of metabolomics

data with genetic data in a large number of individuals read-

ily extends to studies of all drugs with established genetic

proxies mimicking their pharmacological action. With

increasing numbers of extensive metabolomics and genetic

data becoming available, we anticipate that comprehensive

metabolic profiles of drug targets are likely to augment drug

development in preclinical stages. Applications of two-

sample Mendelian randomization would allow the gene-risk

factor and gene-outcome associations to be taken from dif-

ferent data sources.95

An early example in drug research is the Consortium

for Metabonomic Toxicology, a collaboration that

involved several pharmaceutical companies in applications

of metabolomics to preclinical drug safety studies; this con-

sortium, via the measurement of a dataset of NMR spectra

of rodent urine and serum samples, built a predictive sys-

tem for liver and kidney toxicity.96 However, these

approaches have not been widely adopted by the pharma-

ceutical industry. This reluctance was likely due to the fact

that the methodologies originally used were spectroscopy-

based and chemometrics-driven and thereby not suffi-

ciently sensitive, quantitative, molecular-specific or

platform-independent to permit routine or widespread im-

plementation.97 With the recent shift and developments in

metabolomics towards quantitative molecular
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methodologies,6,32 it may well be worthwhile to revisit this

approach. In biomedical omics applications in general, it is

also worth noting that there have been intensive develop-

ments regarding proteomics methods during the past few

years, and their quantitative applications are likely soon to

become feasible in large-scale studies to complement the

information from other omics domains.98–100

Commercial products and peer-reviewed
publications

Intellectual property rights for most of the quantitative

metabolomics platforms, particularly those applied in most

epidemiological and clinical applications to date, are

owned by companies.6,32 This is not surprising as such,

since innovations are, manifestly, often developed by such

enterprises. Ioannidis has recently reflected upon biomed-

ical innovations and scientific peer review.89,101 He makes

the point that ’stealth research’ is prone to create ambigu-

ity about what evidence can be trusted in a mix of (pos-

sibly) ground-breaking ideas, aggressive corporate

announcements and mass media hype.89 Even more re-

cently, he has called for scientific peer-reviewed articles as

a requirement for technologies aiming to affect health care

at large.101 In this sense–of publishing peer-reviewed scien-

tific articles–the current key metabolomics methodologies

in epidemiology are reasonably represented.6,32 In fact, it

appears that many companies operating in the metabolo-

mics arena have made scientific peer-reviewed articles part

of their business strategy. This is logical in light of the great

potential for commercial benefit provided by independent

technological validation by the scientific community. This

is something that cannot be achieved by patents or intellec-

tual property rights alone; high-quality peer-reviewed pub-

lications are hard to copy or buy. However what still

partly remains, even in the peer-reviewed scientific litera-

ture, is ungrounded hype and expectations of omics sci-

ences transforming not only biological knowledge, but also

medicine and public health.102 In relation to clinical appli-

cations, we should also keep in mind the problematic path-

way from the announcement of new biomarkers to their

integration into predictive and diagnostic models or vali-

dated target identification.18,20,103–107

Is the future for metabolic phenotyping in
epidemiology precarious?

In the history of science and medicine, remarkable leaps in

progress have often been made due to novel physical or

chemical technologies. The new omics methodologies have

already taken a big step, particularly in combination with

genomic data, but also generally in biomedical sciences.

Quantitative molecular technologies have been developed,

many of which are ready for integration into large-scale

epidemiological studies. There is much interest in ‘multio-

mic’ science, in addition to epidemiological and potential

clinical applications. However, considerable hype has also

been generated, often in connection with the concept of

personalized or precision medicine and clinical diagnostic

applications. We suggest that for the future meaningful de-

velopment of metabolic phenotyping in epidemiological

and (potentially) clinical settings, much of the early metab-

olomics literature should be put behind us, just as we

needed to discard a large (and largely meaningless) ‘candi-

date gene’ literature with the arrival of genome-wide asso-

ciation studies.108 We should embrace some of the basic

requirements of good molecular epidemiology: molecular

identification and quantification, large-scale studies, inde-

pendent biological replication of results, and an appreci-

ation of confounding with the aim of understanding

causation. We should combine different metabolomics

methodologies and multiomics combinations to triangulate

findings, explore multiple angles and put findings into a

biological perspective. Furthermore we should apply

appropriate statistical tools (noting caveats related to mul-

tiple testing) and, maybe most importantly, apply

self-critical interpretation of statistical results, biological

implications and potential clinical applicability. Last, we

should carefully reflect–against all the hopes and hypes of

personalized medicine–on the fundamentals of biological

processes in polygenic conditions, and the epidemiological

connotations of this with respect to the articulation of

population and individual perspectives.10,11 As demon-

strated by many excellent contributions in this themed

issue, large-scale metabolic phenotyping, together with

many other omics technologies, are already here to enrich

epidemiology and eventually to make irreversible headway

in the era of systems epidemiology.
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