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INTRODUCTION 
 

Depression is a global health concern, affecting 

approximately 6% of the world population each year 

[1]. As estimated by the World Health Organization, 

depression was the second most prevalent disease 

through 2020 [2]. Depression not only decreases the 

quality of life in depression patients but also brings 

serious economic burden on society [3]. Several 

theories have been proposed to account for depression, 

including the monoamine hypothesis [4], the 

hypothalamic-pituitary-adrenal (HPA) axis 

hyperactivity hypothesis [5], the neural plasticity 

hypothesis [6] and the neurodegeneration hypothesis 

[7]. Although many possible theories have been 

proposed, the treatment of depression is still not 

optimistic [8, 9]. It takes several weeks for anti-
depressants to demonstrate full effectiveness and often 

occurring adverse effects, leading to poor compliance 

[10]. Fluoxetine (Prozac), for instance, a selective 
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ABSTRACT 
 

Depression is a complex neuropsychiatric disease involved multiple targets and signaling pathways. Systems 
pharmacology studies could potentially present a comprehensive molecular mechanism to delineate the anti-
depressant effect of emodin (EMO). In this study, we investigated the anti-depressant effects of EMO in the 
chronic unpredictable mild stress (CUMS) rat model of depression and gained insights into the underlying 
mechanisms using systems pharmacology and molecular simulation analysis. Forty-three potential targets of 
EMO for treatment of depression were obtained. GO biological process analysis suggested that the biological 
functions of these targets mainly involve the regulation of reactive oxygen species metabolic process, response 
to lipopolysaccharide, regulation of inflammatory response, etc. KEGG pathway enrichment analysis showed 
that the PI3K-Akt signaling pathway, insulin resistance, IL-17 signaling pathway were the most significantly 
enriched signaling pathways. The molecular docking analysis revealed that EMO might have a strong 
combination with ESR1, AKT1 and GSK3B. Immunohistochemical staining and Western blotting showed that 2 
weeks’ EMO treatment (80 mg/kg/day) reduced depression related microglial activation, neuroinflammation 
and altered PI3K-Akt signaling pathway. Our findings provide a systemic pharmacology basis for the anti-
depressant effects of EMO. 
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serotonin reuptake inhibitor, has obvious side effects 

result in acute nausea, headaches, weight gain and 

sexual dysfunction [8]. Therefore, search for more 

effective and reliable anti-depressants is essential. 

 

Emodin (EMO) is an anthraquinone isolated from 

Rheum officinale, known for its pleiotropic 

pharmacological actions, including anti-inflammation, 

anti-oxidant, anti-cancer and anti-virus effects [11–14]. 

Mounting evidence suggests that EMO plays a 

protective role in brain diseases, such as ischemic 

stroke, hemorrhagic stroke, traumatic brain injury, 

tumors, Alzheimer’s disease, depression and others [13, 

15–17]. EMO ameliorates chronic unpredictable mild 

stress (CUMS) induced depression-related behaviors by 

altering the glucocorticoid receptor (GR) and brain-

derived neurotrophic factor (BDNF) levels in the 

hippocampus [16]. Although the anti-depressant effect 

of EMO was reported in a few articles, the underlying 

molecular mechanism remains largely unclear. 

 

As a powerful tool for drug discovery and development, 

systems pharmacology approach combines network 

biology and multipharmacology [18]. To investigate the 

precise pharmacological mechanism of EMO against 

depression, an integrated systems pharmacology 

approach and molecular docking were employed. In this 

study, we first investigated the anti-depressant effects of 

EMO using the well-validated and widely used CUMS 

model of depression [19, 20]. The sucrose preference 

test (SPT), open field test (OFT) and forced swimming 

test (FST) were performed to evaluate depressive-like 

behaviors in rats. Then, a systems pharmacology 

approach was used to uncover the molecular mechanism 

of EMO against depression, to identify the main anti-

depressant signaling pathways and to provide a valuable 

theoretical basis for clinical application. 

 

RESULTS 
 

EMO improves CUMS induced depression-related 

behaviors 

 

To assess the anti-depressant effect of EMO, a CUMS 

induced depression model was employed [19–21]. As 

shown in Figure 1A, after exposure to CUMS for 5 

weeks, 30 out of 64 rats were defined as depressive 

tendency rats (DET rats, reduced the sucrose water intake 

by more than 20%). After 2 weeks of EMO or vehicle 

treatment, depressive-like symptoms were evaluated by 

the SPT, FST, OFT and body weight. The sucrose 

preference percentage of DET+VEH rats (84.2 ± 1.7) was 

significantly reduced compared with that of CON+VEH 

rats (56.8 ± 1.4). However, the sucrose preference 

percentage of DET+EMO rats (83.6 ± 2.3) treated for 2 

weeks with EMO significantly increased compared with 

DET+VEH rats (Figure 1B). In the OFT, the number of 

zone crossings in DET+VEH rats (25 ± 3.1) was 

decreased compared with that in CON+VEH rats (151.5 ± 

4.0), whereas treatment with EMO led to a significant 

increase (124.1 ± 6.2) (Figure 1C). The results of FST 

revealed that CUMS exposure (206.3 ± 4.9 s) significantly 

increased immobility times compared with CON+VEH 

(78.9 ± 5.0 s), while EMO at dose of 80 mg/kg/day 

treatments (78.5 ± 5.0 s) significantly reduced immobility 

times versus DET+VEH (Figure 1D). CUMS exposure 

caused a significant reduction in body weight in 

DET+VEH rats (344.1 ± 7.0 g) relative to CON+VEH 

rats (472 ± 8.6 g), and the abnormal decreases in body 

weight were normalized by EMO treatment (Figure 1E). 

These results indicate that 2 weeks’ EMO treatment could 

ameliorate the depressive-like behaviors induced by 

CUMS. 

 

Gene ontology (GO) biological process and the  

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway enrichment analyses of depression-related 

targets 

 

To better understand the underlying mechanisms of 

depression, a total of 340 depression candidate targets 

were obtained from the Therapeutic Target Database 

(TTD) [22], GeneCards and Rat Genome Database. 

Next, GO biological process and KEGG pathway 

enrichment analyses were carried out using Metascape 

[23]. The primary enriched GO biological process terms 

were synaptic signaling (GO:0099536), regulation of 

ion transport (GO:0043269), signal release 

(GO:0023061), regulation of membrane potential 

(GO:0042391), regulation of neurotransmitter levels 

(GO:0001505), regulation of system process 

(GO:0044057) and so on (Figure 2A). Among these 

terms, synaptic signaling (GO:0099536) exhibited the 

highest number of target connections (degree = 118), 

followed by regulation of ion transport (GO:0043269, 

degree = 80). 

 

Furthermore, the enrichment analysis of KEGG 

pathways included 326 pathways (p < 0.01). The top 20 

enriched KEGG pathways are presented in Figure 2B. 

The KEGG pathways involved were mainly the 

neuroactive ligand-receptor interaction (hsa04080), 

cAMP signaling pathway (hsa04024), serotonergic 

synapse (hsa04726), dopaminergic synapse (hsa04728), 

glutamatergic synapse (hsa04724), PI3K-Akt signaling 

pathway (hsa04151), MAPK signaling pathway 

(hsa04010), long-term potentiation (hsa04720), calcium 

signaling pathway (hsa04020), Alzheimer disease 

(hsa05010) and soon. In particular, there were 37 targets 
involved in the PI3K-Akt signaling pathway 

(hsa04151), and the associated targets included AKT1, 

BDNF, GDNF, GSK3B, PTEN, TP53, VEGFA, etc. 
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The above results pointed out that multiple mechanisms 

were involved in the pathogenesis of depression. 

Therefore, drugs with multiple anti-depressant targets 

may be attractive antidepressants. 

 

Pharmacological and molecular properties of EMO 

 

Compounds that complied with the requirements of 

Lipinski’s rule of five seem to be more likely to become 

drugs. SwissADME prediction [24, 25] showed that the 

EMO satisfied Lipinski’s rule of five (molecule weight 

(MW): 270.24 g/mol, lipid-water partition coefficient 

(log P): 2.72, hydrogen bond donors (Hdon): 3, 

hydrogen bond acceptors (Hacc): 5, rotatable bonds 

(Rbon): 0. Other chemical and pharmacological 

properties of this EMO were also evaluated, including 

topological polar surface area (TPSA) = 94.83 Å and 

solubility (Log S) = -3.67. Furthermore, the
 

 
 

Figure 1. EMO improves CUMS induced depression-related behaviors. (A) Diagram of the experimental workflow. Twenty-four rats 

were randomly chosen as the control (CON) group, and 64 rats were exposed to 5 weeks of CUMS. On day 36, all rats underwent SPT to 
evaluate their status. Depressive-tendency rats (DET, n = 30) were defined as those with a more than a 20% decrease in sucrose water intake, 
and then divided into two groups: the DET+vehicle (VEH) group and DET+EMO (80 mg/kg/day) group (n = 15/group). After two weeks of EMO 
treatment, the animals completed the SPT, OFT and FST. (B) Percentage of sucrose water consumed in the SPT at day 52. The numbers of 
zone crossings in the OFT (C) and the immobility times in the FST (D) were recorded. (E) The body weight was measured at day 51. Data were 
expressed as the means ± SEM. *** p < 0.001 DET+VEH vs CON+VEH. # p < 0.05, ### p < 0.001 DET+EMO vs DET+VEH. 
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drug-likeness weight of EMO is 0.683, which is 

obtained by searching the Encyclopedia of Traditional 

Chinese Medicine (ETCM, http://www.tcmip.cn/ 

ETCM/) [26]. In general, molecules with drug-likeness 

weight ≥ 0.18 have good drug likeness. Further search 

of admetSAR database (http://lmmd.ecust.edu.cn/ 

admetsar2/) [27] showed that the human oral 

bioavailability probability of EMO was 0.6. These 

results indicate that EMO has acceptable 

pharmacokinetic properties. 

 
Shared targets between EMO-related targets and 

depression-related targets 

 

By retrieving the Pathway Assembly from Literature 

Mining-an Information Search Tool (PALM-IST) 

database [28] and validated in the PubMed database, a 

total of 487 potential targets of EMO were obtained. 

From the TTD, GeneCards and Rat Genome Database, 

340 depression-related targets were identified in total. 

Taking the intersection of the potential targets of EMO 

and depression, 43 potential targets were screened out 

(Figure 3A). Detailed information about common 

targets is provided in Table 1. 

 

Forty-three potential targets of EMO against depression 

were categorized into 6 different classes based on their 

cellular function, of which protein modifying enzyme 

(PC00260, 28.6%) was the most enriched class (Figure 

3B). Among these protein modifying enzymes, AKT1, 

GSK3B, MAPK1 and STK32C belong to non-receptor 

serine/threonine protein kinases, PTEN belongs to 

protein phosphatases and ACE belong to 

metalloprotease. In addition, 14.3% of the common 

targets are involved in metabolite interconversion 

enzyme (PC00262, Figure 3B). The above results 

suggested that EMO can exert an anti-depressant role 

through multiple targets and biological functions. 

 

To obtain an overview of the 43 potential targets of 

EMO against depression, GO functional classification 

was investigated. Most of the potential targets existed 

on the cell and cell part with catalytic activity. Within 

the biological processes, the majority of potential 

targets were enriched in cellular process (GO:0009987), 

biological regulation (GO:0065007), response to 

stimulus (GO:0050896) and metabolic process 

(GO:0008152) (Figure 3C). These results indicate that 

EMO has multiple synergistic effects in biological 

processes. 

 

Protein–protein interaction (PPI) analysis of targets 

of EMO against depression 

 

To explore the interaction effect between 43 potential 

targets of EMO against depression, PPI analysis was

 

 
 

Figure 2. GO biological process (BP, A) and KEGG (B) pathway enrichment analysis of depression targets. The X-axis represents the rich 
factor, bubble size represents the count of targets enriched in terms and the color represents the p value. 

http://www.tcmip.cn/ETCM/
http://www.tcmip.cn/ETCM/
http://lmmd.ecust.edu.cn/admetsar2/
http://lmmd.ecust.edu.cn/admetsar2/
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performed using the STRING 11.0 database [29]. In the 

PPI network, a total of 43 nodes and 332 edges were 

acquired, and the average node degree was 15.4 (Figure 

4A). The larger the node and the darker the color, the 

greater the degree value was. AKT1, TP53, ALB, INS, 

VEGFA, IL6, ESR1, MAPK1, PTEN and TNF, which 

are ranked by degree, were identified as core targets 

(Figure 4B). Among these, AKT1 showed the highest 

degree (32). These core targets formed a complex PPI 

network, included 10 nodes and 45 edges, and the 

average node degree was 9 (Figure 4C). This 

demonstrates that these core targets are closely related 

to other targets in the PPI network, suggesting that these 

targets may play a key role in depression treatment. 

Potential synergistic mechanisms of EMO against 

depression 

 

GO biological process enrichment analysis 

The common targets were further analyzed for functional 

prediction by Metascape. The primary enriched GO 

biological process was positive regulation of transferase 

activity (GO:0051347), regulation of reactive oxygen 

species metabolic process (GO:2000377), cellular 

response to organonitrogen compound (GO:0071417), T 

cell activation (GO:0042110), negative regulation of cell 

differentiation (GO:0045596) and so on (Figure 5A).  

The Molecular Complex Detection (MCODE) algorithm 

(k-core = 2) was further used to identify highly 

 

 
 

Figure 3. Bioinformatics analysis of target proteins of EMO against depression. (A) Venn diagram was used to determine the 
intersection between the EMO and depression targets. (B) Panther classification categorized target proteins of EMO against depression. The 
figures next to the pie chart indicate the percentage of the protein in the given functional class. (C) GO classification of targets of EMO against 
depression at GO level 2 into 3 categories: biological process, molecular function and cellular component. 
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Table 1. The target information of EMO against depression. 

Number Gene ID Gene symbol Description 

1 5243 ABCB1 ATP binding cassette subfamily B member 1 

2 1636 ACE angiotensin I converting enzyme 

3 207 AKT1 AKT serine/threonine kinase 1 

4 213 ALB albumin 

5 1302 COL11A2 collagen type XI alpha 2 chain 

6 1385 CREB1 cAMP responsive element binding protein 1 

7 1401 CRP C-reactive protein 

8 1493 CTLA4 cytotoxic T-lymphocyte associated protein 4 

9 1557 CYP2C19 cytochrome P450 family 2 subfamily C member 19 

10 1559 CYP2C9 cytochrome P450 family 2 subfamily C member 9 

11 1621 DBH dopamine beta-hydroxylase 

12 2099 ESR1 estrogen receptor 1 

13 2260 FGFR1 fibroblast growth factor receptor 1 

14 2263 FGFR2 fibroblast growth factor receptor 2 

15 2736 GLI2 GLI family zinc finger 2 

16 2796 GNRH1 gonadotropin releasing hormone 1 

17 2932 GSK3B glycogen synthase kinase 3 beta 

18 3479 IGF1 insulin like growth factor 1 

19 3586 IL10 interleukin 10 

20 3553 IL1B interleukin 1 beta 

21 3558 IL2 interleukin 2 

22 3569 IL6 interleukin 6 

23 3630 INS insulin 

24 3845 KRAS KRAS proto-oncogene, GTPase 

25 3930 LBR lamin B receptor 

26 5604 MAP2K1 mitogen-activated protein kinase kinase 1 

27 5605 MAP2K2 mitogen-activated protein kinase kinase 2 

28 5594 MAPK1 mitogen-activated protein kinase 1 

29 4137 MAPT microtubule associated protein tau 

30 5027 P2RX7 purinergic receptor P2X 7 

31 11315 PARK7 Parkinsonism associated deglycase 

32 5144 PDE4D phosphodiesterase 4D 

33 5728 PTEN phosphatase and tensin homolog 

34 6622 SNCA synuclein alpha 

35 6647 SOD1 superoxide dismutase 1 

36 282974 STK32C serine/threonine kinase 32C 

37 6855 SYP synaptophysin 

38 7020 TFAP2A transcription factor AP-2 alpha 

39 7124 TNF tumor necrosis factor 

40 7157 TP53 tumor protein p53 

41 1890 TYMP thymidine phosphorylase 

42 7422 VEGFA vascular endothelial growth factor A 

43 7494 XBP1 X-box binding protein 1 

 

interconnected clusters, and regulation of neuron death 

(GO: 1901214) was identified (score = 5.6) (Figure 5B). 

In particular, 7 out of 10 proteins involved in regulation 

of neuron death were core targets (AKT1, TP53, INS, 

VEGFA, IL6, MAPK1, PTEN and TNF). 

KEGG pathway enrichment analyses for targets of 

EMO against depression 

 

To identify signaling pathways associated with targets 

of EMO against depression, Metascape was used to 
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Figure 4. PPI network construction for targets of EMO against depression. (A) PPI network of EMO against depression. Nodes 

represent target proteins and edges represent interactions among targets. The darker the color and the larger the node, the higher the 
degree. The thickness of the edges represents the combined score. (B) The top 10 core targets were ranked by degree. (C) PPI network of 
core targets extracted from (A). 

 

 
 

Figure 5. Biological processes of GO enrichment analysis. (A) Top 20 bubble chart of biological process of GO enrichment analysis. The 
X-axis represents the rich factor, bubble size represents the count of targets enriched in terms and the color represents the p value. (B) The 
regulation of neuron death (GO:1901214) was identified by MCODE algorithm. 
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enrich pathways for these 43 potential targets. KEGG 

pathways mainly involved PI3K-Akt signaling pathway 

(hsa04151), longevity regulating pathway (hsa04211), 

insulin resistance (hsa04931), IL-17 signaling pathway 

(hsa04657), AMPK signaling pathway (hsa04152) and 

so on (Figure 6A). Detailed information on the KEGG 

pathway enrichment analysis is shown in Table 2.  

Sixteen potential targets involved in the PI3K-Akt 

 

 
 

Figure 6. KEGG pathway enrichment analysis of EMO against depression. (A) The top 10 KEGG pathways are presented in the 

bubble chart. The X-axis represents the rich factor, bubble size represents the count of targets enriched in terms and the color represents the 
p value. (B) The PPI network of targets involved in the PI3K-Akt signaling pathway. (C) KEGG pathway-target network diagram of EMO 
treatment of depression. Red nodes represent target proteins and blue diamond nodes represent enriched KEGG pathways. 
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Table 2. KEGG pathway enrichment analysis of EMO against depression. 

Term Pathway 
Rich 

factor 
p value Count Symbols 

hsa04151 PI3K-Akt signaling pathway 0.04 1.84E-19 16 
AKT1,CREB1,FGFR1,FGFR2,GSK3B,IGF1,IL2,IL6,INS,KRAS,MA

PK1,MAP2K1,MAP2K2,PTEN,TP53,VEGFA 

hsa04211 Longevity regulating pathway 0.06 3.20E-10 7 AKT1,CREB1,IGF1,INS,KRAS,SOD1,TP53 

hsa04931 Insulin resistance 0.06 4.13E-10 7 AKT1,CREB1,GSK3B,IL6,INS,PTEN,TNF 

hsa04657 IL-17 signaling pathway 0.05 3.52E-07 5 GSK3B,IL1B,IL6,MAPK1,TNF 

hsa04152 AMPK signaling pathway 0.03 4.62E-05 4 AKT1,CREB1,IGF1,INS 

hsa04630 JAK-STAT signaling pathway 0.02 1.38E-04 4 AKT1,IL2,IL6,IL10 

hsa04115 P53 signaling pathway 0.04 2.46E-04 3 IGF1,PTEN,TP53 

hsanan01 Drug metabolism 0.03 7.77E-04 3 CYP2C19,CYP2C9,TYMP 

hsa04728 Dopaminergic synapse 0.02 1.10E-03 3 AKT1,CREB1,GSK3B 

hsa04360 Axon guidance 0.02 3.39E-03 3 GSK3B,KRAS,MAPK1 

 

signaling pathway formed a complex PPI network, 

which included 16 nodes and 100 edges (Figure 6B). 

Moreover, the KEGG pathway-target network is shown 

in Figure 6C. 

 

Molecular docking simulation 

 

Molecular docking analysis was used to validate the 

binding of EMO to core targets, and the lowest energy 

docking model was selected. Delta G is defined as the 

binding energy based on the ensemble free energy; the 

larger the absolute value of Delta G is, the more stable 

the binding. The molecular docking results of EMO to 

core targets are shown in Table 3. Among these 

targets, EMO showed the highest binding energy  

to ESR1, GSK3B, AKT1 and VEGFA, and the Delta 

G was -7.88, -7.50, -7.44 and -7.30 kcal/mol, 

respectively. 

 

Ligand–protein interactions were calculated using 

LigPlot [30]. Figure 7 demonstrates that EMO binds 

tightly in the ESR1, GSK3B, AKT1 and VEGFA 

binding pockets and is stabilized by hydrogen bond 

interactions. Specifically, EMO formed potential 

interactions with residues Arg394, Leu346 and 

Leu387 of ESR1 through hydrogen bonds (Figure 

7A). The distances between EMO and Arg394, 

Leu346, Leu387 were 3.12, 2.68 and 2.87 Å, 

respectively. Moreover, EMO formed potential 

interactions with residues Asp133 and Val135 of 

GSK3B through hydrogen bonds (Figure 7B). AKT1 

is a key mediator of the PI3K-Akt pathway. EMO 

bound with AKT1 by forming seven hydrogen bonds 

at Arg273, Cys296, Glu298, Thr82, Tyr272 and 

Val271 residues (Figure 7C). In addition, EMO also 

formed potential interactions with residues Asp6, 
Cyx5 and Val9 of VEGFA through hydrogen bonds 

(Figure 7D). These findings suggested that EMO has 

significant binding to core targets. 

EMO reduced CUMS induced microglial activation 

and neuroinflammation 

 

Neuroinflammation is related to the pathogenesis of 

depression, and microglial activation is one of the 

characteristics of neuroinflammation [31, 32]. 

Microglial are significantly activated in the brains of 

depressive suicide victims [33]. In the present study, 

many anti-depressant targets of EMO against depression 

were associated with the inflammatory response such as 

IL6, TNF, IL10, CRP, IL1B, CTLA4, ALB and IL2. 

GO analysis also revealed significantly enriched 

biological processes associated with regulation of 

inflammatory response (GO:0050727) and response to 

lipopolysaccharide (GO:0032496) (Figure 5A). Here, 

morphological changes in microglia in the prefrontal 

cortex (PFC) were examined by Iba1-based 

immunohistochemical staining (Figure 8A) and 

quantified by solidity (the ratio between the object area 

and the total area of the convex hull) [34]. The solidity 

of DET+VEH rats (0.37 ± 0.01) was significantly 

increased compared with that of CON+VEH rats (0.21 

± 0.01). However, the solidity of DET+EMO rats (0.22 

± 0.01) treated for 2 weeks with EMO significantly 

decreased compared with DET+VEH rats (Figure 8B). 

 

We further detected the cytokine levels in the PFC by 

ELISA, the DET+VEH rats had higher levels of 

interleukin-1β (IL-1β, 111.8 ± 5.9 pg/mg/protein) and 

tumor necrosis factor α (TNF-α, 57.6 ± 3.4 pg/mg/ 

protein) than the CON+VEH rats (IL-1β, 48.3 ± 5.3 pg/ 

mg/protein; TNF-α, 28 ± 3.4 pg/mg/protein), while 

DET+EMO rats had lower levels of IL-1β (57.4 ± 4.6 

pg/mg/protein) and TNF-α (32.6 ± 3.7 pg/mg/protein) 

(Figure 8C, 8D). The superoxide dismutase (SOD) 

activity of the PFC in the DET+VEH rats (62.5 ± 2.8 
U/mg protein) was significantly decreased compared 

with that in CON+VEH rats (100.8 ± 4.6 U/mg protein), 

whereas treatment with EMO led to a significant increase 
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Table 3. Molecular docking of the core target proteins with EMO. 

Target PDB deltaG (kcal/mol) deltaGvdw FullFitness (kcal/mol) Energy (kcal/mol) 

ESR1 2QE4 -7.88 -42.93 -2044.10 -0.18 

GSK3B 2O5K -7.50 -46.88 -1970.56 5.53 

AKT1 3O96 -7.44 -42.56 -2371.46 5.79 

VEGFA 6D3O -7.30 -42.31 -1318.42 4.85 

PTEN 1D5R -7.28 -49.21 -2243.15 13.89 

INS 2QIU -7.17 -45.86 -632.54 17.49 

MAPK1 5LCK -7.12 -43.05 -1970.85 13.09 

TNF 3ALQ -6.81 -38.30 -3618.49 6.94 

IL6 1IL6 -6.73 -34.96 -1453.89 13.41 

TP53 1KZY -6.68 -34.52 -1936.80 11.21 

 

(90.7 ± 2.9 U/mg protein) (Figure 8E). The above results 

suggested that CUMS induced neuroinflammation could 

be rescued by EMO treatment. 

 

Effects of EMO on PI3K-Akt signaling pathway 

associated proteins 

 

The most significantly enriched pathway of EMO 

against depression was the PI3K-Akt signaling 

pathway (p = 1.84E-19), and 16 target proteins were 

involved (Figure 6B). More importantly, 7 out of 16 

targets involved in the PI3K-Akt signaling pathway 

were core targets (AKT1, TP53, INS, VEGFA, IL6, 

MAPK1 and PTEN) (Figure 4B). As a 

serine/threonine protein kinase, Akt is an important 

kinase downstream of PI3K. There are three Akt 

isoforms (AKT1-3) and AKT1 is the most important 

subtype. GSK3β is a critical downstream target of the 

PI3K-Akt signaling pathway. The Ser9 position of 

GSK3β is phosphorylated, which causes the 

inactivation of GSK3β. A schematic diagram of the 

PI3K-Akt pathway is presented in Figure 9A. In 

DET+VEH rats, the levels of p-GSK3β (Ser9, 0.23 ± 

0.01), p-Akt (Ser473, 0.30 ± 0.02) and p-ERK 

(Thr202/Tyr204, 0.23 ± 0.02) were significantly 

decreased (23.4%, 30.3% and 23.6% of CON+VEH 

rats, respectively). After EMO treatment, the levels of 

p-GSK3β (1.59 ± 0.21), p-Akt (0.82 ± 0.05) and p-

ERK (0.88 ± 0.05) in DET+EMO rats were 

significantly increased. Moreover, there was no 

significant difference in t-GSK3β, t-Akt and t-ERK 

among the groups (Figure 9B–9E). The results 

presented above implied that EMO improves DET 

induced depression-related behaviors via the PI3K-

Akt pathway. 

 

EMO treatment eliminated CUMS induced neuronal 

loss in the PFC 

 

Nissl staining is a widely used method to identify 

neurons. The number of neurons in the PFC was 

detected with Nissl staining in this study (Figure 10A). 

The number of PFC neurons were decreased in 

DET+VEH rats (approximately 82% of the CON+VEH

 

 
 

Figure 7. Interaction between EMO and core targets by docking analysis. LigPlus schematic 2D representation of EMO-core target 

interactions (A–D). Hydrogen bonds between EMO and the core target are represented by green dashed lines. The amino acid residues of the 
core target interacting with EMO are shown as brown sticks and labeled in green. 
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Figure 8. EMO treatment significantly reduced CUMS induced microglial activation and neuroinflammation. (A) Microglia in the 

PFC were identified by Iba1 immunohistochemical staining (bar = 10 μm). (B) The solidities of microglia were calculated to evaluate the 
activation of microglia (n = 3, 8-9 slices/group). Levels of IL-1β (C) and TNF-α (D) in the prefrontal cortex (PFC) were detected by ELISA (pg/mg 
protein, n = 6). The level of SOD activity (E) in the PFC was measured by ELISA (U/mg protein, n = 6). Data were expressed as the means ± 
SEM. *** p < 0.001 DET+VEH vs CON+VEH. ### p < 0.001 DET+EMO vs DET+VEH. 
 

 
 

Figure 9. Effects of EMO on PI3K-Akt signaling pathway associated proteins in the PFC. (A) A schematic illustration of the PI3K-AKT 

pathway (hsa04151). (B–E) Levels of PFC total GSK3β (t-GSK3β) and phosphorylated GSK3β (p-GSK3β, Ser9), total AKT (t-AKT) and 
phosphorylated AKT (p-AKT, Ser473), and total ERK (t-ERK) and phosphorylated ERK (p-ERK, Thr202/Tyr204) were measured by Western 
blotting and quantitatively analyzed (n=4). Data were expressed as the means ± SEM. ▲ p < 0.05 CON+EMO vs CON+VEH. *** p < 0.001 
DET+VEH vs CON+VEH. ### p < 0.001 DET+EMO vs DET+VEH. 
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rats), and the neuron numbers were significantly 

increased after 2 weeks of EMO treatment 

(approximately 98.07% of the CON+VEH rats) (Figure 

10B). Of note, the number of PFC neurons in CON rats 

was also increased substantially after EMO treatment. 

The above results illustrate that EMO treatment could 

attenuate CUMS induced neuronal loss in the PFC. 

 

DISCUSSION 
 

This study demonstrated that 2 weeks of oral treatment 

with EMO (80 mg/kg/day) could improve the 

depression-like behaviors of rats exposed to CUMS, as 

displayed by an elevated sucrose preference percentage 

in the SPT, an increased zone crossing in the OFT and a 

reduction of immobility time in the FST. It is worth 

noting that not all CUMS exposed rats appeared 

depression, and the incidences of depression were 

41.54% and 46.15% in young female and male rats, 

respectively [19]. Regrettably, such mistakes are not 

uncommon, they simply consider all CUMS-treated 

animals appeared depression [16, 35]. In the present 

study, 5 weeks of CUMS exposure was performed prior 

to screening out depressive tendency rats (reduced the 

sucrose water intake by more than 20%). Depression is 

a complex neuropsychiatric disease with multiple 

targets and signaling pathways are involved. A total of 

340 depression-related targets were obtained from 

public databases. Depression related KEGG pathways 

were mainly involved neuroactive ligand-receptor 

interaction, cAMP signaling pathway, serotonergic 

synapse, dopaminergic synapse, glutamatergic synapse, 

PI3K-Akt signaling pathway, MAPK signaling 

pathway, long-term potentiation, calcium signaling 

pathway, Alzheimer disease and soon. To elucidate the 

anti-depressant effect of EMO, the underlying 

mechanisms were comprehensively investigated using 

systems pharmacology. 

 

The PFC is a key brain region involved in the 

pathogenesis of depressive symptoms [36]. Depression 

patients showed a reduced volume of the PFC, which 

negatively correlated with the severity of depression, 

length of illness, and the duration of treatment. In 

addition, decreased body size of neurons, the atrophy of 

neuronal processes, and a decreased number of synapses 

in the PFC were found in postmortem studies [37]. In 

the PFC and hippocampus of chronic stress exposed 

animals, the neuronal atrophy and loss were also found, 

which related to the reduction in the volume of these 

brain regions [38]. In this study, the regulation of 

neuron death (GO:1901214) was identified by using the 

MCODE algorithm, and a series of core targets were 

involved, such as AKT1, IL6, TNF and GSK3B. 

Obvious neuronal loss was also observed in the PFC of 

rats with CUMS induced depression, whereas in 

contrast, the number of neurons in the PFC were 

significantly increased after EMO treatment. GSK3β, an 

apoptosis mediator, has been revealed to play a role in 

many processes of cell proliferation and apoptosis [39].

 

 
 

Figure 10. EMO treatment reversed the loss of PFC neurons in DET+VEH rats. (A, B) Neurons in the PFC were detected with Nissl 

staining (blue, bar = 10 μm) and quantified by ImageJ (n = 4, 3-4 slices/group). Data were expressed as the means ± SEM. ▲▲▲ p < 0.001 
CON+EMO vs CON+VEH. *** p < 0.001 DET+VEH vs CON+VEH. ### p < 0.001 DET+EMO vs DET+VEH. 
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The overexpression of GSK3β in neurons significantly 

promoted neuronal apoptosis [40]. Regulation of PFC 

neuronal death may be one of the mechanisms of anti-

depressant effect of EMO. 

 

Neuroinflammation is strongly associated with the 

pathogenesis of depression, and anti-inflammatory 

agents may be a useful anti-depressant therapy or an 

adjuvant to the currently available conventional 

therapies [41]. The levels of pro-inflammatory 

cytokines (IL-1β and IL-6) are increased in some brain 

regions of patients with depression [7, 42]. A previous 

study also revealed that elevated levels of IL-1β, IL-6 

and TNF-α were related to resistance and severity of 

depressive symptoms [43]. Neuroinflammation-

associated microglial activation is well studied in many 

neuropsychiatric disorders, especially in depression 

[32]. Activated microglia can release pro-inflammatory 

cytokines (IL-1β, IL-6 and TNF-α) and injure neurons. 

Higher levels of pro-inflammatory cytokines in 

depressed animals could inhibit neurotransmission and 

plasticity, and suppress neurogenesis [44, 45]. The 

knock down of IL-1β in the hippocampus alleviates 

lipopolysaccharide (LPS)-induced depression-like 

behaviors in mice [46]. Moreover, mice exposed to 

CUMS significantly enhanced the production of TNF-α 

and IL-6 in the hippocampus, and these changes could 

be reversed by treatment with anti-depressant therapy 

[47]. This suggests that anti-inflammation plays an 

important role in anti-depressants. A previous report 

showed the anti-neuroinflammatory effect of EMO in 

LPS-stimulated microglia through AMPK/Nrf2 

signaling [48]. In this study, 43 potential targets were 

shared between EMO-related and depression-related 

targets, implicating the possible anti-depressant effect 

of EMO. From the PPI network, 10 core targets (AKT1, 

TP53, ALB, INS, VEGFA, IL6, ESR1, MAPK1, PTEN 

and TNF) with the most important interactions were 

screened out. They were significantly enriched in 

several pathways such as cellular response to oxidative 

stress (GO:0034599), regulation of cellular response to 

stress (GO:0080135), regulation of inflammatory 

response (GO:0050727) and glial cell differentiation 

(GO:0010001). The results of our present study also 

demonstrated that CUMS treatment significantly 

enhanced the levels of IL-1β, TNF-α, SOD activity and 

microglial activation in the PFC of rats, whereas oral 

treatment with EMO could restore these changes. Thus, 

the anti-depressant effect of EMO might be involved in 

its anti-inflammatory activity. 

 

The PI3K-Akt signaling pathway has been implicated 

in regulating the anti-depressant effects and plays an 
essential role in glutamate uptake, glutamate receptor 

trafficking, and synaptic neurotransmission [49–51]. 

Thus, the regulation of the PI3K-Akt signaling 

pathway plays a critical role in depression treatment. 

PI3K-Akt signaling has been implicated in the 

etiology of mood disorders and depression [52]. The 

regulation of the PI3K-Akt pathway may constitute an 

important signaling center in the subcellular 

integration of synaptic neurotransmission [53]. 

Animal study has also reported that the PI3K-Akt 

pathway was related to depressive symptom [54]. In 

this study, the PI3K-Akt signaling pathway was the 

most important pathway for the effect of EMO on 

depression by KEGG pathway enrichment analysis, 

and 16 targets were involved. This pathway modulates 

several functions, such as regulating cell growth, 

inflammation, metabolism, and cell survival. AKT1 

polymorphisms are associated with depression 

severity, anxiety symptoms and suicide attempts in 

patients with depressive disorder [55]. In the present 

study, EMO treatment augmented the ratios of p-

GSK3β (Ser9)/t-GSK3β, p-Akt (Ser473)/t-Akt and p-

ERK (Thr202/Tyr204)/t-ERK in the PFC of 

DET+EMO rats. The molecular docking results also 

revealed a significant binding between EMO and 

GSK3β or AKT1. 

 

An important kinase downstream of PI3K is GSK3, 

which consists of the highly homologous GSK3α and 

GSK3β [56]. The expression levels of GSK3α and 

GSK3β were similar in the mouse brain [57], while 

GSK3β was dominant in the human brain [58]. The 

PI3K-Akt signaling pathway plays a significant role in 

GSK3β activity regulation, in which Akt promotes the 

phosphorylation of GSK3β, resulting in GSK3β 

inactivation [59, 60]. Plenty of evidence shows that 

GSK3 contributes to pathological processes in a range 

of psychiatric and neurological disorders [61, 62]. 

Compared with non-depressed subjects, GSK3β activity 

was increased in the postmortem ventral PFC from 

subjects with depression, and GSK3α activity did not 

change [63]. Increased activity of GSK3β is sufficient 

to impair mood regulation, whereas hyperactive GSK3α 

alone does not impair this process [64]. Increasing 

evidence suggests that GSK3β inhibitors are a potential 

therapeutic target for depression [65–67]. Decreased 

hippocampal GSK3β levels ameliorated depressive-like 

behaviors, such as immobility times in both the FST and 

tail suspension tests [68]. Conversely, GSK3β 

overexpression in the nucleus accumbens induced a 

depression-like behaviors [69]. Selective GSK3β 

inhibitors such as LY2090314, AR-A014418 could play 

an anti-depressant effect [66, 67]. Thus, GSK3β may 

play more important roles in depression than GSK3α. 

 

EMO plays an anti-depressant role through a multi-
target approach (including GSK3β and AKT1) 

compared with a single GSK3β inhibitor. Moreover, the 

PI3K-Akt signaling pathway also play a critical role on 
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the neuroprotection and inhibiting apoptosis via 

enhancing the expression of SODs [70]. EMO treatment 

significantly improved the SOD activity of the PFC of 

CUMS exposed rats in this study. PI3K-Akt signaling is 

a primary upstream element of the NF-κB signaling 

pathway. Notably, PI3K-Akt signaling pathway plays 

an essential role in microglial activation by stimulating 

NF-κB activity [71], followed by an increase in the 

release of inflammatory cytokines, such as IL-6, IL-1β, 

IL-12 and TNF-α [72–74]. These results indicate that 

the anti-depressant effect of EMO against CUMS-

induced behaviors is directly related to the PI3K-Akt 

signaling pathway and its downstream 

neuroinflammation. 

 

The gut-brain axis connects emotional and cognitive 

brain centers with gastrointestinal function and is 

associated with psychiatric disorders [75]. Depression 

affects the stability of the microbiota. Compared with 

healthy controls, the levels of Bacteroidetes, 

Proteobacteria, and Actinobacteria were strongly 

elevated in patients with major depressive disorder, 

whereas the levels of Firmicutes was significantly 

reduced [76]. A recent study discovered that a change in 

the gut microbiota brought about by chronic stress can 

lead to depressive-like behaviors in CUMS mice [77]. 

Moreover, leaky gut can cause translocation of LPS 

from the gut into the circulation. In turn, LPS activates 

various immune cells, leading to increased secretion of 

pro-inflammatory cytokines and systemic low-grade 

inflammation [78, 79]. EMO plays an anti-depressant 

role through gastrointestinal digestion and absorption. 

Several studies have reported an important role of EMO 

in gut microbiota modulation [80, 81]. At present, there 

are few reports on the effect of EMO on the relationship 

between the gastrointestinal system and central nervous 

system. Therefore, investigating the relevance of the 

effect of EMO on the brain and gastrointestinal system 

may provide a new direction for upcoming research. 

 

CONCLUSIONS 
 

In this study, EMO treatment for 2 weeks can 

significantly improve CUMS induced depression-related 

behaviors. We further employed a systems pharmacology 

strategy and molecular docking were used to uncover the 

multi-target mechanisms of EMO in depression 

treatment. A total of 43 targets of EMO against 

depression were screened out. PI3K-Akt signaling 

pathway and its downstream neuroinflammation and 

neuronal loss plays an important role in the anti-

depressant effect of EMO. Although more studies are 

needed to confirm the current results, for the first time, 

the mechanisms of multi-target synergistic anti-

depressant of EMO have been explored in a systemic 

approach. Taken together, our findings might provide a 

theoretical basis for the application of EMO as a 

therapeutic for depression. 

 

MATERIALS AND METHODS 
 

Drugs and antibodies 

 

Emodin (purity ≥ 98%, CAS# 518-82-1) was from 

Shanghai Base Industry (Shanghai, China). 

Carboxymethylcellulose sodium (CMC-Na, Cat# 

30036365) was provided by Sinopharm Chemical 

Reagent Co. Ltd. (Shanghai, China). EMO was 

dissolved in 0.5% CMC-Na before use. All sandwich 

enzyme-linked immunosorbent assay (ELISA) kits such 

as for IL-1β (Cat# E-EL-R0012c), TNF-α (Cat# E-EL-

R2856c) and SOD (Cat# E-BC-K020-M) were from 

Elabscience Biotechnology (Wuhan, China). Anti-Iba1 

(Cat# 019-19741, 1:200) antibody was purchased from 

Wako (Osaka, Japan). Anti-β-actin (Cat# 20536-1-AP, 

1:5000) antibody was obtained from Proteintech 

(Chicago, USA). Total glycogen synthase kinase 3β (t-

GSK3β, Cat# 5676S) and phosphorylated GSK3β (p-

GSK3β, Ser9; Cat# 9322S), total Akt (t-Akt, Cat# 9272) 

and phosphorylated Akt (p-Akt, Ser473; Cat# 4058), 

and total MAPK ERK1/2 (t-ERK, Cat# 4695) and 

phosphorylated ERK (p-ERK, Thr202/Tyr204; Cat# 

4370) antibodies were purchased from Cell Signaling 

(Danvers, MA, USA) and diluted 1:1000 for Western 

blotting. Anti-rabbit (Cat# 926-32210) or anti-mouse 

IgG (Cat# 926-32211) conjugated to IRDye® 800 CW 

used in Western blotting, was purchased from Li-Cor 

Bioscience (Lincoln, NE, USA). 

 

Collection of depression-related targets 

 

Disease-related targets were screened by the GeneCards 

database (https://www.genecards.org/), TTD (http:// 

db.idrblab.net/ttd/) [22] and the Rat Genome Database 

(https://rgd.mcw.edu) using “depression” as a keyword, 

and duplicate targets were removed using Microsoft Excel 

software (version 2019, Microsoft Corporation, Redmond, 

USA). The organism was set to Homo sapiens in the Rat 

Genome Database. Specifically, the top 300 relevance 

score target genes were selected for further study in the 

GeneCards database. 

 

ADME evaluation 
 

Lipinski’s rule of five was used to assess the in vivo 

absorption abilities of the designed compounds [82, 83]. 

Specifically, Lipinski’s rule of five includes the 

following: MW < 500, Hdon ≤ 5, Hacc ≤ 10, LogP ≤ 5 

and Rbon ≤ 10. The SwissADME web tool 

(http://www.swissadme.ch) [24, 25] was used to 

evaluate the ADME of the compounds. Moreover, the 

TPSA, LogS and Log Kp were also measured. 

https://www.genecards.org/
http://db.idrblab.net/ttd/
http://db.idrblab.net/ttd/
https://rgd.mcw.edu/
http://www.swissadme.ch/
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Screening of potential targets of EMO against 

depression 

 

Potential targets of EMO were collected from the 

PALM-IST (http://www.hpppi.iicb.res.in/ctm/) [28] and 

validated through literature scanning in the PubMed 

database (https://pubmed.ncbi.nlm.nih.gov/). The 

intersection of EMO-related targets and depression-

related targets was analyzed by Venny 2.1 

(https://bioinfogp.cnb.csic.es/tools/venny/index.html), 

and the common targets were the anti-depressant target 

of EMO. In addition, potential target proteins were 

categorized by the Panther classification system 

(http://pantherdb.org/) [84]. 

 

PPI network construction and the screening of core 

targets 

 

The PPI network was constructed by using the STRING 

database (https://string-db.org/) [29]. The organism was 

limited to Homo sapiens, and only the minimum 

required interaction score > 0.4 was chosen as 

significant. The PPI network comprises nodes, which 

represent a target protein, and edges, which represent 

protein-protein interactions. The thickness of the edges 

represents the combined score. Degree represents the 

number of other nodes directly connected to a node. The 

higher the value of degree, the more important the node 

becomes. The core targets were identified through 

network analysis using Cytoscape software (v.3.7.1) 

[85] and its plugin (Network Analysis). In this study, 

the top 10 target proteins were selected and identified as 

core targets ranked by degree. 

 

GO and the KEGG pathway enrichment analysis 

 

GO biological process and KEGG pathway enrichment 

analyses were performed using Metascape 

(https://metascape.org/gp) [23]. The threshold value 

was set as p < 0.01, minimum count 3, and an 

enrichment factor > 1.5. Moreover, the MCODE 

algorithm has been applied to identify highly 

interconnected clusters and the criteria were set as 

follows: degree cutoff = 2, node score cutoff = 0.2, k-

core = 2, and max depth = 100. The top 20 enriched 

terms were visualized using an online tool 

(http://www.bioinformatics.com.cn). Based on the 

results of KEGG pathway enrichment analysis, a KEGG 

pathway-target network diagram of EMO treatment of 

depression was created by Cytoscape software. 

 

Molecular docking of core targets 

 
To validate the binding of EMO to predicted  

core targets, the 3D molecular structure of EMO  

was downloaded from the PubChem database 

(https://pubchem.ncbi.nlm.nih.gov/). Structure files of 

target proteins were obtained from the RCSB Protein 

Data Bank (PDB database, http://www.rcsb.org/) [86]. 

The SwissDock (http://www.swissdock.ch/docking) 

[87] was used for molecular docking calculations.  

The interaction of residues between EMO and core 

target was analyzed by LigPlot (https://www.ebi.ac. 

uk/thornton-srv/software/LIGPLOT/) [30]. 

 

Animals and treatments 

 

Male Sprague-Dawley rats (8-week-old, n = 88) were 

from the Experimental Animal Central of Tongji 

Medical College, Huazhong University of Science and 

Technology (License No. SCXK-E 2016-0009). Rats 

were maintained in 12-hour-light/-dark cycle. The 

animal house was kept at a constant relative humidity 

(55 ± 15%) and room temperature (22 ± 2° C). Ethics 

approval was received from the Animal Care and Use 

Committee of Huazhong University of Science and 

Technology (Ethics approval number: 2019-s1845). 

 

The CUMS procedure was carried out as previously 

reported [19–21]. Eighty-eight rats were randomized 

by Microsoft Excel software table = Rand () function. 

Control rats (CON rats, n = 24) were group housed 4-

5 per cage, while the CUMS-treated rats (CUMS rats, 

n = 64) were housed individually. All animals 

underwent the SPT after 5 weeks of CUMS. 

Depressive tendency rats (DET, n = 30) were defined 

as a more than 20% decrease in sucrose water intake 

compared with before the experiment, and next 

divided randomly into two groups. Fifteen depressive 

tendency rats intragastric administrations of EMO at a 

dose of 80 mg/kg/day (DET+EMO rats), and the 

remaining animals were administered with an equal 

volume of vehicle (0.5% CMC-Na) (DET+VEH rats, 

n = 15). Meanwhile, CON rats were also given vehicle 

(CON+VEH rats, n = 12) and EMO (CON+EMO, n = 

12). The dosage of EMO was referenced from 

previous studies [13, 16]. EMO treatment at (80 

mg/kg/day) for 6 weeks did not cause hepatotoxicity 

in rats [88]. CUMS exposure was performed 

simultaneously with EMO treatment, and all rats 

completed the SPT, OFT and FST after two weeks 

(Figure 1A). CUMS exposure caused a decrease in 

body weight. After behavioral tests, the body weight 

of the animals was recorded. 

 

Behavior tests 

 

SPT, OFT and FST 

The SPT is a classic method for detecting the loss of 
pleasure due to depression [89]. The SPT OFT and FST 

were carried out as previously described in this study [13, 

19, 20]. Sucrose preference was calculated as follows: 

http://www.hpppi.iicb.res.in/ctm/
https://pubmed.ncbi.nlm.nih.gov/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
http://pantherdb.org/
https://string-db.org/
https://metascape.org/gp
http://www.bioinformatics.com.cn/
https://pubchem.ncbi.nlm.nih.gov/
http://www.rcsb.org/
http://www.swissdock.ch/docking
https://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/
https://www.ebi.ac.uk/thornton-srv/software/LIGPLOT/
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sucrose preference (%) = sucrose consumption/(water 

consumption + sucrose consumption) × 100%. 

 

The zone crossing times in OFT and the total duration 

of immobility in FST were recorded. 

 

Western blotting and ELISA 

 

Rats were sacrificed under isoflurane (RWD Life 

Science; Cat# R510-22) anesthesia. The brain tissues 

of PFC were rapidly harvested and homogenized on 

ice. Western blotting was performed as previously 

described [13, 19, 20]. The quantification of the 

Western blot was conducted using ImageJ (NIH, 

Bethesda, MD, USA). 

 

The levels of IL-1β, TNF-α and SOD in the PFC were 

detected using ELISA kits, and the procedures were 

conducted strictly according to the instructions. The 

optical densities were measured at 450 nm using a 

BioTek Synergy 2 microplate reader (Winooski, VT). 

 

Immunohistochemical staining and Nissl staining 

 

Animals were sacrificed through an over-dose of 

isoflurane. Immunohistochemical staining and Nissl 

staining were performed according to our previous 

studies [13, 20]. All images were captured by a 

microscope (NIKON 90i, Japan). The solidities [34] of 

microglia and the number of PFC neurons were 

calculated by ImageJ. 

 

Statistical analysis 

 

Data were expressed as means ± SEM. Graphic plots 

were presented by GraphPad Prism (GraphPad 

Software, Inc., La Jolla, CA). SPSS 19.0 statistical 

software (SPSS, Chicago, IL, USA) was used for 

statistical analysis. One-way ANOVA procedure 

followed by Tukey’s multiple comparisons test was 

used for multiple comparisons. Statistical significance 

level was set at p < 0.05. 

 

Abbreviations 
 

EMO: emodin; CMC-Na: Carboxymethylcellulose 

sodium; CUMS: chronic unpredictable mild  

stress; HPA: hypothalamic-pituitary-adrenal; GR: 

glucocorticoid receptor; BDNF: brain-derived 

neurotrophic factor; SPT: sucrose preference test; 

OFT: open field test; FST: forced swimming test; 

ELISA: the sandwich enzyme-linked immunosorbent 

assay; TNF-α: tumor necrosis factor α; SOD: 

superoxide dismutase; GSK3β: glycogen synthase 

kinase 3β; TTD: Therapeutic Target Database;  

GO: Gene ontology; KEGG: Kyoto Encyclopedia of  

Genes and Genomes; MCODE: Molecular Complex 

Detection; PFC: prefrontal cortex. 
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