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Abstract: Gut microbiota are emerging as potential contributors to the regulation of host homeostasis.
Dysbiosis of the gut microbiota associated with increased intestinal permeability facilitates the
passage of endotoxins and other microbial products, including indoxyl sulfate in the circulation.
Although an emerging body of evidence has suggested that indoxyl sulfate is a key substance for
the development of chronic kidney disease, few studies have investigated the direct association
of indoxyl sulfate with vascular function. We hypothesized that indoxyl sulfate adversely affects
vascular function. Aortas isolated from male Wistar rat were examined in the presence or absence of
indoxyl sulfate to assess the vascular function, including vasorelaxation and vasocontraction. Indoxyl
sulfate (vs. vehicle) (1) decreased vasorelaxation induced by acetylcholine (ACh) but not by sodium
nitroprusside; (2) had no significant alterations of noradrenaline-induced vasocontraction in the
absence and presence of endothelium; (3) decreased adenylyl cyclase activator (forskolin)-induced
vasorelaxation, while such a difference was eliminated by endothelial denudation; and (4) decreased
vasorelaxations induced by calcium ionophore (A23187) and transient receptor potential vanilloid
4 agonist (GSK1016790A). The indoxyl sulfate-induced decrease in the vasorelaxations induced by
ACh and A23187 increased by cell-permeant superoxide dismutase or by organic anion transporter
inhibitor. However, apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, had no effects on vasorelaxations induced by ACh, A23187, forskolin, and GSK1016790A in
the presence of indoxyl sulfate. These results suggest that indoxyl sulfate directly affects the vascular
function, particularly, endothelium-dependent vasorelaxation, and this effect may be attributable to
increased oxidative stress after cell transportion via organic anion transporter, and such increased
oxidative stress may not be attributable to activation of NADPH oxidase activation.

Keywords: Keywords: aorta; endothelial function; indoxyl sulfate; superoxide dismutase

1. Introduction

Gut microbiota has been implicated in several diseases, including cardiovascular diseases and
metabolic diseases [1–7]. Many substances derived from the gut microbiome, bacterial structural
components, and microbial metabolites influence human health and dysregulated homeostasis [5,7,8].
Among them, indoxyl sulfate is derived from the gut microbiotic metabolism of dietary amino
acids. Indoxyl sulfate is a protein-bound uremic toxin that is a product of dietary tryptophan
metabolism [9,10]. Tryptophan is metabolized into indole by intestinal bacteria (i.e., microbial
tryptophanase), and after intestinal absorption, it is sulfated in the liver [5,9]. Indoxyl sulfate has
a poor clearance from the systemic circulation in case of impaired renal function [7]; therefore,
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indoxyl sulfate is present in the circulation in chronic kidney disease (CKD) patients [5,9,11].
In the vascular system, indoxyl sulfate affects various phenomenon, such as the development
of calcification [12], inflammation [13,14], vascular smooth muscle cell proliferation [15–17], cell
senescence [18], and endothelial injury [19].

In addition, endothelial dysfunction has been observed in a uremic circumstance, suggesting
the possible role of uremia-associated factors, such as uremic toxins [20]. Indeed, uremic toxins,
for example, asymmetric dimethylarginine (ADMA) [21,22], homocysteine [23–25], and advanced
glycation end products (AGEs) [26,27] and protein-bound uremic toxins, such as indoxyl sulfate and
p-cresyl sulfate, have deteriorated vascular tone regulation. Gross et al. [28] found that acute treatment
with p-cresyl sulfate augmented phenylephrine (PE)-induced contraction, whereas it had no effect on
acetylcholine (ACh)-induced relaxation. Six et al. [29] found that not only acute, but also prolonged
treatment with indoxyl sulfate led to decreased ACh-induced relaxation in the aortic rings of female
wild-type mice with normal renal function. Chu et al. [30] found that indoxyl sulfate impaired
vasomotor responses, including increased PE-induced contraction and decreased ACh-induced
relaxation in the aorta in five of six nephrectomized rats. In contrast, reduction of indoxyl sulfate
by oral adsorbent AST-120 could normalize flow-mediated endothelium-dependent vasodilatation
in patients with CKD [31], microvascular endothelial dysfunction (ACh-induced iontophoresis) in
patients with CKD [32], and ACh-induced aortic relaxation in CKD mice [29]. However, few studies
have investigated the direct association between indoxyl sulfate and vascular function, including
vasorelaxation and vasocontraction induced by various stimuli, such as ligands and activators.

The present study aimed to investigate the effects of acute exposure of indoxyl sulfate on
vascular function induced by various substances, such as ACh, nitric oxide (NO) donor sodium
nitroprusside (SNP), noradrenaline, adenylyl cyclase activator forskolin, calcium ionophore (A23187),
and transient receptor potential vanilloid 4 (TRPV4) agonist (GSK1016790A) in rat aorta using
pharmacological approaches.

2. Results

2.1. Effects of Indoxyl Sulfate on Vasorelaxations Induced by ACh and SNP

In order to determine the direct acute effects of indoxyl sulfate on aortic function, the aortas were
incubated with indoxyl sulfate (10−4 mol/L) for 30 min. First, we performed concentration–response
curves for common endothelium-dependent or -independent vasodilators such as ACh (Figure 1A) or
SNP, respectively (Figure 1B). As shown in Figure 1A, ACh-induced vasorelaxation was reduced in the
aortas treated with indoxyl sulfate as compared with that in those treated with vehicle ((the maximal
effect generated by the agonist (Emax) %) 85.2 ± 4.2 (n = 10) vehicle vs. 68.9 ± 5.1 (n = 10) indoxyl
sulfate (p < 0.05) and (a negative logarithm of EC50, which is the molar concentration of agonist
producing 50% of the Emax (pD2)) 7.22 ± 0.12 (n = 10) vehicle vs. 6.90 ± 0.14 (n = 10) indoxyl sulfate
(p > 0.05)). In contrast, as shown in Figure 1B, SNP-induced vasorelaxation was similar between the
two groups ((Emax %) 97.7 ± 1.4 (n = 5) vehicle vs. 99.1 ± 0.6 (n = 5) indoxyl sulfate (p > 0.05) and (pD2)
7.47 ± 0.08 (n = 5) vehicle vs. 7.47 ± 0.14 (n = 5) indoxyl sulfate (p > 0.05)).
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Figure 1. Concentration–response curves for acetylcholine (ACh) (A) or sodium nitroprusside (SNP) 
(B)-induced vasorelaxations in the aortas in the absence (vehicle) and presence of indoxyl sulfate 
(10−4 mol/L). Ordinate shows vasorelaxation as a percentage of PE-induced vasocontraction (0% 
being defined as the plateau level of precontraction). Data are presented as mean ± standard error of 
mean (SEM) values from ten (A) or five (B) experiments. * p < 0.05, vs. vehicle; Emax. 

2.2. Effects of Indoxyl Sulfate on Vasocontraction Induced by Noradrenaline and Isotonic High-K+ 

As the next step, we performed concentration–response curves for noradrenaline in the aorta of 
endothelium-intact or -denuded preparation. As shown in Figure 2A, the indoxyl sulfate-treated aorta 
had slightly but not significantly increased sensitivity to noradrenaline than the vehicle group in the 
endothelium intact preparation ((Emax %) 130.6 ± 3.9 (n = 6) vehicle vs. 133.8 ± 5.3 (n = 6) indoxyl sulfate 
(p > 0.05) and (pD2) 7.64 ± 0.15 (n = 6) vehicle vs. 8.01 ± 0.10 (n = 6) indoxyl sulfate (p = 0.07)). However, 
the noradrenaline-induced vasocontraction was not significant different between the vehicle and 
indoxyl sulfate groups in the endothelium-denuded preparation ((Emax %) 209.4 ± 25.1 (n = 6) vehicle vs. 
175.5 ± 11.2 (n = 6) indoxyl sulfate (p > 0.05) and (pD2) 8.64 ± 0.09 (n = 6) vehicle vs. 8.52 ± 0.12 (n = 6) 
indoxyl sulfate (p > 0.05)). As shown in Figure 3, high-K+-induced vasocontractions were unaffected by 
indoxyl sulfate ((Emax %) 116.1 ± 6.7 (n = 8) vehicle vs. 116.3 ± 5.5 (n = 8) indoxyl sulfate (p > 0.05) and 
(EC50 mmol/L) 28.0 ± 1.6 (n = 8) vehicle vs. 26.0 ± 1.7 (n = 8) indoxyl sulfate (p > 0.05)). 
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vasocontraction. Data are presented as means ± standard error of mean (SEM) values from six 
experiments. 

Figure 1. Concentration–response curves for acetylcholine (ACh) (A) or sodium nitroprusside (SNP)
(B)-induced vasorelaxations in the aortas in the absence (vehicle) and presence of indoxyl sulfate
(10−4 mol/L). Ordinate shows vasorelaxation as a percentage of PE-induced vasocontraction (0% being
defined as the plateau level of precontraction). Data are presented as mean ± standard error of mean
(SEM) values from ten (A) or five (B) experiments. * p < 0.05, vs. vehicle; Emax.

2.2. Effects of Indoxyl Sulfate on Vasocontraction Induced by Noradrenaline and Isotonic High-K+

As the next step, we performed concentration–response curves for noradrenaline in the aorta of
endothelium-intact or -denuded preparation. As shown in Figure 2A, the indoxyl sulfate-treated aorta
had slightly but not significantly increased sensitivity to noradrenaline than the vehicle group in the
endothelium intact preparation ((Emax %) 130.6 ± 3.9 (n = 6) vehicle vs. 133.8 ± 5.3 (n = 6) indoxyl
sulfate (p > 0.05) and (pD2) 7.64 ± 0.15 (n = 6) vehicle vs. 8.01 ± 0.10 (n = 6) indoxyl sulfate (p = 0.07)).
However, the noradrenaline-induced vasocontraction was not significant different between the vehicle
and indoxyl sulfate groups in the endothelium-denuded preparation ((Emax %) 209.4 ± 25.1 (n = 6)
vehicle vs. 175.5 ± 11.2 (n = 6) indoxyl sulfate (p > 0.05) and (pD2) 8.64 ± 0.09 (n = 6) vehicle vs. 8.52 ±
0.12 (n = 6) indoxyl sulfate (p > 0.05)). As shown in Figure 3, high-K+-induced vasocontractions were
unaffected by indoxyl sulfate ((Emax %) 116.1 ± 6.7 (n = 8) vehicle vs. 116.3 ± 5.5 (n = 8) indoxyl sulfate
(p > 0.05) and (EC50 mmol/L) 28.0 ± 1.6 (n = 8) vehicle vs. 26.0 ± 1.7 (n = 8) indoxyl sulfate (p > 0.05)).
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Figure 2. Concentration–response curves for noradrenaline-induced vasocontractions in
endothelium-intact (A) or -denuded (B) aortas in the absence (vehicle) and presence of indoxyl sulfate
(10−4 mol/L). The ordinate shows vasocontraction as a percentage of 80 mmol/L high-K+-induced
vasocontraction. Data are presented as means ± standard error of mean (SEM) values from
six experiments.
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2.4. Effect of Indoxyl Sulfate on Calcium Ionophore- or TRPV4 Agonist-Induced Vasorelaxation 

Increased intracellular calcium level in the endothelium is a crucial event of 
endothelium-dependent relaxation [33,34]. We assessed whether indoxyl sulfate affects 
vasorelaxation induced by calcium modulators. As shown in Figure 5A, calcium ionophore 
A23187-induced vasorelaxation was significantly reduced in the indoxyl sulfate-treated group than in 
the vehicle-treated group ((Emax %) 86.5 ± 2.1 (n = 8) vehicle vs. 67.7 ± 5.8 (n = 8) indoxyl sulfate (p < 

Figure 3. Concentration–response curves for high K+-induced vasocontractions in the aortas in the
absence (vehicle) and presence of indoxyl sulfate (10−4 mol/L). The ordinate shows vasocontraction as
a percentage of 80 mmol/L high-K+-induced vasocontraction. Data are presented as mean ± standard
error of mean (SEM) values from eight experiments.

2.3. Effects of Indoxyl Sulfate on Adenylyl Cyclase Activator-Induced Vasorelaxation

In the next phase of the study, we investigated whether indoxyl sulfate affects cAMP-mediated
vasorelaxation. For this, we performed concentration–response curves for forskolin, an adenylyl
cyclase activator. As shown in Figure 4A, indoxyl sulfate-treated aortas reduced sensitivity to forskolin
as compared with those from vehicle-treated aortas ((Emax %) 98.8 ± 1.0 (n = 7) vehicle vs. 98.4 ± 1.0
(n = 7) indoxyl sulfate (p > 0.05) and (pD2) 6.99 ± 0.11 (n = 7) vehicle vs. 6.43 ± 0.16 (n = 7) indoxyl
sulfate (p < 0.05)). In endothelium-denuded preparations, forskolin-induced vasorelaxation was similar
between the two groups ((Emax %) 99.3 ± 0.7 (n = 8) vehicle vs. 98.0 ± 1.9 (n = 8) indoxyl sulfate
(p > 0.05) and (pD2) 6.12 ± 0.17 (n = 8) vehicle vs. 5.98 ± 0.23 (n = 8) indoxyl sulfate (p > 0.05)).
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Figure 4. Concentration–response curves for forskolin-induced vasorelaxations in endothelium-intact
(A) or -denuded (B) aortas in the absence (vehicle) and presence of indoxyl sulfate (10−4 mol/L).
The ordinate shows vasorelaxation as a percentage of PE-induced vasocontraction (0% being defined
as the plateau level of precontraction). Data are presented as mean ± standard error of mean (SEM)
values seven (A) or eight (B) experiments. * p < 0.05, vs. vehicle; a negative logarithm of EC50, which is
the molar concentration of agonist producing 50% of the Emax (pD2).

2.4. Effect of Indoxyl Sulfate on Calcium Ionophore- or TRPV4 Agonist-Induced Vasorelaxation

Increased intracellular calcium level in the endothelium is a crucial event of
endothelium-dependent relaxation [33,34]. We assessed whether indoxyl sulfate affects vasorelaxation
induced by calcium modulators. As shown in Figure 5A, calcium ionophore A23187-induced
vasorelaxation was significantly reduced in the indoxyl sulfate-treated group than in the vehicle-treated
group ((Emax %) 86.5 ± 2.1 (n = 8) vehicle vs. 67.7 ± 5.8 (n = 8) indoxyl sulfate (p < 0.05) and (pD2) 7.24
± 0.15 (n = 8) vehicle vs. 7.05 ± 0.25 (n = 8) indoxyl sulfate (p > 0.05)). As shown in Figure 5B, a TRPV4



Int. J. Mol. Sci. 2019, 20, 338 5 of 14

agonist GSK1016790A-induced vasorelaxation was reduced more in the indoxyl sulfate-treated group
than that in the vehicle-treated group ((Emax %) 79.2 ± 5.3 (n = 6) vehicle vs. 54.0 ± 5.5 (n = 6) indoxyl
sulfate (p < 0.05) and (pD2) 7.79 ± 0.18 (n = 6) vehicle vs. 7.67 ± 0.07 (n = 6) indoxyl sulfate (p > 0.05)).
Vasorelaxations induced by A23187 (Figure 5C) and GSK1016790A (Figure 5D) were eliminated by
endothelium denudation in both vehicle and indoxyl sulfate groups.
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Superoxide is detrimental for vascular function [33,35]. We examined whether superoxide 
scavenger can normalize impaired endothelium-dependent relaxation in indoxyl sulfate-treated 
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Figure 5. Concentration–response curves for A23187 (A) or GSK1016790A (B)-induced vasorelaxations
in endothelium-intact (A,C) or -denuded (B,D) aortas in the absence (vehicle) and presence of indoxyl
sulfate (10−4 mol/L). The ordinate shows vasorelaxation as a percentage of PE-induced vasocontraction
(0% being defined as the plateau level of precontraction). Data are presented as mean ± standard error
of mean (SEM) values from eight (A) or six (B–D) experiments. * p < 0.05, vs. Vehicle; Emax.

2.5. Effect of Cell-Permeant SOD on ACh- or A23187-Induced Vasorelaxation

Superoxide is detrimental for vascular function [33,35]. We examined whether superoxide
scavenger can normalize impaired endothelium-dependent relaxation in indoxyl sulfate-treated
aortas. Indoxyl sulfate led to decreased vasorelaxations induced by a single application of ACh
(3 × 10−7 mol/L) (Figure 6A) or A23187 (10−7 mol/L) (Figure 6B). A cell-permeant superoxide
dismutase (SOD), polyethylene glycol-conjugated SOD (PEG-SOD) (41 U/mL) increased ACh-
or A23187-induced vasorelaxations in indoxyl sulfate-treated aortas, suggesting that superoxide
contributes to the impairment in endothelium-dependent relaxation.
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Figure 6. Effect of cell-permeant SOD on vasorelaxations induced by 3 × 10−7 mol/L acetylcholine
(ACh) (A) or 10−7 mol/L A23187 (B) in the aorta treated with or without indoxyl sulfate. Polyethylene
glycol-conjugated superoxide dismutase (PEG-SOD) (41 U/mL) was applied for 15 min; thereafter,
indoxyl sulfate (10−4 mol/L) was incubated for 30 min before phenylephrine (PE) application.
The ordinate shows vasorelaxation as a percentage of PE-induced vasocontraction (0% being defined
as the plateau level of precontraction). Data are presented as mean ± standard error of mean (SEM)
values from six experiments. * p < 0.05 vs. indoxyl sulfate group.

2.6. Effect of Organic Anion Transporter Inhibitor on ACh- or A23187-Induced Vasorelaxation

It has been reported that indoxyl sulfate affects cellular function by transporting into the cells via
an organic anion transporter [13,36,37]. Therefore, we studied the effect of an organic anion transporter
inhibitor on the endothelium-dependent vasorelaxations in indoxyl sulfate-treated aortas. As shown
in Figure 7, probenecid (10−3 mol/L) enhanced the vasorelaxations induced by ACh (3 × 10−7 mol/L)
(Figure 7A) or A23187 (10−7 mol/L) (Figure 7B) in aortas treated with indoxyl sulfate.
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acetylcholine (ACh) (A) or 10−7 mol/L A23187 (B) in the aorta treated with indoxyl sulfate. Probenecid
(10−3 mol/L) or vehicle (ethanol) was applied for 30 min; thereafter, indoxyl sulfate (10−4 mol/L) was
incubated for 30 min before phenylephrine (PE) application. The ordinate shows vasorelaxation as
a percentage of the PE-induced vasocontraction (0% being defined as the plateau level of precontraction).
Data are presented as mean ± standard error of mean (SEM) values from six experiments. * p < 0.05 vs.
indoxyl sulfate group.
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2.7. Effect of NADPH Oxidase Inhibitor on Vasorelaxation in Indoxyl Sulfate-Treated Aorta

NADPH oxidase plays a key source in vascular oxidative stress [38–40]. Therefore, we studied the
effect of an NADPH oxidase inhibitor on the vasorelaxations in indoxyl sulfate-treated aortas. Figure 8
shows that apocynin (10−4 mol/L) did not affect the vasorelaxations induced by ACh (Figure 8A),
A23187 (Figure 8B), forskolin (Figure 8C), or GSK1016790A (Figure 8D) in the aortas treated with
indoxyl sulfate.
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Figure 8. Effect of an NADPH oxidase inhibitor on vasorelaxations induced by acetylcholine (ACh)
(A), A23187 (B), forskolin (C), or GSK1016790A (D) in the aorta treated with indoxyl sulfate. Apocynin
(10−4 mol/L) or vehicle (DMSO) was applied for 30 min; thereafter, indoxyl sulfate (10−4 mol/L) was
incubated for 30 min before phenylephrine (PE) application. The ordinate shows vasorelaxation as
a percentage of the PE-induced vasocontraction (0% being defined as the plateau level of precontraction).
Data are presented as mean ± standard error of mean (SEM) values from eleven (A), ten (B), and twelve
(C,D) experiments.

3. Discussion

Although indoxyl sulfate may have an effect on various phenomena in the vascular system,
the direct relationship between acute indoxyl sulfate and vascular function, including vasorelaxation
and vasocontraction, remains unclear. The findings of the present study showed that in vitro
acute treatment with indoxyl sulfate for 30 min led to reduced ACh-induced relaxation, calcium
ionophore-induced relaxation, cAMP-mediated relaxation, and TRPV4 agonist-induced relaxation
in the rat aorta. Moreover, we found that the impairment of ACh- or calcium ionophore-induced
relaxation by indoxyl sulfate could be prevented by superoxide scavenger or by an organic anion
transporter inhibitor.

Few studies have investigated the direct acute association between indoxyl sulfate and
vascular function. A seminal report by Six et al. [29] found that acute indoxyl sulfate led to
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concentration–dependent (i.e., 10−4 to 10−3 mol/L) impairments of ACh-induced relaxation in the
aortic rings of female wild-type mice with normal renal function. In our study, we used indoxyl
sulfate at 10−4 mol/L because several reports demonstrated that the concentration of indoxyl sulfate
could induce deterioration of functions [16,41,42]. In our study, we observed vasorelaxation and
vasocontraction induced by various substances that utilize various signaling cascades. When indoxyl
sulfate was acutely incubated to the rat aortas, we observed the following responses. Vasorelaxations
induced by ACh, an endothelium-dependent vasodilator [43], but not by SNP, a NO donor and
endothelium-independent vasodilator [44], were impaired by indoxyl sulfate. These results suggested
that acute exposure of indoxyl sulfate specifically impaired endothelium-mediated relaxation but
did not influence cGMP-mediated vasorelaxation signaling in the aortic smooth muscle. These
findings, which are acute exposure of indoxyl sulfate impairs ACh-induced endothelium-dependent
vasorelaxation, are consistent with a report by Six et al. [29]. However, the lower concentration
of indoxyl sulfate (i.e., 10−4 mol/L) were effective in the present study when compared to other
reports [29], which may be explained by the difference between sex and species.

With regard to vasocontractile responses, no significant difference was found in the
noradrenaline-induced vasocontraction in the presence or absence of indoxyl sulfate in both
endothelium-intact and -denuded preparations of the rat aorta. Moreover, high-K+-induced
vasocontraction was also unaffected by indoxyl sulfate. These results indicate that acute indoxyl
sulfate did not have a significant effect on the contractile response in the rat aorta.

The relationship between indoxyl sulfate and cAMP-mediated vasorelaxation has not been
fully elucidated. Reportedly, an activator of adenylyl cyclase forskolin led to vasorelaxation in
both endothelium-dependent and -independent manners [45,46]. In our study, it is noteworthy that
indoxyl sulfate reduced the sensitivity to forskolin-induced vasorelaxation in the endothelium-intact
preparation but not endothelium-denuded preparation. These results suggest that a harmful effect of
indoxyl sulfate on forskolin-induced vasorelaxation was resulting from alteration of endothelial
function. Moreover, because no difference was found in forskolin-induced vasorelaxation with
and without exposure of indoxyl sulfate in endothelium-denuded aortas, our data suggested that
cAMP-mediated signaling in the aortic smooth muscle was not influenced by indoxyl sulfate. Several
reports suggested that forskolin could activate eNOS in endothelial cells [45,47,48]. Thus, we
suggest that the functional changes in endothelium-dependent vasorelaxation in the rat aorta acutely
exposed with indoxyl sulfate may be due to a decrease in the production and/or release of NO as
discussed below.

The increment in intracellular calcium is an important event for endothelium stimulation and
evokes endothelium-dependent relaxation. Therefore, in this study, we investigated the effects of
indoxyl sulfate on vasorelaxation followed by increased level of intracellular calcium, such as a calcium
ionophore (A23187) [49] and an agonist of TRPV4 (GSK1016790A) [50]. Indoxyl sulfate decreased
vasorelaxations induced by both A23187 and GSK1016790A, suggesting that indoxyl sulfate may affect
endothelial calcium regulation. Considering our data and the related evidence, acute treatment with
indoxyl sulfate is detrimental for endothelial function rather than for vascular smooth muscle function.

Among the endothelium-derived relaxing factors (EDRFs), including NO, vasodilator
prostaglandins and endothelium-derived hyperpolarizing factors, NO plays a pivotal role in regulating
the vascular tone, especially, the large artery, such as the aorta [33,34]. The production of NO
concomitant with eNOS activation is regulated by various factors, including precursor L-arginine,
co-factors (e.g., tetrahydrobiopterin (BH4) and calmodulin), and post-translational modifications
(e.g., phosphorylation and S-nitrosylation) [34]. In our present study, acute exposure of indoxyl sulfate
impairs vasorelaxations not only by ACh but also by endothelial calcium elevations by A23187 and
GSK106790A, and by endothelial cAMP elevation by forskolin. Thus, our results suggested that
indoxyl sulfate may impair eNOS rather than specific upstream event of eNOS activation, including
Ca2+/calmodulin pathway and cAMP/protein kinase A/eNOS phosphorylation pathway in the
rat aorta. Stinghen et al. [51] found that indoxyl sulfate reduced NO production and increased
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ROS production, and the addition of BH4 had no effect on these parameters in a murine cerebral
endothelial cell line. Tumur and Niwa [52] found that treatment with AST-120 to rats with chronic
renal failure could restore the expression of glomerular eNOS and tubulointerstitial nNOS and NO
production. However, how indoxyl sulfate modulates eNOS status, including coupling/uncoupling,
post-translational modifications, and its expression remain unclear, necessitating further investigation
on the point.

Moreover, endothelium-dependent NO-mediated relaxation defines not only NO production
by eNOS, but also NO bioavailability, including destruction by ROS [33,34]. Redox signaling is
also important for the regulation of NO bioavailability. In fact, Tumur and Niwa [53] observed that
indoxyl sulfate inhibits NO production and cell viability by inducing oxidative stress in vascular
endothelial cells. Moreover, using human umbilical vein endothelial cells, 1) Yu et al. [31] found
that indoxyl sulfate induced ROS production, and pretreatment with antioxidants normalized the
indoxyl sulfate-induced inhibition of proliferation, NO production, and inhibited senescence, and 2)
Chou et al. [19] found that indoxyl sulfate increased the abundance of NADPH oxidase 4 (NOX4) and
nuclear factor-kappa B. Furthermore, Chu et al. [30] found that impaired ACh-induced relaxation in the
aorta of nephrectomized rats treated with indoxyl sulfate could be prevented by in vivo treatment with
apocynin, tempol (SOD mimetic), mito-TEMPO (mitochondrial ROS scavenger), or fasudil (Rho kinase
inhibitor). In our present study, impaired ACh- or A23187-induced vasorelaxations by indoxyl sulfate
was increased by pretreatment with a cell-permeant superoxide scavenger, suggesting that impaired
endothelium-dependent relaxation by indoxyl sulfate may be due to the reduction of NO bioavailability
via increased superoxide. However, an inhibitor of NADPH oxidase did not increase vasorelaxations
induced by ACh, A23187, forskolin, and GSK1016790A. Although our data suggested that activation of
NADPH oxidase might not be a determinant for impaired vasorelaxations by indoxyl sulfate, further
research is required to clarify molecular mechanisms as to how redox states in endothelial and smooth
muscle cells and eNOS status in endothelial cells induced by acute indoxyl sulfate treatment may
modulate in rat aortas.

Several reports have suggested that the circulatory levels of indoxyl sulfate increase in various
pathophysiological states, such as CKD and diabetic nephropathy [54–57]. The concentrations of
indoxyl sulfate in serum is approximately 2.5 × 10−4 to 3.6 × 10−4 mol/L [58,59] in patients with
CKD, and its level elevates progressively with increased CKD stages [60]. In patients with advanced
CKD, the level of total indoxyl sulfate exceeds 5 × 10−4 mol/L compared with approximately 10−7 to
2.4 × 10−6 mol/L in the healthy population [61]. The free form of indoxyl sulfate is approximately 10%
of the total indoxyl sulfate in patients with CKD, whereas it is non-detectable in normal subjects [9].
In the present study, we used indoxyl sulfate at 10−4 mol/L for 30 min exposed to normal rat aortas,
and our results suggest that indoxyl sulfate could impair endothelial function of normal animals even
if it is short-term exposure. Indoxyl sulfate is the product of diet-derived tryptophan being converted
by intestinal flora to indole and finally indoxyl sulfate in the body [58]. Therefore, the prevention
of increased levels of indoxyl sulfate, for example, inhibition of production of indoxyl sulfate or its
precursors in the gut may represent a potential approach to prevent endothelial dysfunction.

There were some limitations in the present study. Indoxyl sulfate can reportedly affect various
functions after transport into the cells via an organic anion transporter [13,36,37]. In fact, our
findings showed that impaired ACh- and A23187-induced vasorelaxations induced by indoxyl
sulfate were increased by pretreatment with an organic anion transporter inhibitor. These data
suggested that indoxyl sulfate led to endothelial dysfunction by transport into cells via an organic
anion transporter. In addition, we could not rule out the possibility that indoxyl sulfate led to decrease
of endothelium-dependent vasorelaxations, resulting from affected vascular smooth muscle cells
because vascular smooth muscle was also a source of ROS. However, we could not determine the
sites of action of indoxyl sulfate, such as the endothelial cells, vascular smooth muscle cells, or both,
and the underlying molecular mechanisms. Further research needs to be conducted to achieve a deeper
understanding of this subject as well.
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In conclusion, our data found that indoxyl sulfate directly impairs endothelium-dependent
vasorelaxation induced by various substances in the rat aorta. The preventions of indoxyl sulfate
elevation in the body and of cell transportation are important for the maintenance of vascular health.

4. Materials and Methods

4.1. Animals

Male Wistar rats were purchased from the Japan Laboratory Animals. Inc., Tokyo, Japan and
housed in a pathogen-free facility. This study was approved by the Hoshi University Animal Care and
Use Committee that has been accredited by the Ministry of Education, Culture, Sports, Science, and
Technology of Japan (permission code: 29-135, permission date: 21 June 2018).

4.2. Vascular Function Study

Rats were sacrificed via exsanguination from the abdominal aorta under isoflurane anesthesia,
and the thoracic aorta was carefully and rapidly isolated and placed in an ice-chilled, oxygenated,
modified Krebs–Henseleit solution (KHS; consisting (in mM) of 118.0 NaCl, 4.7 KCl, 25.0 NaHCO3,
1.8 CaCl2, 1.2 NaH2PO4, 1.2 MgSO4, and 11.0 glucose). Each aorta was separated from the
surrounding connective tissue and fat, cut into rings, and then mounted on the organ bath system.
Subsequently, the vascular function was assessed by measuring the vascular isometric force, as
reported previously [62–64]. To investigate the effect of indoxyl sulfate on vasorelaxation, each
substance (ACh [10−9–10−5 mol/L], SNP [10−10–10−5 mol/L], forskolin [10−9–10−5 mol/L], A23187
[10−9–10−5 mol/L], or GSK1016790A [10−10–10−7 mol/L]) was cumulatively applied after plateau
contraction was achieved with 10−6 mol/L phenylephrine (PE) of the aorta incubated with indoxyl
sulfate (10−4 mol/L for 30 min) or vehicle (ultrapure water).

To investigate the effect of indoxyl sulfate on vasocontraction, the aortic rings were incubated
with 10−4 mol/L indoxyl sulfate for 30 min; thereafter, noradrenaline (10−10–10−4 mol/L) or high-K+

(10–80 mmol/L) was cumulatively applied. In some experiments, the endothelium-denuded aortas
were achieved by gently rubbing the lumen side of the vessels using a pipette tip, as well as previous
papers [62–64]. Endothelium integrity was assessed by contracting the aortic segments with 10−6

mol/L PE, followed by stimulation with ACh (10−6 mol/L for endothelium intact ring or 10−5 mol/L
for endothelium-denuded ring).

In order to investigate the effect of SOD on vasorelaxations in the indoxyl sulfate-treated aorta,
the aorta was preincubated with PEG-SOD (41 U/mL) or vehicle (ultrapure water) for 15 min; thereafter
indoxyl sulfate (10−4 mol/L) or vehicle was applied for 30 min before PE application. Following this,
ACh (3 × 10−7 mol/L) or A23187 (10−7 mol/L) was applied.

To investigate the effect of probenecid on vasorelaxations in the indoxyl sulfate-treated aorta,
the aorta was preincubated with probenecid (10−3 mol/L) or vehicle (ethanol) for 30 min following
the application of indoxyl sulfate (10−4 mol/L) for 30 min before PE application. Thereafter, ACh
(3 × 10−7 mol/L) or A23187 (10−7 mol/L) was applied.

To investigate the effect of apocynin on vasorelaxations in the indoxyl sulfate-treated aorta,
the aorta was preincubated with apocynin (10−4 mol/L) or vehicle (DMSO) for 30 min following
the application of indoxyl sulfate (10−4 mol/L) for 30 min before PE application. Thereafter, ACh
(10−9–10−5 mol/L), A23187 (10−9–10−5 mol/L), forskolin (10−9–10−5 mol/L), or GSK1016790A
(10−10–10−7 mol/L) was cumulatively applied.

In pretreatment with drugs before PE application, vehicle and drugs were applied in appropriate
volumes of corresponding groups to an organ bath containing KHS with continuously gassed with
95% O2, 5% CO2 at 37 ◦C.
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4.3. Statistical Analyses

The results are expressed as means ± standard error of mean values. Each vasorelaxation
is expressed as a percentage of the PE-induced vasocontraction. Vasocontraction is expressed as
a percentage of the response to 80 mmol/L high-K+. Statistical evaluations between the two groups
were performed using Student’s t-test, and one-way analysis of variance (ANOVA) followed by
Dunnett test was used for comparisons among the three groups. A value of p < 0.05 was considered
statistically significant.
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