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Abstract

Background: We evaluated the effects of T helper cell differentiation in a mite-allergic animal model treated with inhaled
heparins of different molecular weight.

Method: BALB/c mice were divided into four groups: 1. Control, 2. Mite intratracheal (mIT), 3. Inhaled heparin (hIN), 4.
Inhaled low-molecular-weight heparin (lmwhIN). Groups 2, 3, and 4 were sensitized twice with Der p allergen
subcutaneously on day 1 and day 8. Der p allergen was administered intratracheally on day 15. Groups 3 and 4 were treated
with heparin or low-molecular-weight (lmw) heparin intranasally from day 1 to 22. Splenocytes from sacrificed mice
stimulated with 16 mg/ml of Der p were cultured for 72 hours. Supernatants of splenocyte were collected to analyze the
effect of Interleukin (IL)17-A/F, Interferon(IFN)-c, IL-4, IL-13, and IL-10. Serum was also collected for Der P-specific IgE level on
day 23. Total RNA was extracted from spleen tissue for mRNA expression. Gene expression of Foxp3, IL-10 IFN-c, GATA3, IL-
5, and RORct were analyzed.

Results: Both hIN and lmwhIN groups had lower serum IgE level than that of the mIT group (both p,0.0001). Both hIN and
lmwhIN groups showed significantly decreased transcripts of GATA-3, IFN-c, IL-5, and RORct mRNA in their spleen.
Regarding the supernatant of splenocyte culture stimulated with Der p, compared with the mIT group, there were
significant decreases in IL-17A/F, IFN-c, IL-4, IL-13, and IL-10 secretion in inhaled hIN and lmwhIN groups.

Conclusions: From this balb/c mice study, the analyses of mRNA and cytokines revealed that both intranasal heparin and
lmw heparin treatment decreased the expression of Th1, Th2, and Th17 in spleen. The underlying mechanism(s) warrant
further studies.
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Introduction

Bronchial asthma, a chronic inflammatory disease presented as

airway obstruction, inflammatory cells infiltration, and bronchial

hyper-responsiveness. T cell lymphocyte and other immune cells

producing pro-inflammatory cytokines such as interleukin (IL)-4,

IL-5 [1], and IL-13 [2] lead to the inflammatory response.

Heparin, a highly sulfated glycosaminoglycan (GAG), has

multiple biologic activities. In addition to its well-known proper-

ties, such as its role as an anti-coagulant, heparin has also been

demonstrated to have anti-inflammatory effects [3]. Previous

studies have shown inhaled heparin prevents the bronchoconstric-

tor response to exercise [4,5]. In addition, several studies showed

biologic actions of heparin are molecular weight-dependent [6,7].

The anti-allergic activity of heparin fractions shows an inverse

relationship to the molecular weight [8]. Enoxaparin, a low-

molecular-weight (lmw) heparin, is an anticoagulant used to

prevent and treat deep vein thrombosis or pulmonary embolism.

Previous studies report that low-molecular-weight heparin also

possesses anti-inflammatory properties. LMW heparin can prevent

exercise and allergen-induced bronchoconstriction [9].

Although previous studies have shown the anti-inflammatory

effects of heparin and lmw heparin, there are few data on medium-

to long-term inhalation treatment for asthma. Our group has

demonstrated that heparin and low-molecular-weight heparin

both attenuate mite-induced airway inflammation in BALB/c

mice [10]. We found heparin decreased INF-c, IL-13, IL-5,

eotaxin, and IL-17A/F content in lung protein extract, and serum

Der p-specific IgE level. The heparin treated groups did not reveal
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any adverse effect checked grossly and microscopically [10]. In the

present study, we investigated the immunomodulatory effects of

lmw heparin as well as heparin on Th1, Th2, and Th17 levels.

Materials and Methods

Animal preparation
A total 50 male BALB/c mice (6–8 weeks of age), weighing 25–

30gram, were purchased from the National Laboratory Animal

Center, Nangang, Taipei, Taiwan. There were 4 to 5 mice in each

plastic cage, maintained at the room temperature 2262uC with

12 hour light/dark cycle and free access to pellet food and water.

Study protocol
BALB/c mice were randomly divided into four groups in 3

independent repeats: 1. Control (total number N = 12), 2. Mite

intratracheal (mIT, N = 12), 3. Inhaled heparin (hIN, N = 13), 4.

Inhaled Low-molecular-weight heparin (lmwhIN, N = 13). Groups

2, 3, and 4 were sensitized twice with Der p allergen

subcutaneously on day 1 and day 8. Der p allergen was

administered intratracheally on day 15. Groups 3 and 4 were

treated with heparin for 22 days. On day 23, mice were sacrificed.

One fourth of the spleen was used for mRNA study. Splenocytes

stimulated with Der p 16 ug/ml were cultured for 72 hours.

(Figure 1) All animal work was conducted according to the

relevant national and international guidelines. The protocol was

approved by the Institutional Animal Care and Use Committee,

Taichung Veteran General Hospital(Approval No. La-1011048).

Intra-tracheal injections were performed under Isoflurane inhala-

tion anesthesia, and sacrifice was performed by CO2 inhalation in

a close glass chamber. All efforts were made to minimize suffering.

Mite protein preparation
Der p was purchased from Greer Lab (Lenior, NC, USA). We

extracted mite protein from the crude with phosphate buffered

saline (PBS) using a glass homogenizer (Kontes Glass Company,

Vineland, NJ, USA). The concentration of mite protein was then

determined using the Bradford procedure (Bio-Rad protein Assay;

Bio-Rad, Hercules, CA, USA).

Sensitization
Mite crude extract allergen (1.6 mg/mL) was well-emulsified in

complete Freund’s adjuvant (CFA; Sigma, St Louis, MO, USA) at

a ratio of 1:1 at 4uC. The mIT, hIN, and lmwhIN groups were

immunized subcutaneously with 50 microliters of emulsified mite

protein on day 1 and day 8.

Intratracheal administration of mite protein
Ten micro-liter of mite crude extract (2 mg/mL), dissolved in

PBS, was administered to each mouse intratracheally on day 15.

Intranasal administration of heparin and
low-molecular-weight heparin

Heparin was purchased from China Chemical and Pharma-

ceutical Company (Taipei, Taiwan). Each ml contained 5000IU

heparin. LMW heparin (lmwh) was purchased from Sanofi

Winthrop Industry (Maisons-Alfort, France). Each ml contained

lmw heparin 100 mg, and the activity was equivalent to 10,000

anti-Xa IU. Lmw Heparin was dissolved in 4% Glucose water to

the final concentration of 0.0015 mg/uL (0.15 IU/uL). Ten

micro-liters of heparin or lmwh heparin were then administered to

each mouse intranasally from day 1 to day 22.

Figure 1. The animal protocol of this study. MIT group, heparin IN (hIN) group and low-molecular-weight heparin IN (lmwhIN) group were
sensitized twice with Der p allergen subcutaneously on day 1 and day 8. Der p allergen was administered intratracheally on day 15. The hIN and
lmwhIN groups were treated with heparin or lmw heparin intranasally from days 1 to 22. Splenocytes from sacrificed mice stimulated with Der p 16
ug/ml were cultured for 72 hours.
doi:10.1371/journal.pone.0109996.g001
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Measurement of Der p-specific IgE antibody
All Balb/c mice were sacrificed, and the blood was obtained

from the inferior vena cava on day 23. Serum Der p-specific IgE

level was measured by enzyme-linked immunosorbent assay

(ELISA). The micro-plates were coated with mite crude extract

allergen (50 mg/ml) and cultured overnight at 4uC. The plates

were blocked with 10% fetal bovine serum (FBS) in PBS at room

temperature for 2 hours. After washing with PBS containing

0.05% Tween 20 (PBST), diluted serum samples (1/10 dilution)

were added to the wells of the micro-plates and incubated at 4uC
overnight. After washing with PBST, the plates were incubated

with rat anti-mouse IgE biotinylated mono- clonal antibody

(specific for mouse IgE-heavy chain; Abcam) at room temperature

for 2 hours. After the second wash with PBST, the wells were

incubated with horseradish-peroxidase (HRP) streptavidin conju-

gate (Zymed for IgE) at room temperature for 1 hour. The wells

were washed and then incubated with TMB substrate (BD

Bioscience) in the dark, at room temperature for 30 minutes.

The enzyme reaction was stopped by adding 2N H2SO4, and the

absorption at 450 nm was measured using an ELISA reader.

Splenocyte preparation
Spleen was aseptically removed from mice. Single cell

suspensions were obtained by mincing the spleen and gently

pressing the fragments through a 70 mm stainless steel mesh. The

resultant suspension was left to stand for 15 minutes to separate

large debris. The suspension was mixed with RBC lysis for 5

minutes at room temperature. The splenocytes were resuspended

in RPMI 1640 (GIBCO) containing 10% fetal bovine serum (FBS,

Hyclone), 100U/mL penicillin, and 100 mg/ml streptomycin. Cell

concentration was adjusted to 56106 cells/mL using RPMI 1640

medium.

Splenocyte incubation
Using sterile 96-well culture plates, 56106 cells/mL were seeded

in 200 ml of medium. Splenocytes were incubated for 72 hours

with 16u g/ml of Der p in CO2.

Cytokine analysis of splenocyte supernatants by ELISA
The cytokine levels of IL-4, IL-10, and IFN-c of the splenocyte

culture supernatants were examined using BD OptEIATM Set

Mouse IL-4, IL-10, and IFN-c kits (BD Bioscience, San Jose, CA,

USA). The cytokine protein levels of IL-13 and IL-17 A/F were

examined using R&D DuoSet ELISA Development system mouse

IL-13 and IL-17 kits (R&D Systems, Minnesota, USA). The kits

were used according to the manufacturer’s instructions. The

micro-plates used in these assays were read at 450 nm and 520 nm

with an ELISA reader (Thermo Labsystems, Waltham, MA,

USA).

Quantitative RT-PCR (qRT-PCR) analysis of mRNA
transcripts

Spleen tissue was submerged in RNAlater RNA stabilization

Reagent (QIAGEN, USA) following the manufacturer’s protocol.

Total RNA was extracted from spleen tissue with TRIzol reagent

(Invitrogen, USA). The purity of RNA was acceptable when the

OD at 260 and 280 nm (A260/280) was between 1.8 and 2.0.

Total RNA(5ug) was reverse-transcribed using High-Capacity

cDNA Reverse Transcription kits (Cat. 4368814)(Applied Biosys-

tems) and random primers (Applied Biosystems). Quantitative

PCR was performed by StepOne(tm) Real-Time PCR System

(Applied Biosystems) with SYBR Green PCR Master Mix (Roche),

and 1 ug cDNA was added to a volume of 20 uL. Primer

sequences were as follows: GATA-3, 59- CGACCCCTTC-

TACTTGCGTT-39 and 59- TGGAATGCAGACACCACCTC-

39; IFN-c 59- GCTCTTCCTCATGGCTGTTT-39 and 59-

GTCACCATCCTTTTGCCAGT-39; IL-5, 59- GAAGTGTG-

GCGAGGAGAGAC-39 and 59- GCACAGTTTTGTGGGG-

TTTT-39; RORct, 59- GCTCTGCCAGAATGACCAGA-39

and 59- CAGCTCCACACCACCGTATT-39 [11]

Statistical analysis
Data were expressed as the mean 6 standard deviation (SD).

Analysis was performed with Mann-Whitney U-test for compar-

ison of two groups. Differences with a p value ,0.05 were

considered significant. Analysis was performed using the Statistical

Package for the Social Sciences (Version 10.1, SPSS, Chicago, IL,

USA)

Results

Der. P specific serum IgE level
To analyze the inhibitory effect of heparin and lmw heparin on

mite sensitization, we measured Der P specific serum IgE level in

all four groups. The mIT group had a higher IgE level than that of

the control group (mIT vs. control as 206.21638.03 vs.

30.5066.22 ng/mL). Furthermore, both the heparin group and

lmw heparin group showed a significantly lower level of IgE

compared to that of the mIT group (hIN and lmwhIN vs. mIT as

65.42620.80, and 92.22634.67 vs 206.21638.03 ng/mL, both

p,0.000001). (Figure 2)

Decreased mRNA expression in heparin and
low-molecular-weight heparin treatment groups

To evaluate differences in the relative mRNA expression in

Treg, Th1, Th2 and Th17 in the heparin and lmwh groups, we

analyzed spleen from 4 mice in each group mRNA including

Foxp3, IL-10, GATA-3, IFN-c, IL-5, and RORct by qRT-PCR.

We found that both hIN and lmwhIN groups had significant lower

transcripts in GATA-3, IFN-c, IL-5, and RORct mRNA

(p = 0.05). (Figure 3)

Cytokine levels in supernatant from splenocyte culture
We measured the cytokine secretion from cultured splenocyte in

all study animals. Both heparin and low molecular heparin groups

revealed significantly lower IL-17A/F, IFN-c, IL-4, IL-13, and IL-

10 levels as compared to those of the mIT group (Figure 4). The

results were as follows: for IL-17 A/F level, the values in the hIN

group and lmwhIN group were 249.906409.09 and

383.366428.56 pg/mL, respectively, compared with the mIT

group, which had a value of 708.66374.52 pg/mL, p = 0.005,

0.013. For Interferon-c level, values in the hIN group and lmwhIN

group were 5681.4863327.01 and 4058.7763371.03 pg/mL,

respectively, as compared with the value in the mIT group

16269.2667615.62 pg/mL, p = 0.037, 0.033. With regard to IL-4

level, the hIN group and lmwhIN group had values of

38.15642.78 and 27.90633.36 pg/mL, respectively, compared

with 159.40620.51 pg/mL, p = 0.034, 0.0038 in the mIT group.

For IL-13 level, the values of the hIN group and lmwhIN group

were 1690.426160.48 and 16976196169.88 pg/mL, respective-

ly, compared with the mIT group, which had a value of

2102.106269.55 pg/mL, both p = 0.001. For IL-10 level, the

hIN group and lmwhIN group had values of 2061.046396.23 and

3112.6061872.08 pg/mL, respectively, compared with the mIT

group, which had a value of 5931.886975.99 pg/mL, p = 0.05,

0.034.
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Discussion

In this study, the results demonstrated that intranasal heparin

administration modulated the expressions in Th1, 2, and 17 in the

spleen. There was increased mRNA transcripts in INF-c, GATA-

3, and ROR-cT in the spleen of mIT mice on the day of sacrifice,

while those treated with heparin of different molecular sizes via

intranasal route had decreased mRNA expression in the afore-

mentioned factors. This indicates that intranasal heparin admin-

istration exerts a systemic effect in addition to the local effect on

airway and lung, as we demonstrated before [10]. The cultured

splenocyte stimulated with Der p 16ug/ml for 72 hours also

revealed increased INF-c, IL-4, IL-13, and IL17A/F in the mIT

group and the splenocytes from the heparin IN-treated groups had

much lower secretions in these cytokines.

The animal model in the present study resulted in increased

expression of Th1 and Th17, in addition to Th2. Asthma has long

been thought to be related to Th2 deviation. In recent years,

increasing evidence has shown the roles of Th1 [12] [13] [14] [15]

and Th17 [15] [16] [17] [18], in addition to Th2 cells, in the

pathogenesis of asthma.

However, to date, most murine-based studies on asthma used

ovalbumin (OVA) to sensitize, then inhalation challenge to

establish the airway allergic inflammation. The OVA model was

used to study Th2 activation in many previous studies. In recent

years, it was also demonstrated to enhance Th17 expression [19]

Figure 2. Serum Der p-specific IgE levels. Serum Der p-specific IgE levels were significantly decreased in hIN and lmwhIN groups. Control group,
mIT group, hIN group, and lmwhIN group were analyzed. wp,0.00000001, p,0.000001.
doi:10.1371/journal.pone.0109996.g002

Figure 3. Spleen mRNA expression. Spleen mRNA expression in Foxp3, IL-10, IFN-c, GATA-3, and RORct were decreased in hIN and lmwhIN
groups. #p = 0.05.
doi:10.1371/journal.pone.0109996.g003
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[20]. The effects may be different from those seen in the real

world, in which mite is the major allergen that induces asthma. In

recent years, an increasing number of murine asthma studies have

used mite as the allergen. Some studies have shown that mite

sensitization followed by inhalation activated Th1 and Th2 [21],

though others did not [22] [23]. Lan et al. sensitized the mice with

OVA plus alum, then administered mite inhalation to the mice

(OVA + mite) [22]. Compared with the mice treated with OVA

inhalation, the OVA + mite group had higher IL-17 and IL-23

than that of the OVA group. For IL-5, the OVA + mite group had

an even higher level of BALF and serum than that of the OVA

group. INF-c did not increase in the OVA + mite group. Taken

together, these data show that mite exposure increased INF-c and

IL-17 production, in addition to Th2 cytokines. Our model is

compatible with previous models, and INF-c production can be

further enhanced by the usage of CFA in sensitization.

Heparin, a highly acidic polymer, exhibits biologic effects that

are dependent on both specific and nonspecific ionic interactions

which are mediated by sequence composition, charge density,

charge distribution, and molecular size. In addition to its known

anticoagulant activity, heparin also has many non-coagulant

properties including anti-inflammation [24] [25] [26], inhibition

of complement activation [24], neutrophil aggravation and

elastase release [27], as well as eosinophil influx [28] [29]. Several

studies have shown short-term [4] [30], and medium-term [10]

anti- inflammatory effects in airway allergy. To the best of our

knowledge, this is the first study to demonstrate an immunomod-

ulatory effect with the use of heparin.

The interactions between Th1, 2 and 17 are mutually inhibited.

The present data from this study do not either support heparins

deviate the differentiation of T helper cell, or increase the activity

of T regulatory cell. The suppression in Th1, 2, and 17 activations

imply that heparin exhibits some inhibition effects from upper

stream to Th0 differentiation. Adhesion between antigen-present-

ing cell and T helper cell and its subsequent activation play a

central role in the inflammatory response. Many reports showed

that heparin can interfere with adhesion of leukocytes by inhibiting

L-selectin and P-selectin binding [31] [32] or mediating cell

surface expression of CD11/CD18 complexes [33]. Recently,

heparin and low molecular heparin have been demonstrated to

interfere the reaction between surface heparan sulfate to cell

penetrating peptide [34]. With the advance of glycol-immunology,

more detailed mechanism of heparins would be disclosed.

NF-kB is a major transcription factor that regulates genes

involved in immunity. Through a cascade of phosphorylation

events, the kinase complex is activated and NF-kB enters the

nucleus to regulate genes that are involved in T cell development

and proliferation [35]. Heparin can internalize into the cytoplasm

and bind electrostatically to the positively charged sequence of NF-

kB, to prevent the translocation of NF-kB to the nucleus [36] [37]

[38] [39], which reduces inflammatory gene activation and

downregulates the secretion of inflammatory cytokine, chemokine,

and adhesion molecule production [3]. In this study, we have

demonstrated that heparin of different sizes can downregulate the

expression of transcription factors, GATA-3 and RORct, Besides

NF-kB, GATA-3, and RORct, there are various pathways related

to our results, including MAPK [40], JAK [41], and others. The

effects of heparin on these pathways require further study.

Another explanation of our results is the heparin binding to

several cytokines involving in T helper differentiation. Hasan M

Figure 4. Cytokine levels in supernatants from splenocyte culture stimulated with mite. Cytokine levels in splenocyte supernatants are
shown in this figure. Due to the large differences between cytokines level, we showed each cytokine level as a percentage of the corresponding level
in the mIT group. The levels of mIT group are as follows: TGF-beta 2448.256136.31 pg/mL, IL-10 5.9360.98 pg/mL, IFN-c 16.2768.80 ng/mL, IL-13
2102.106269.55 pg/mL, IL-4 159.40620.51 pg/mL, IL-17A/F 708.66374.52 pg/mL. p = 0.012, *p = 0.005, **p = 0.013, #p = 0.034, @p = 0.0038,
&p = 0.037, $p = 0.033, p = 0.001, wp = 0.001, [p = 0.005, mp = 0.034.
doi:10.1371/journal.pone.0109996.g004
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et al [42] has demonstrated the heparin binding domain on IL-12

to be the subunit p40, which is also a critical protein for Th17

differentiation [43]. Besides, heparins also bind to INF-c, as

reported by Hasan et al. The interaction of heparin and cytokine,

especially the glycosaminoglycan part of the molecule, is an

important issue in recent publications [44,45]. The results of the

present study provide a clue in this aspect.

In conclusion, we have demonstrated that heparin of different

sizes administered via inhalation can decrease Th1, 2, and 17

expression in spleen, and in splenocytes stimulated with Der p.

The underlying mechanism warrants further study.
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