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Abstract

The fiddler crab Austruca occidentalis is a dominant species in mangrove forests along the

East African coast. It enhances soil aeration and, through its engineering activities, makes oth-

erwise-inaccessible food available for other marine organisms. Despite its importance, the hab-

itat of A. occidentalis is threatened by human activities. Clearing the mangroves for salt farming

and selective logging of mangroves trees continue to jeopardise mangrove ecosystems in the

Western Indian Ocean. This study aims to use partial mitochondrial COI gene sequences and

nuclear microsatellites to determine whether salt farming activities in mangroves have a nega-

tive impact on the genetic diversity and gene flow of A. occidentalis collected along the Tanza-

nia coast. The level of genetic diversity for both mitochondrial DNA and nuclear microsatellites

are relatively lower in samples from salt ponds compared to natural mangrove sites. Analysis

of molecular variance (AMOVA) among all populations showed low but significant differentia-

tion (COI: Fst = 0.022, P < 0.05; microsatellites: Fst = 0.022, P < 0.001). A hierarchical AMOVA

indicates lower but significant genetic differentiation among populations from salt ponds and

natural mangroves sites (COI: Fct = 0.033, P < 0.05; microsatellites: Fct = 0.018, P = < 0.01).

These results indicate that salt farming has a significant negative impact on the genetic diver-

sity of A. occidentalis. Since higher genetic diversity contributes to a stable population, restoring

the cleared habitats might be the most effective measures for the conservation of genetic diver-

sity and hence adaptive potential to environmental change in this species.

Introduction

Mangroves and salt farming

The loss of mangroves continues to increase rapidly in developing countries, where more than

90% of the world’s mangroves are located [1]. In developing countries along the East African

coast of the Western Indian Ocean (WIO) extensive areas of mangroves have been cleared to

pave a way for the construction of salt ponds [2–4]. Salt farming in mangroves is among the

activities that contribute to the loss of mangroves globally [5–6]. This economic activity con-

tinues to be a threat for mangroves, which are estimated to have been reduced by 35 to 50%

within the last 50 years mainly due to anthropogenic activities [7].
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Salt production in mangroves ignores the important function of mangroves as habitat and

nursery ground for many marine and terrestrial fauna [8, 9]. Salt production involves clear-

cutting of extensive areas of mangroves and selective logging of mangrove trees for firewood,

as well as construction of dykes around the salt ponds and water reservoirs. In addition,

mangrove trees are selectively logged for building huts used to store salt and as houses for

people involved in these activities [10]. Loss of mangroves in the area results in the loss of habi-

tats for important marine species, such as crabs and snails that depend on mangroves for their

survival. Removal of a considerable part of natural vegetation affects the mangrove ecosystem

by reducing the habitat complexity and altering the drainage pattern and run-off in the area

[11].

Tanzania is one of the East African countries at the WIO with a mangrove area that covers

about 1,587.44 Km2 [12] and all of them are classified as forest reserves [3]. This ecosystem is

threatened by salt farming [11, 13–14], which is legal and takes place in most mangroves at the

Tanzanian coast. Some salt pans have been abandoned but still retain the dykes that prevent

free tidal flow in the area.

Impacts and indicators of ecological disturbances

Ecological disturbance cause habitat disturbances once it changes food availability and preda-

tion [15–16]. Consequently this reduces the population size and genetic diversity [17]. For

example, habitat disturbances through establishment of artificial structures in natural marine

habitats were observed to cause lower genetic diversity of the limpet Patella caerulea [18]. The

reduced genetic diversity decreases the capability of a species to adapt to environmental distur-

bances and can cause decreases in its long-term survival [19–21].

The fiddler crab Austruca occidentalis has been found to be a good indicator of negative

impacts of anthropogenic activities, such as sewage discharge in the mangrove ecosystem [22].

This species is well known for its engineering activities through burrowing that promote nutri-

ent cycling in mangrove ecosystems [23–25]. They act as a link between microbial production

and higher trophic levels through conversion of a large part of the bacterial production into

food items for larger predators [26]. This species is the most dominant of all Austruca sp.

occurring at the intertidal shores of Eastern Africa [27]. The male is characterised by the asym-

metry of the chelipeds, with the larger claw used in courtship display to attract females and

fight with other males [28]. It has also a minor claw used for gathering food, which is similar to

those of females [29]. In the salt ponds area it is often observed in groups during daytime,

sometimes sharing the habitat with Cranuca inversa (field observation).

The pelagic larval duration of A. occidentalis larvae is about 28 days and permits extensive

gene flow along the East African coast [30]. Planktonic dispersal plays an important role in

homogenising gene frequencies, and the lack of larval exchange is thought to increase genetic

differentiation [31]. Despite potentially high gene flow in marine species, human disturbance,

larval characteristics, such as behaviour and physiological requirements, can interrupt natural

dispersal, which is necessary to maintain genetic variability [30, 32]. It has been shown that

even species that have relatively high gene flow, such as A. occidentalis, may suffer from habitat

fragmentation, resulting to genetic fragmentation between isolated populations [33]. Under-

standing the genetic diversity among and within populations is necessary for efficient manage-

ment of natural living resources.

Molecular markers and habitat disturbances

The use of molecular markers in population genetics studies has proven to be important in

shedding light on several aspects related to the biology, ecology and evolution of many
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organisms [34]. Molecular markers can be used to provide information for conservation of

species, because they can be used to assess the impact of habitat destruction on genetic diver-

sity. Therefore, molecular markers can provide baseline data for long-term conservation plans

[35]. Due to the threat of on-going degradation, genetic information is required for effective

management of marine species in the WIO [36].

Both mitochondrial DNA (mtDNA) and nuclear microsatellite data are helpful in analysing

the genetic population structure of marine species [37–39]. However, given the low resolution

of mitochondrial cytochrome oxidase subunit 1 (COI) sequences in detecting recent loss of

genetic variation and its maternal inheritance [40], sensitive molecular markers with higher

polymorphism and more power in detecting recent traces of gene flow fluctuations, such as

microsatellites, are more suitable. In this study, we used both COI sequences and microsatel-

lites to assess if salt production in mangroves has a negative impact on the genetic diversity

and demography of A. occidentalis. Conservation of species can be improved by investigating

factors that can lead to evolutionary change over a short time period [41].

The objectives of this study were to determine: 1) if salt farming affects the genetic diversity

of A. occidentalis through inbreeding and bottleneck effects; 2) if salt farming has negative

effects on the effective population size; and 3) if dispersal patterns of this species have been

altered by salt farming activities. To achieve this, we assessed the degree of genetic variation

and structure in populations from mangroves at salt ponds and natural mangroves. Then we

examined the levels of heterozygosity and estimated effective population sizes, inbreeding and

migration rates. We finally compared the genetic diversity and demographic indices between

the populations at salt ponds and natural mangroves.

Material and method

Sampling

No specific permissions were required for these locations/activities. The Tanzanians students

are allowed by the government to conduct the scientific research but in order to export the

samples abroad for laboratory analysis, the special licence/permit that is provided by the Min-

istry of Agriculture, Livestock and Fisheries (Fisheries development division-HQ, Dar es

Salaam) of the united republic of Tanzania is required. The code number of the special permit

for exporting our samples to Belgium at Free university of Belgium (VUB) was 1997/2015. The

field studies did not involve endangered or protected species.

Samples of A. occidentalis were collected at 12 sites, of which six sites are from mangroves at

salt ponds and the rest are from natural mangroves (Fig 1). The locations of the sites (in the

bracket Latitudes, Longitude) for mangroves at salt ponds are Tanga–Mpirani (4˚ 58.54’ S, 39˚

06.04’ E), Bagamoyo–Nunge (6˚ 24.80’ S, 38˚ 53.08’ E), Kilwa–Makubuli (8˚ 55.53’ S, 39˚

30.44’ E), Mtwara–Kilimahewa (10˚ 17.60 ’S, 40˚09.10’ E), Pemba–Wete (5˚ 08.76’ S, 39˚50.14’

E) and Unguja–Makoba (5˚ 56.57’ S, 39˚12.06’ E). For natural mangroves are Tanga–Lumba-

chia (5˚ 04.05’ S, 39˚ 07.46’ E), Bagamoyo–Kaole (6˚ 27.54’ S, 38˚ 57.11’ E), Kilwa–Timaki (8˚

53.53’ S, 39˚ 30.44’ E), Mtwara–Ngw’ale (10˚ 16.33’ S, 40˚ 12.85’ E), Pemba–Chakechake (5˚

01.21’ S, 39˚ 43.82’ E) and Unguja–Fujoni (6˚ 1’ S, 39˚11.73’ E). Sampling was conducted dur-

ing low tide on the landside of mangroves at salt ponds and in natural mangroves between July

and August 2015. For each site of mangroves at a salt pond sampled, a natural mangrove site

not far from it was also sampled. The longest distance recorded between the salt pond and a

natural mangrove site was (82 km) in Pemba, but for all other sites it ranged from 4 to 18 km.

The dominant prevailing ocean current in this region is the East African Coast Current

(EACC) (Fig 1), which flows northward throughout the year. It originates from the South

Equatorial Current (SEC), which flows from East to West throughout the year at around 12˚S
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latitude [42]. Narrow streams of strong currents have also been reported to flow northwards

parallel to the coast in the Mafia, Zanzibar, and Pemba Channels [43].

DNA extraction

Tissue samples from a segment of the last pereiopod of A. occidentalis were collected and

immediately preserved in 99% ethanol. Total DNA was isolated for mitochondrial DNA

(mtDNA) and microsatellite analyses using either the QIAGEN (Düsseldorf, Germany) or

E.Z.N.A.1 Tissue DNA Kit (Omega Bio-Tek, California, USA) extraction kit. The extracted

DNA was visualised in 2% TBE agarose gels.

Fig 1. Map showing sample sites of the fiddler crab Austruca occidentalis from the Western Indian Ocean (partial

mitochondria cytochrome oxidase subunit I (COI) sequences and microsatellites). The white filled circles represent natural

mangroves and black filled circles represent mangroves at salt ponds. The East African Coast Current (EACC) is indicated by black

arrows.

https://doi.org/10.1371/journal.pone.0182987.g001
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Amplification of mtDNA and sequencing

The primer jgLCO1490 (5’-TITCIACIAAYCAYAARGAYATTGG-3’) and jgHCO2198

(5’-TAIACYTCIGGRTGICCRAARAAYCA-3’) [44] was used to amplify a portion of the

COI gene. PCR was performed in a BIORAD T100TM thermocycler in a 50 μl reaction volume

containing 0.2 mM dNTPs, 1 mM 10x PCR reaction buffer, 0.2 μM primers primer, 2.5 μl of

10 mg/ml BSA, 3 mM MgCl2, 3 μl DNA extract, and 1 U Taq polymerase. The temperature

profile was set at 94˚C for 5 minutes as initial denaturation, followed by 35 cycles of denatur-

ation at 94˚C for 60 seconds, annealing at 50˚C for 1.5 minutes, 72˚C of extension for 1 minute

and 72˚C of final extension for 5 minutes. PCR products were electrophoresed and visualised

by using GelRed in 2% TBE agarose gels. An ABI 3770XL automated sequencer (Applied Bio-

systems, Foster City, USA) was used for sequencing the PCR products. We successfully

sequenced 138 samples from salt ponds and 136 from natural mangroves.

Microsatellites genotyping

We tested primer pairs previously developed for the crabs Uca mjoebergi [45] and Ucides cor-
datus [46–47]. For each test, gel electrophoresis was performed to check DNA amplification.

Seven primer pairs amplified the loci in A. occidentalis. The forward primer was labelled with a

fluorescent dye (Table 1). A total volume of 12 μl, containing 1 μM of 2x multiplex mix (Qia-

gen, Hilden-Germany), 0.2 μM of primer mix, 2.5 μl of 10 mg/ml of BSA, and 2.4 μl of DNA

extracts was used to amplify the microsatellite loci. The annealing temperature for the first

four primers in Table 1 was 50.4˚C for 90 s, while for all other primers it was 50.6˚C for 90 s.

The common PCR condition for both multiplex PCRs was: initial denaturation for 5 min at

95˚C, denaturation of 30 s at 95˚C for 31 cycles, and 72˚C for 30 s, and final extension of 30

Table 1. Characteristics of primers used for microsatellites analysis in Austruca occidentalis from Tanzania, Western Indian Ocean. The super-

scripts a, b, and c at each locus indicate the source of each primer pair.

Locus GenBank

Accession

number

Primer sequences (5’–3’) Dye 5’

foward

primer

Repeat motif Allele size in this

study

Allele

size

P2D3b FJ447550 F: CAACGACTTTAGGCCCACAC 6FAM (TC)16 324–448 283–402

R: TTGTATTGCAGACACGCTCC

CAG7b FJ447551 F: CCAGGATGTTATGAAGCTGGTC ROX (GA)22 324–338 232–278

R: GATTTCTGCTGCCTCGTTTG

CAC4b FJ447547 F:AAGTGCGATAACCAAGGAGGCG HEX (AC)14(TC)15 259–291 242–300

R:TGTGAGTTGGCTGTGTGATATGGC

C361a EU703141 F:CTCTTCACCACTTCACTCTTTGTCAGCC ROX (CTGC)5CTC(TCTG)6 336–448 323–370

R:

TGAGCCAGACAGGTAACTACAAAACGAGAC

CT155a EU703139 F: ACCGCTACACCAGCCATAAC HEX (GT)22 262–284 130–251

R:TGGAAATGAAGACCAGAAAGG

UsSSR26c _ F:ATCTGGCATGAGTTTTCGTGT 6FAM (GT)7 180–188 109

R:TATTCTCCTCTGTAGCCCTGGA

C359ba EU703142 F: AAATAAAGCTCTGGACTATA
CGACTTGTGC

(AAAG)6(GAGG)2GAAT

(GAAA)2

AA(GAAA)2(GGAA)5GACAA

GAA(AGGG)4(AAGG)3

>500 358–442

R: AATAATGGTAATGTTACG
TTCAGCCATCTC

[47] a, [48] b, [49] c.

https://doi.org/10.1371/journal.pone.0182987.t001
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min at 60˚C. Because of the differences in annealing temperatures we developed two multiplex

PCRs, one containing of four primers and the other three primers. The PCR products for a few

samples from different sites were selected and diluted 60 and 80 times. Based on two multiplex

sets and the two dilutions, 1 μL of the diluted PCR products was mixed with 0.15 μL GeneScan

500 LIZ Size Standard and 8.85 μL of Hi-Di Formamide and then analysed on an ABI 3730

DNA Analyzer (Applied Biosystems) with a 50 cm capillary to measure the fragment size of

the different microsatellite loci. One locus among the seven had a fragment size greater than

500 bp. The 80 times dilution resulted in clear fragment peaks compared to 60 times dilution.

Therefore, the two multiplex PCRs were prepared in the same way as the previous one, but the

locus with a fragment size of more than 500 bp was not included, because PCR did not work

well as shown by presence of stutter bands and null alleles in many samples.

Mitochondrial DNA (mtDNA) and microsatellites analysis

The sequences were first edited by using the software Chromaspro v. 1.5 (Technelysium) and

compared with sequences available in GenBank using the online software BLAST in order to

confirm species identity. The presences of stop codons, which indicate sequencing errors or

pseudogenes, was evaluated by using the program Squint Alignment Editor v. 1.02 [48]. A

multiple alignment of the sequences was done by using CLUSTAL W [49] as implemented in

the software MEGA 6 [50]. To determine the heterogeneity of haplotype distribution between

salt pond sites and natural mangrove sites, a contingency χ2 table via a Monte Carlo simulation

implemented in the software R: package coin version 1.1–2 [51] was used. This involved simu-

lating χ2 with a p-value that was based on 2,000 replicates. The online FaBox 1.41 Collapse tool

was used for collapsing the sequences to haplotypes. The statistical parsimony approach as

implemented in the software TCS 1.21 [52] was used to investigate the relationship between

haplotypes from salt pond sites and natural mangroves. Nucleotide and haplotype diversity,

historical demography [53–54], as well as neutrality parameters [55–56], were calculated by

using the software Arlequin v. 3.5.2.2 [57]. The within and among population differentiation

was investigated by analysis of molecular variance (AMOVA) [58]. Hierarchical AMOVA was

used to determine if salt farming influences the gene flow in A. occidentalis. Analysis of vari-

ance (ANOVA) was performed with the software R (Version 3.1.2) to determine differences in

nucleotide and haplotype diversity, observed and unbiased heterozygosity and allelic richness

between populations from salt ponds and natural mangroves. Genetic diversity, heterozygosity

and allelic richness were treated as dependent variables and “type of habitat “(i.e. salt pond and

natural mangrove sites) as an orthogonal and fixed factor. Before ANOVA tests all dependent

variables were tested for normality using Shapiro-Wilk and homogeneity of variances using

Levene’s test and Fisher’s F- test as implemented in the software R (Version 3.1.2). The values

of unbiased heterozygosity were normally distributed after Ln-transformed.

Scoring of alleles was done manually with GeneMarker (2.4.0; SoftGenetics, State College,

PA, USA). All samples found to have missing values at three loci or could not be scored were

removed from the data set. The final data set consists of 173 samples from salt ponds and 159

from natural mangroves. We used the software MICRO-CHECKER v. 2.23 [59] to test for the

presence of null alleles, large allele dropout, or scoring errors. The software GenAlEx v. 6.5

[60] was used to test for departure of each locus from Hardy–Weinberg equilibrium (HWE),

and the resulting P-values were adjusted by sequential Bonferroni correction. Analysis of

molecular variance was conducted in Arlequin v. 3.5.2.2 [57]. The number of alleles, effective

number of alleles, observed and unbiased estimate of heterozygosities as well as the inbreeding

coefficient within populations (Fis) were calculated by using the software GenAlEx: version 6.5

[60]. GenAlEx was used to perform principle coordinate analysis (PCoA) for pairwise Fst-
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values obtained from sequences and microsatellite data. The software Fstat [61] was used to

calculate the allelic richness per population.

The program MIGRATES v. 3.11.6 [62] was used to estimate mutation–scaled effective

population size (Θ = 4Neμ) in microsatellite data, where Ne represents the effective population

size and μ is the mutation rate per generation per locus. The same software was used to infer

for the mutation-scaled migration rate M (M = m/μ) between populations from salt ponds and

natural mangroves, where m represents migration rate per generation, and μ represents the

mutation rate [63]. A Brownian mutation model was used. The initial runs were performed in

three replicates, each consisting of one long chain with 50,000 recorded steps and 50 incre-

ments. The sampling parameter value and burn-in was 2,500,000 and 100,000, respectively,

with an exponential prio distribution. The final runs consisted of one long chain of 50,000 re-

corded steps, 50 increments, four replicates, 2,500,000 sampled parameter values and a burn-

in value of 100,000. The heating scheme was with multiple Markov chains and four static tem-

peratures that started at 1, 1.5, 3, and 1,000,000 with exponential prio distribution. The soft-

ware MIGRATE uses the coalescent approach to estimate the relative effective population size

and asymmetric gene flow between pairs of populations over 1000s of years [64]. To estimate

the recent migration patterns between population at salt ponds and natural mangroves sites,

we used the software BAYESASS v. 3.0.3 [65], which uses a Bayesian approach. This software

estimates migration rates over a short period of time, approximately 3–6 years [64]. Seven runs

were first performed by changing the number of seeds (s = 10, 100, 250, 500, 600, 750 and

1000) in order to obtain a suitable convergence. The number of iterations was 3,000,000, of

which 100,000 were burn-in, and the sampling frequency was 2000. Mixing parameters were

0.3 for allele frequencies, 0.3 for inbreeding coefficients, and 0.5 for migration rates. The final

run consisted of the same mixing parameters and 750 numbers of seeds.

Results

Patterns of haplotypes and nucleotide diversities

After aligning and trimming unreadable parts of sequences, we obtained an alignment of 674

bp length. All sequences are deposited at the European Nucleotide Archive (ENA) with the

accession numbers LT703011-LT703284. Mitochondrial haplotype diversity for all populations

was 0.23 (0 to 0.49), and nucleotide diversity 0.04% (0 to 0.08%) (Fig 2). Both, genetic diversity

and the number of haplotypes were found to be consistently lower at salt pond sites compared

to natural mangrove sites, with exception of the site Bagamoyo. The number of private haplo-

types was lower at salt ponds sites compared to natural mangrove sites.

The total number of haplotypes recorded was 21. Only two haplotypes, the commonest,

were shared between salt pond sites and natural mangroves. Most individuals at all sites had

haplotype one (Fig 3). The minimum spanning network is displaying a star-like structure, with

most rare haplotypes differing only by one mutational step from a central haplotype (Fig 3).

The number of haplotypes at the different sites ranged from one to six, with most natural man-

grove sites having higher numbers compared to salt pond sites (Table 2). The mean and range

of nucleotide diversity for all populations was 0.04% and 0–0.08%, respectively. In general,

haplotype and nucleotide diversity were lower in populations from the salt ponds (0.11,

0.02%) compared to natural mangroves sites (0.34, 0.07%) (Fig 2). The ANOVA test supported

the differences in nucleotide (F = 6.50, P = 0.03) and haplotype diversity (F = 8.48, P = 0.02)

between population from salt ponds and natural mangroves.

The mean observed heterozygosity for all populations was 0.565 ± 0.026 and the unbiased

expected heterozygosity was 0.497 ± 0.013. The allelic richness and heterozygosity were consis-

tently higher at natural mangrove sites compared to salt pond sites. The ANOVA detected
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differences for observed heterozygosity (F = 15.15, P = 0.003), unbiased expected heterozygos-

ity (5.47, P = 0.04) and allelic richness (F = 10.29, P = 0.01) between populations from salt

ponds and natural mangrove sites. The within population inbreeding coefficient ranged from

–3.40 to 0.026, but all were not significant different from zero. The total number of alleles per

locus was low to moderate, ranging between two and ten, with C361 having the highest and

D2P3 the lowest number of alleles. Private alleles were recorded only in four populations from

natural mangrove sites (Tanga, Bagamoyo, Kilwa and Mtwara) (Table 3). Locus P2D3 deviated

from HWE for all populations from natural mangroves, except for Pemba and Tanga. This

locus deviated also from HWE for the population from Bagamoyo salt ponds. The locus C361

deviated from HWE for three populations from natural mangroves (Tanga, Bagamoyo and

Unguja). It also deviated from HWE for populations from Unguja salt pond sites. The locus

CAG7 and CT155 deviated from HWE in populations from natural mangroves at Pemba and

at Tanga salt pond sites, respectively. The locus C361 indicated presence of null alleles for the

populations from Tanga and Bagamoyo. Other scoring errors such as stuttering and large allele

dropout among the loci were not detected.

Genetic population structure and demographic history

The analysis of molecular variances of the COI sequences revealed a low but significant popu-

lation differentiation (Overall Fst = 0.022, P< 0.05). The hierarchical (AMOVA) showed the

Fig 2. Genetic diversity in the fiddler crab Austruca occidentalis from natural mangroves (whitefilled bars) and mangroves at salt ponds

(black filled bars) in Tanzania, Western Indian Ocean. A: Nucleotide diversity and B: haplotype diversity.

https://doi.org/10.1371/journal.pone.0182987.g002
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Fig 3. Haplotype network of partial mitochondrial cytochrome oxidase subunit I (COI) sequences from the fiddler crab

Austruca occidentalis in Tanzania, Western Indian Ocean. The central circle in the haplotype network is representing 241

individuals. The size of other circles corresponds to the number of individuals as indicated in the right side of the haplotype network.

The haplotype network indicates percentage of haplotypes from natural mangroves (white) and mangroves at salt ponds (black).

https://doi.org/10.1371/journal.pone.0182987.g003

Table 2. Distribution of cytochrome oxidase subunit I (COI) haplotypes of the fiddler crab Austruca occidentalis in Tanzania, Western Indian

Ocean at natural mangrove sites and salt pond sites; N: number of individuals; Nh: number of haplotypes at each site; HN: total number of haplo-

types for natural mangrove sites; HS: total number of haplotypes for salt pond sites; .N and .S are the codes for natural mangrove and salt pond

sites respectively.

Haplotype

Sites Codes N Nh 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Tanga TN 23 6 17 2 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

TS 21 2 20 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Bagamoyo BN 24 1 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BS 22 2 21 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Kilwa KN 18 6 13 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KS 23 3 20 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0

Mtwara MN 24 4 20 2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

MS 24 2 23 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Pemba PN 23 4 18 2 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

PS 24 2 23 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Unguja UN 24 6 19 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

US 24 2 23 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total HN 136 27 111 8 1 2 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1

HS 138 13 130 3 0 0 0 0 1 2 0 0 2 0 0 0 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0182987.t002
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existence of a low but significant genetic differentiation among samples from salt ponds and

natural mangrove sites (Fct = 0.033, P < 0.05). No differentiation was observed among popula-

tions from salt ponds (Fst = -0.009, P> 0.05) and natural mangrove sites (Fst = 0.008, P>

0.27) when they were analysed separately. Analysis through contingency chi-square tables

revealed differentiations in haplotype distribution between subpopulations collected from

mangroves at salt ponds and natural mangroves (χ2 = 383.73, p< 0.001). The pairwise Fst-val-

ues based on COI sequences for all populations were non-significant after applying sequential

Bonferroni correction [66] (Table 4). The principal coordinate analysis (PCoA) indicates per-

centage of variations that is mainly explained by the first axis. For sequences data is 91.89%

and for microsatellite data is 31.74% (Fig 4).

Table 3. Genetic diversity in the fiddler crab Austruca occidentalis from sites at natural mangroves and salt ponds in Tanzania, Western Indian

Ocean based on microsatellites. N: sample size; Na: number of different alleles; Ae: mean effective number of alleles; I: Shannon’s information index; Ho:

observed heterozygosity; uHe: unbiased expected heterozygosity; PA: number of private alleles; Fis: inbreeding coefficient, Ar: Allelic richness; .N and .S are

the codes for natural mangrove and salt pond sites respectively.

Sites Code N Na Ae I Ho uHe PA Fis Ar

Tanga TN 25 3.67 2.09 0.87 0.53 0.49 0.17 -0.12 3.52

TS 27 3.50 2.10 0.85 0.44 0.49 0.00 0.03 3.43

Bagamoyo BN 29 4.17 2.01 0.88 0.55 0.50 0.33 -0.12 3.79

BS 30 3.67 1.90 0.81 0.46 0.46 0.00 -0.01 3.42

Kilwa KN 26 3.83 2.02 0.85 0.67 0.50 0.67 -0.37 3.44

KS 30 3.67 1.86 0.77 0.50 0.45 0.00 -0.10 3.30

Mtwara MN 30 4.17 2.04 0.90 0.69 0.50 0.50 -0.40 3.86

MS 30 3.83 2.06 0.87 0.56 0.49 0.00 -0.16 3.49

Pemba PN 24 4.00 2.41 0.99 0.66 0.57 0.00 -0.24 3.80

PS 30 3.33 1.96 0.83 0.52 0.49 0.00 -0.10 3.14

Unguja UN 25 3.83 2.22 0.90 0.66 0.52 0.00 -0.27 3.60

US 26 3.67 1.96 0.85 0.51 0.50 0.00 -0.05 3.50

https://doi.org/10.1371/journal.pone.0182987.t003

Table 4. Pairwise Fst-values for cytochrome oxidase subunit I (COI) sequence data (bellow diagonal) and microsatellites (above diagonal) in the

fiddler crab Austruca occidentalis from Tanzania, Western Indian Ocean; .N and .S are the codes for natural mangrove and salt pond sites

respectively.

CODE TN TS BN BS KN KS MN MS PN PS UN US

TN - 0.03* -0.02 0.02* -0.02 0.00 -0.03 0.03* -0.02 -0.01 -0.02 -0.01

TS 0.06 - 0.02* -0.01 0.05* -0.00 0.02* 0.04* 0.06* 0.00 0.06* 0.04*

BN 0.13* 0.01 - 0.02 -0.00 0.01 -0.01 0.06* 0.00 -0.01 0.01 -0.01

BS 0.05 -0.02 0.00 - 0.04* -0.01 0.02* 0.04* 0.06* 0.00 0.05* 0.03*

KN -0.03 0.07 0.15* 0.07 - 0.01* 0.00 0.07* -0.01 0.01 -0.01 -0.00

KS 0.02 0.01 0.06 0.01 0.02 - 0.01 0.03* 0.03* -0.01 0.02* 0.02*

MN -0.02 0.02 0.08 0.00 -0.01 -0.00 - 0.05* -0.00 -0.00 0.01* -0.00

MS 0.07* -0.05 0 -0.02 0.09 0.02 0.03 - 0.06* 0.05* 0.06* 0.10*

PN -0.03 0.04 0.10* 0.03 -0.03 0.00 -0.03 0.05 - 0.03* -0.01 0.01

PS 0.06 -0.02 0 -0.05 0.08 0.02 0.01 -0.02 0.04 - 0.03* 0.03

UN -0.02 0.03 0.09* 0.03 -0.02 -0.00 -0.02 0.04 -0.02 0.03 - 0.05

US 0.06 -0.02 0 -0.05 0.08 0.02 0.01 -0.02 0.04 -0.04 0.03 -

P < 0.05, Significant P-values are indicated by* and adjusted P-values after sequential Bonferroni are indicated by grey cells with*.

https://doi.org/10.1371/journal.pone.0182987.t004
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All Tajima’s D and Fu’s Fs test values were negative, and all significant P-values observed

were from the populations of natural mangrove sites. Mismatch distribution analysis and Rog-

ers’ test supported the hypothesis of sudden population expansion (Table 5). The mismatch

frequency distribution curve was unimodal for both populations from salt ponds and natural

mangrove sites (Fig 5).

Analysis of molecular variances of microsatellite data revealed a low but significant popula-

tion differentiations (Fst = 0.019, P < 0.01; Rst = 0.055, P< 0.01). Hierarchal AMOVA results

supported the hypothesis of genetic differentiations among populations at salt ponds and natu-

ral mangrove sites (Fct = 0.02, P =< 0.01). A low but significant differentiation was observed

among populations at salt pond sites based on microsatellite data (Fst = 0.024, P< 0. 05), but

no significant differentiation was revealed among populations from natural mangroves (Fst =

-0.002, P > 0.05). Some populations have significant pairwise Fst-values adjusted through

sequential Bonferroni correction (Table 4). Most of the populations from salt ponds had a

lower effective population size than to natural mangrove populations. The main direction of

migration based on MIGRATE and BayesAss was in most cases from salt pond sites to natural

mangroves (Table 6).

Fig 4. Principal coordinates analysis (PCoA) indicating population genetic differentiation based on

pairwise Fst-values in the fiddler crab Austruca occidentalis from Tanzania, Western Indian Ocean. :

A) COI sequences and B) microsatellites. Circles represent salt ponds and triangles natural mangroves. (TN,

BN, KN, LN, MN, PN, UN) and (TS, BS, KS, LS, MS, PS, US) represent Tanga, Bagamoyo, Kilwa, Lindi,

Mtwara, Pemba and Unguja natural mangroves and salt ponds sites, respectively. The percentage of

variation is mainly explained by the first axis. For sequences data is 91.89% and for microsatellites data is

31.74%.

https://doi.org/10.1371/journal.pone.0182987.g004
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Discussion

Genetic diversity

Both markers used revealed low genetic diversity in most populations of A. occidentalis stud-

ied. Low genetic diversity for this species is also reported along the East African coast, with a

haplotype diversity of 0.21 (0 to 0.68) and nucleotide diversity of 0.04% (0 to 0.13%) [30]. In

that study, lower genetic diversity is associated with historical events of population expansion,

following a period of lower effective population size resulting from a bottleneck effect or

founder event. The low genetic diversity recorded in this study can be explained by the same

factors. The crab A. occidentalis has the lowest genetic diversity of all mangrove crabs studied

so far in the WIO [67]. Despite the low genetic diversity recorded in the present study, the

population from natural mangroves had a higher haplotype diversity compared to populations

from salt pond sites. We found consistent lower allelic richness in populations from salt ponds

compared to natural mangroves. The populations at salt pond sites had a lower observed and

expected heterozygosity than those at natural mangroves sites. The salt ponds and the natural

mangroves for the most of the sites are not far from each other (4 to 18 km), therefore we

assume that the observed differences cannot be due to differences of their geographic location.

The differences observed in allelic richness and heterozygosity are therefore likely to be ex-

plained by environmental stress and unfavourable conditions caused by the salt farming activi-

ties. Lower genetic diversity in populations of Littoraria subvittata is observed at salt ponds in

comparison to natural mangroves at the Tanzanian coast [68]. A recent study has also demon-

strated the negative correlation between heavy metal concentrations in tissues of prawns and

genetic diversity [69]. This implies that anthropogenic activities, such as salt farming in man-

grove habitats of A. occidentalis, can negatively affect the genetic diversity of various marine

species.

The loci C361 and P2D3 deviated from HWE mainly in populations from natural man-

grove sites. The deviation of locus C361 from HWE may be explained by the effects of null

alleles. A deficit of heterozygosity might be an indication for null alleles [70] that was de-

tected only for population from mangroves at salt ponds of Tanga and natural mangroves of

Table 5. Demographic and neutrality parameters based on cytochrome oxidase I (COI) sequences from the fiddler crab Austruca occidentalis

from Tanzania, Western Indian Ocean. SSD: sum of squared deviations, HRI: Harpending’s raggedness index, D: Tajima’s D and Fs: Fu’s Fs,.N and.S are

the codes for natural mangrove and salt pond sites respectively.

Sites Codes SSD HRI D FS

Tanga TN 0.00 0.10 -1.27 -3.79**

TS 0.00 0.66 -1.16 -0.92

Bagamoyo BN NA NA NA NA

BS 0.00 0.68 -1.16 -0.96

Kilwa KN 0.01 0.13 -2.15** -2.82**

KS 0.00 0.37 -1.48 -0.83

Mtwara MN 0.01 0.24 -1.49 -2.38**

MS 0.00 0.70 -1.16 -1.03

Pemba PN 0.00 0.17 -1.68* -3.27**

PS 0.00 0.70 -1.16 -1.03

Unguja UN 0.00 0.16 -1.83* -4.34**

US 0.00 0.70 -1.1593 -1.03

*p < 0.05.

**p< 0.01.

https://doi.org/10.1371/journal.pone.0182987.t005
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Bagamoyo. The deviations of these loci from HWE for other populations may therefore be

explained by other factors, such as inbreeding. Lower allelic richness and genetic diversity is

associated with unfavourable environmental conditions and environmental stress during the

recruitment process [71]. The number of alleles and heterozygosity are also expected to

decrease due to reduction of effective population size [72]. Most populations from salt pond

sites had a lower effective population size compared to natural mangrove sites. The on-going

clearing and selective logging of mangrove trees in these areas reduces the environmental

Fig 5. The observed (bars) and expected (line) frequency of pairwise differences of cytochrome oxidase subunit I sequences from the fiddler

crab Austruca occidentalis in Tanzania, Western Indian Ocean. A. Populations from natural mangroves and B. populations from mangroves at salt

ponds.

https://doi.org/10.1371/journal.pone.0182987.g005
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complexity, alters microhabitats, and is likely to increase predation on this species. The loss

and fragmentation of habitats by humans is suggested to be the source of reduction in popula-

tion size and genetic diversity [73–74]. These factors might result in low dispersal potential

and low connectivity, due to reduced potential for re-colonisation and gene interchanges with

other sources [74].

Population bottlenecks in marine organisms can be caused by unsuitable environments

and predation, which causes mortality during the larval recruitment processes [75]. The habi-

tats of A. occidentalis at salt pond sites are subjected to human influence through clearing and

selective logging of mangroves in order to establish salt ponds and construct water reservoirs.

This might have contributed to unfavourable environmental conditions for larval recruitment,

such as predation and extremes in local microclimate. Predators, including birds and fishes,

are known to have influence on the population distribution of fiddler crabs [76]. Impact of

predation pressure on the rate of evolution of age and size of the wild guppy Poecilia reticulata
was revealed in a period of four to eleven years, or 6.9 to 18.1 generations [77], indicating that

predation can have strong impacts on genetic variation of some species in a short time period.

Population structure and patterns of demographic history

The analysis based on F-statistics is congruent to previous studies, indicating that this species

has extensive gene flow along the East African coast [30, 67]. The star-like haplotype network

is an indicator for a shallow genetic structure. The test for probability of heterogeneity via con-

tingency χ2 tables indicated the presence of differentiations in haplotype distribution between

populations from mangroves at salt ponds and natural mangroves. The population genetic dif-

ferentiation is partly supported by the results of principal coordinate analysis (PCoA). However,

all pairwise Fst-values for mitochondrial data were not significant, while for microsatellite data

some populations from salt ponds and natural mangroves sites were significantly different.

Few significant values were also obtained between populations from mangroves at salt ponds

(Table 4). Previous studies on this species have reported very low significance to non-significant

Fst-values among groups of populations [30, 67]. The differences between the pairwise Fst-values

based on mitochondrial and microsatellite data might be explained by the higher resolution and

statistical power of microsatellite markers in detecting effects of contemporary events.

Table 6. Estimated effective population size and migration rate based on microsatellite data using the programs MIGRATE (mean and 95% confi-

dence interval) and BayesAss (mean and standard deviation) in the fiddler crab Austruca occidentalis from Tanzania, Western Indian Ocean. Θ:

mutation-scaled population size; m: pairwise migration (± standard deviation); .N and .S are the codes for natural mangrove and salt pond sites respectively.

MIGRATE BayesAss

Θ m m

Sites Codes Mean (%) (2.5%, 97.5%) direction mean (2.5%, 97.5%) direction Mean (%)

Tanga TN 366 0.20 7.07 TN!TS 7.47 0.00 14.40 TN!TS 0.4 ± 0.8

TS 223 0.77 3.63 TN TS 7.20 0.00 13.33 TN TS 1.1 ± 1.8

Bagamoyo BN 1898 2.13 10.87 BN!BS 31.16 13.87 48.53 BN!BS 0.9 ± 1.4

BS 222 0.83 3.60 BN BS 43.04 31.47 52.53 BN BS 2.1 ± 3.2

Kilwa KN 1391 3.20 27.50 KN!KS 26.36 26.93 49.07 KN!KS 0.6 ± 1.0

KS 297 1.83 4.07 KN KS 155.05 95.73 140.53 KN KS 0.6 ± 1.3

Mtwara MN 295 1.60 4.23 MN!MS 20.00 1.60 24.80 MN!MS 0.6 ± 1.0

MS 167 0.57 2.63 MN MS 35.97 24.80 46.40 MN MS 0.4 ± 0.8

Pemba PN 238 0.77 4.03 PN!PS 71.82 0.00 8.53 PN!PS 0.3 ± 0.7

PS 177 0.00 5.43 PN PS 13.82 3.20 23.47 PN PS 1.1 ± 1.8

Unguja UN 222 0.77 3.73 UN!US 23.75 0.00 20.53 UN!US 0.7 ± 1.3

US 603 0.83 8.07 UN US 38.48 2.67 24.53 UN US 0.6 ± 1.2

https://doi.org/10.1371/journal.pone.0182987.t006
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All populations from natural mangroves have significant negative Tajima’s D values, except

the populations in Tanga and Mtwara, while all populations from salt pond sites have negative

values that are not significant. In addition, all populations from natural mangroves have signifi-

cant negative Fu’s Fs-values, but all populations from salt ponds have none-significant negative

values. A negative significant value of Tajima’s D is usually an indicator of the presence of evolu-

tionary forces that cause departures from the neutrality of the genetic marker, such as recent

expansion of population size following the retraction event. A negative value of Fs is evidence of

population expansion and is regarded as more powerful than Tajima’s D [56]. The non-signifi-

cant negative Fu’s Fs-values obtained for all populations from salt ponds could indicate constant

sizes, which could mean that salt pond activities have been a reason for stagnant populations.

Seven Indo-Pacific crab species, including A. occidentalis, show clear signals of a recent bottle-

neck. This bottleneck is linked to the reduction of population size due to historical event of

Pleistocene period and mangrove loss or degradation by pollution [67]. The test of the sudden

population expansion model by using the sum of square deviations (SSD) [54] was not signifi-

cant. This implies that the data do not deviate from the model of expansion. The raggedness

index [53] did not reject the hypothesis of the recent population expansion model for all pop-

ulations. We obtained a unimodal mismatch distribution for all populations from natural

mangroves and mangroves at salt ponds, suggesting recent population expansion following

reduction or a bottleneck [54]. The excess heterozygotes observed might be indicating that these

populations are currently expanding [78]. During low sea-level stand species were affected by

population bottlenecks due to loss of suitable habitats, whereas at the end of last glacial period

the rise of sea level resulted in populations expansions through re-colinisation [30, 79]. These

glacial events are well document in high latitudes and islands [80]. However, it has been sug-

gested that during the Pleistocene, the Indian monsoon repeatedly changed in intensity and

phase, and it might have changed oceanic circulation in the WIO [81–82]. These events might

have had impacts on the change in demographic patterns of many marine species. Mangrove

ecosystems, which are the habitat for A. occidentalis, have been reported to have shrunk globally

during the period of low sea-level stands [83]. Although all populations indicated sign of recent

historical population expansion, the effective population size was found to be lower in popula-

tions from mangroves at salt ponds. Human disturbance, including habitat destruction through

clearing and selective logging of mangrove trees, could have caused the decline of population

size, resulting in the lower genetic diversity observed. Suitable habitat availability during settle-

ment and recruitment influences effective population size [84–85]. Habitat fragmentation

results in increased isolation of subpopulations and is always associated with decreases in popu-

lation size [40]. Populations that suffer from reduction of size require proper conservation

plans, because they are most likely to suffer from an increased risk of extinction [86].

Conclusion

Both, mitochondrial and microsatellite markers confirmed that salt pond activities have

impacted gene flow and genetic diversity, indicating that the on-going clearing and selective

logging of mangrove trees have shaped dispersal patterns and local effective population sizes of

A. occidentalis. Genetic diversity and allelic richness are indicators of the long-term potential

for adaptability and persistence of a given species in the habitat [87–88]. The proper manage-

ment option for mangrove sites at salt ponds is restoration of habitats for A. occidentalis
through planting mangroves around the salt pond sites and removing the barriers such as

dykes of abandoned salt ponds to enable water flow. Otherwise, if alteration of habitats

through degradation and fragmentation continues, there is the possibility of driving many spe-

cies to local extinction.
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