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Abstract
Purpose Total kidney volume (TKV) is the most important imaging biomarker for quantifying the severity of autosomal-
dominant polycystic kidney disease (ADPKD). 3D ultrasound (US) can accurately measure kidney volume compared to 2D 
US; however, manual segmentation is tedious and requires expert annotators. We investigated a deep learning-based approach 
for automated segmentation of TKV from 3D US in ADPKD patients.
Method We used axially acquired 3D US-kidney images in 22 ADPKD patients where each patient and each kidney were 
scanned three times, resulting in 132 scans that were manually segmented. We trained a convolutional neural network to 
segment the whole kidney and measure TKV. All patients were subsequently imaged with MRI for measurement comparison.
Results Our method automatically segmented polycystic kidneys in 3D US images obtaining an average Dice coefficient of 
0.80 on the test dataset. The kidney volume measurement compared with linear regression coefficient and bias from human 
tracing were R2 = 0.81, and − 4.42%, and between AI and reference standard were R2 = 0.93, and − 4.12%, respectively. 
MRI and US measured kidney volumes had R2 = 0.84 and a bias of 7.47%.
Conclusion This is the first study applying deep learning to 3D US in ADPKD. Our method shows promising performance 
for auto-segmentation of kidneys using 3D US to measure TKV, close to human tracing and MRI measurement. This imaging 
and analysis method may be useful in a number of settings, including pediatric imaging, clinical studies, and longitudinal 
tracking of patient disease progression.
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Introduction

Polycystic kidney disease (PKD) is a genetic disorder in 
which cysts develop within the kidneys, causing kidneys to 
enlarge and lose function over time[1]. Nine out of ten peo-
ple with PKD have the autosomal dominant form (ADPKD) 
[2, 3]. In ADPKD, cysts develop primarily in the kidneys 
but can also be present in other organs, like the liver. Cur-
rently, there are ~ 140,000 people diagnosed with ADPKD 
in the United States [4]. Over time, kidney and liver volumes 
steadily increase, resulting in renal function decline [5, 6]. In 
particular, renal elasticity is associated with kidney function 
[7]. There is no cure for PKD, but dialysis, kidney transplant, 
blood pressure medication, and surgical removal of cysts are 
treatment options. If diagnosed and monitored at an early 
stage, better treatment options are possible.

Measuring kidney and liver volumes are some of the most 
important biomarkers in quantifying the severity of ADPKD 
and are used in clinical decision making [8–10]. Also, many 
studies found that TKV, along with age, height, and esti-
mated glomerular filtration rate (eGFR) are useful prognos-
tic biomarkers to predict renal function decline [11–13]. Bae 
et al. [14] reported MRI-based kidney volume measurement 
in ADPKD by manually segmenting the slices in kidney 

volume. However, annotating each slice for volume measure-
ment is laborious, and to overcome this, many researchers 
have recently utilized AI for automatic kidney segmentation 
[15–19]. Keshwani et al. [20] used a 3D convolutional neural 
network (CNN) for automated kidney segmentation in CT 
scans. Sharma et al. [16] used a CNN with a visual geometry 
group (VGG) like structure for automated kidney segmen-
tation from the CT dataset of ADPKD. In MR images, Mu 
et al. used a 3D V-Net model for automated kidney seg-
mentation in ADPKD data [21]. van Gastel et al. [22] used 
semantic segmentation for automated measurement of both 
kidney and liver volumes in MR images of patients affected 
by ADPKD. Kline and his group used instance segmentation 
[23] and semantic segmentation [24] for kidney cyst seg-
mentation in T2-weighted MR images of ADPKD patients 
for total cyst volume.

Apart from MRI and CT imaging, ultrasound (US) 
imaging is popular and widely used to diagnose acute and 
chronic kidney diseases [25, 26]. Kuo et al. [27] used 2D 
US images to perform automated classification of kidney 
images using ResNet, to determine chronic disease status 
but did not use segmentation. Mahmud et al. [28] used 
vector graphic detection image analysis for kidney and cyst 
boundary detection from 2D images along with various 
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texture analyses, filtering, and patches to detect kidney 
boundaries from limited data. However, no further updates 
were found with this study on large data, or no develop-
ment was reported by any other group. Imaging features 
computed from US data using deep CNNs improved the 
classification of children with congenital abnormalities of 
the kidney and urinary tract and controls [29]. However, 
the computation of these anatomic measures typically 
involves manual or semi-automatic segmentation of kid-
neys in US images, requiring multiple human annotators, 
increasing inter-operator variability, reducing reliability, 
and limiting utility in clinical medicine. Automatic kidney 
segmentation in US images with AI has not progressed 
recently. US images have irregular scan plane acquisition 
and low-image contrast, making it difficult to segment the 
kidney accurately. Image quality, image size and magnifi-
cation, gain, nonuniform intensity and contrast, and human 
variability in moving the US probe contribute to the chal-
lenges faced in segmenting US images [30]. Having an 
extensive dataset could help overcome the artifacts from 
individual images and result in better model training. With 
a small dataset, data augmentation is a technique used to 
introduce variability in training data, which helps model 
training [31].

Automatic and reliable kidney segmentation from US 
images would improve precision and efficiency in many 
clinical conditions, including congenital renal disease, 
renal mass detection, and kidney stones. Very few studies 
have reported US-kidney segmentation using deep learn-
ing. Wu et al. [32] reported cascaded fully convolutional 
DenseNet for automatic kidney segmentation of 2D US 
images. The mean intersection over union for FC-DenseNet 
was improved slightly with cascaded FC-DenseNet on 461 
images of 68 patients. Yin et al. [33] performed automatic 
kidney segmentation of 2D US images using a pre-trained 
VGG16 model and weights (i.e., a transfer learning-based 
approach) and subsequent boundary distance regression 
(Bnet) and pixel-wise classification with a Deeplab net-
work. The algorithm was trained on 289 images, but this 
study was limited to the largest 2D sagittal image from the 
whole kidney. Because a single 2D image does not produce 
an accurate measurement of kidney volume, particularly in 
a disease-like ADPKD where cysts often produce a very 
irregular shape, a 3D US scan is vital to obtain accurate 
TKV measurements. The variability severely degrades the 
performance of AI models in kidney shape, imaging protocol 
variability, instrument resolution, and imaging field of view. 
Recently, Breysem et al. used 3D US as an alternative to 
MRI for measuring renal volume in children with ADPKD 
and found 2D US measurements had significantly lower kid-
ney volume than the 3D US, and 3D US measurements of 
TKV were close to MRI measurement [34]. Hence, there is 
a need for further development of US-based kidney imaging 

and segmentation to understand the problems and improve 
the performance of the AI models in segmentation.

In this study, to mitigate some of the aforementioned 
issues with 2D images, we acquired 3D US images using an 
electromagnetic tracker attached to the US probe. This tracks 
the position and angle of a probe in space and results in a 3D 
stack of aligned 2D images. TKV was calculated from the 
3D images of the kidneys. We trained a U-Net model to seg-
ment kidneys using 3D US images, allowing us to measure 
TKV automatically. All participants in this study were also 
imaged by MRI, and kidney volume measured using MRI 
serves as the reference standard. TKV measurements using 
AI-empowered 3D US could be an alternative approach to 
where MRI is challenging for diagnosing and monitoring 
ADPKD patients.

Methods and materials

The Institutional Review Board of Mayo Clinic, Roches-
ter, USA, approved this study protocol, and informed con-
sent was obtained from each participant. Patient data were 
anonymized before use. Table 1 shows the demographic 
information of the 22 patients and computed body mass 
index (BMI). Fourteen participants in the study were women 

Table 1  The demographics from the ADPKD study cohort

Study ID Sex Age Height (m) Body Mass 
Index (kg/m2)

PKD_003 M 46 1.89 27.80
PKD_004 M 50 1.81 32.17
PKD_005 F 60 1.66 28.12
PKD_006 M 55 1.91 23.27
PKD_008 F 32 1.63 22.96
PKD_009 M 75 1.72 32.89
PKD_010 F 69 1.63 20.81
PKD_011 F 56 1.65 30.89
PKD_012 F 45 1.63 27.93
PKD_013 M 37 1.75 27.84
PKD_014 F 60 1.60 32.90
PKD_015 F 40 1.69 27.99
PKD_016 F 42 1.65 25.49
PKD_017 M 43 1.88 28.52
PKD_018 F 35 1.71 27.15
PKD_019 M 40 1.78 28.25
PKD_020 F 70 1.75 24.37
PKD_021 M 70 1.86 32.89
PKD_024 F 70 1.56 27.20
PKD_026 F 38 1.62 31.36
PKD_027 F 28 1.66 23.22
PKD_028 F 62 1.65 29.90
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(64%) and eight were men (36%). The mean and median 
age of the study cohort was 51 (min = 28, max = 70) and 
48 years, respectively. The mean and median patient height 
were 1.71 and 1.68, respectively. Five patients had a nor-
mal BMI (i.e., BMI between 18.5 and 24.9 kg/m2), eleven 
patients were overweight (i.e., BMI between 25 and 29.9 kg/
m2), and six patients were obese (i.e., BMI of 30 kg/m2 or 
higher).

Ultrasound imaging

We used axially acquired 3D US-kidney images in 22 
ADPKD patients. Each patient had both kidneys imaged 
three times, resulting in 132 (22 patients × (3 scans of left 
kidney + 3 scans of the right kidney)) image sets. Images 
were acquired with a Philips EPIQ 7 system using the C5-1 
curved linear probe with broadband 1–5 MHz frequency 
range and electromagnetic probe positioning system. 2D 
B-mode imaging was selected for this study. The resolution/
speed settings were adjusted in order to improve the resolu-
tion of images. The time-gain-compensation and image gain 
were optimized per patient, where the image gain ranged 
from 54 to 68%. A freehand sweep with an electromagnetic 
tracker attached to the probe for recording probe orientation 
was used to build a 3D volume stack from 2D cross-sectional 
images of kidneys aligned based on probe orientation. The 
image size was either 256 × 256 or 512 × 512; the frames (Z 
dimension) varied from 300 to 700. The axially acquired 
DICOM format US images were transformed into NIfTI 
with SimpleITK and Python. Semi-automated in-house-
developed software customized for US images was used to 
annotate the kidney at every frame [35]. Two experienced 
readers performed the manual tracing for kidney segmen-
tation on the 3D US images. Reader1 (A.V.G.) performed 
annotations for all the data, whereas Reader2 (H.L.H.) per-
formed annotations on a subset of 54 scans (9 patients × 6 
scans) to measure inter-rater agreement.

Deep learning model

Each image set was zero-padded or cropped to 320 × 320 × Z, 
such that the entire kidney was always fully included in the 
volume. In the scanned sequence, many frames from the 
start and end of the sequence did not contain any data, and 
such blank (zero intensity) frames were omitted in order to 
avoid data imbalance issues. The threshold was chosen to 
include frames that had at least 20% non-zero pixels in the 
frame. The train:validation:test split was 15:2:5 at the patient 
level, resulting in 90:12:30 scans respectively, where each 
scan consisted of a series of 300–700 slices. Data augmenta-
tion, including ± 15° rotation and random elastic deforma-
tion, resulted in a three times increase in training dataset size 
and was performed to introduce variability in training data 

for better model generalization. We observed that random 
flip worsened the model performance, and Gaussian noise 
had minimal or no effect on model performance (and was, 
thus, not used in the final training experiments).

A transfer learning approach was used in this study. The 
architecture and weights from our previously reported 2D 
U-Net model [19] were used to train on the US data for 
kidney segmentation (Schematic of U-Net structure pre-
sented in Supplementary data, Fig S1). A 6-layer 2D U-Net 
model (filters varied from 32 to 1024, kernel size varied 
from (7,7) to (5,5) and then (3,3) at the base layer and gradu-
ally increased back to (7,7) at the top level of decoders) was 
trained to segment the whole kidney in US images. The input 
data shape (3, 256, 256) was provided to the model, and a 
user-created mask on the central slice was used. The sigmoid 
activation was applied to the last layer of the U-Net. The 
learning rate was  10–6, and the loss function was the Dice 
loss. Each model was trained for 200 epochs. The model was 
implemented in Keras with the TensorFlow backend and 
trained on an Nvidia V100 (32 GB memory).

MRI imaging

All 22 patients imaged with the US were also imaged with 
MRI that included 3–4 mm thick slices obtained in the coro-
nal plane with T2-weighting and fat saturation [19]. There 
were no separate groups assigned to one image technique or 
the other. We applied our previously described model [19] 
to all 22 cases as the automated MRI measurement. These 
segmented kidney masks were further quality checked by 
an expert image analyst (A.V.G.). The mask was corrected 
if needed to finalize the segmentation and measure kidney 
volume.

ADPKD classification

The Mayo ADPKD classification tool [36, 37] was applied 
for ADPKD group classification to both the MRI and the US 
images. This tool uses the information of patient age, TKV, 
and height of the patient.

Results

Data processing

US-kidney images have variable intensity, shape, and size, as 
demonstrated in Fig. 1a–d. Unlike MRI and CT, US-imaging 
scans each kidney individually due to probe field of view 
limitations. In some cases, the field of view may not be suf-
ficient for imaging large kidneys (Fig. 1a). The variability of 
kidney measurements in the left and right kidneys for each 
subject was measured as displayed in Fig. 1e. The mean and 
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standard deviation were obtained from three scans from each 
individual kidney.

U‑Net model training and test data evaluation

The U-Net model with pre-trained weights (from the MRI 
model) was trained on 90 scans (15 patients × 2 kidneys × 3 
scans) and validated with 12 scans (2 patients × 2 kidneys × 3 
scans) as demonstrated in Fig. 2. The U-Net model trained 
with transfer learning from pre-trained weights achieved a 
Dice Similarity Coefficient (DSC) on the validation data of 
0.86 (Fig. 2a). The trained U-Net model was used to predict 
kidney segmentations on the hold-out test dataset for further 

analysis. On the test dataset of 30 scans (5 patients × 6 
scans), the model had a 0.80 DSC, 0.67 Jaccard Index, 0.89 
volume similarity (VS), 0.83 Matthews correlation coef-
ficient (MCC), 20.65 average Hausdorff distance with 95 
percentile of maximum distance (HD-95%), and 0.91 AUC, 
respectively. Table 2 has tabulated these parameters as 
mean ± standard deviation from 30 scans along with false 
negatives (FN), and the comparison of model prediction 
against Reader1 and Reader2. The last row compares the 
metric parameters from Reader1 and Reader2.

Further, the DSC was calculated slice-wise to see the 
effect of kidney shape and size contribution in class imbal-
ance and impact on the AI model performance. The slice 

Fig. 1  US images of the kidney. These demonstrate common challenges including a large kidney size, b small field of view, c contrast variation, 
and d centered kidney. e shows the left and right kidney US volume measurements (mean and deviation for each subject

Fig. 2.  2D U-Net model trained with the pre-trained weights a training curve and b loss curve
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number containing the whole kidney was split into 10 
segments. The DSC was calculated for each segment of 
the kidney, as demonstrated in Table 3, for Reader1 vs. 
Reader2 and Reader1 vs AI prediction. The manual anno-
tations and AI-based automated kidney region visualiza-
tions are shown in Fig. 3. The values in bold represent 
that AI performs similar to or better than human tracing 

in slices from the largest area of the kidney.
We also compared our model performance with other 

state-of-the-art U-Net models having backbones of VGG16, 
EfficientNet-B0, DensNet101, and ResNet50, as demon-
strated in Supplementary data, Table S1. We chose these 
base models having trainable parameters close to our 

proposed model, ~ 18 M. The baseline U-Net with various 
backbone models was trained on the same training data and 
validation data for comparison. Pre-trained weights from 
‘imagenet’ were used in training.

Inter‑reader and intra‑scan variability

Two medical imaging analyst experts annotated kidneys 
on 3D US images, which were used to calculate each read-
er’s agreement in kidney segmentation. Figure 4 shows 
the inter-reader correlation and a reader’s comparison 
against AI-predicted kidney volume with Bland–Altman 
correlation methods. The Bland–Altman plot displays the 

Table 2  Model prediction and comparison with Reader1 and Reader2

Mean ± Std Dice Index Jaccard Index FN MCC HD-95% VS ROC-AUC 

Reader1 vs AI 0.80 ± 0.05 0.67 ± 0.07 0.17 ± 0.11 0.83 ± 0.09 20.65 ± 6.58 0.89 ± 0.07 0.91 ± 0.05
Reader2 vs AI 0.79 ± 0.09 0.66 ± 0.11 0.17 ± 0.08 0.82 ± 0.08 19.23 ± 5.88 0.92 ± 0.07 0.91 ± 0.04
Reader1 vs Reader2 0.77 ± 0.13 0.64 ± 0.16 0.21 ± 0.17 0.80 ± 0.13 24.33 ± 12.76 0.86 ± 0.15 0.89 ± 0.08

Fig. 3  A typical example of AI 
model-based whole kidney pre-
diction compared with ground 
truth annotated whole kidney
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Table 3  Dice score at various slices in the kidney

Slice contribution 0–10% (Start) 10–20% 20–30% 30–40% 40–50% 50–60% 60–70% 70–80% 80–90% 90–100% (End)

Reader1 vs Reader2 (DSC) 0.53 0.73 0.82 0.83 0.84 0.82 0.79 0.74 0.68 0.47
Reader1 vs AI (DSC) 0.48 0.74 0.83 0.85 0.85 0.85 0.87 0.85 0.75 0.46

Fig. 4  Inter-reader variability and Bland–Altman correlation among readers annotated kidney volume and versus AI model predicted kidney 
volumes
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differences among measurements on the same scale in per-
centage ((method1 − method2)/mean %), which is useful 
due to the range of variation in kidney volume present 
in data. The first row shows the results for inter-reader 
observations of Reader1 and Reader2 from 54 scans which 
had an R2 of 0.81 in linear regression (Fig. 4a), whereas 
Bland–Altman shows the bias (mean difference) − 4.42%. 
The bias is significant because the line of equality is not 
in the 95% confidence interval. The agreement limits were 
from − 72.04 to 62.20% (Fig. 4d). A subset of 24 scans 
used in the test dataset and have both readers tracing were 
compared in the second-row as Reader1 vs. Reader2, 
reduced the linear regression coefficient to R2 = 0.75 
due to significantly different volume for one scan in a 
small dataset (Fig. 4b), where the bias was 2.85%. The 
agreement limits were from − 46.88 to 52.59% (Fig. 4e). 
The third row compares the Reader1 vs AI model for 30 
scans test data correlation (Fig. 4c, f) where linear regres-
sion had R2 = 0.93 and bias = − 4.12% with the limits of 
agreements from − 54.88 to 46.64% in the Bland–Altman 
analysis.

The interscan variability was calculated by subtract-
ing kidney volume from the mean of three scans and then 
taking the average of the absolute differences, which was 
found to be ~ 56 mL (interscan variability plot Supplemen-
tary data, Fig S2).

MRI vs US correlation

Human-corrected kidney volumes (left and right kidney 
separately) from MRI images were compared with manu-
ally annotated kidney volumes (left, right kidney volumes 
separately) in 3D US images at the patient level. Figure 5 
demonstrates MRI and US measured kidney volumes com-
parisons gave a linear regression coefficient R2 = 0.84 and 
bias of 7.47% with the limit of agreement from − 70.29 to 
55.35% by Bland–Altman analysis.

ADPKD group classification

Mayo Clinic’s ADPKD classification tool [36] was applied 
to all 22 patients to compare US and MRI performance, as 
demonstrated in Table 4. Also, the ADPKD classification 

Fig. 5  Total kidney volume comparison by linear regression and Bland Altman correlation for MR and US methods

Table 4  ADPKD group 
classification and comparison 
between MRI and US 
classification

Manual tracing 1A 1B 1C 1D 1E Total

MRI 3 5 8 4 2 22
US-manual 3 6 7 3 3 22
Test set Patient1 Patient2 Patient3 Patient4 Patient5 Total
MRI 1C 1C 1D 1C 1B 5
US-manual 1C 1E (PLD) 1C 1B (under-segment) 1C 5
US-AI 1C 1E (PLD) 1C 1C 1C 5
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was performed separately by considering the test dataset 
only and compared classification across the US and MRI 
methods. The groups 1A to 1E indicate increasing severity 
of cases in ADPKD classification. In the US method, both 
kidney volumes were added to get total kidney volume and 
then averaged over three observations to consider total kid-
ney volume per patient. Out of 22 patients, both MRI and US 
classified three patients of 1A group in common, whereas 
from US-manual measurement, one extra got added to each 
of 1B and 1C from 1C and 1D, respectively. In contrast, 
one patient measured higher kidney volume by the US and 
shifted from group 1D to 1E. On the test dataset (5 patients), 
the ADPKD classification tool shows good agreement in 4 
patients for US-manual vs. AI prediction. Whereas, when 
comparing the US measurement to MRI measurement, AI 
prediction marginally performed better and closer to MRI 
measurements than manually annotated kidney volumes 
from US groups. Both the groups, manual tracing and AI 
prediction, in the US-based kidney volume measure higher 
volume in polycystic liver disease (PLD) cases due to dif-
ficulty in differentiating the liver from the kidney.

Discussion

Two-dimensional US is difficult to use for kidney volume 
measurement due to variability in how the operator moves 
and holds the probe, resulting in inconsistent image spac-
ing and orientation. However, a recently developed 3D US 
device can be used to measure kidney volume and has the 
benefit of acquiring images with a high temporal resolu-
tion, which limits motion and other artifacts. Still, due to 
field of view limits, only a single kidney can be imaged at 
one time. Such images also have probe sensitivity, intensity 
variation, brightness, and time-gain compensation artifacts 
which must be addressed. For example, Fig. 1e demon-
strates the average kidney volume from three scans, where 
PKD_021 and PKD_024 show a significantly larger right 
kidney than the left kidney. MRI also confirms similar differ-
ences in PKD_024 for left and right kidney volume. The cyst 
development and kidney swelling in ADPKD patients often 
result in increased kidney volume. However, in PKD_021, 
both the US Readers traced the right kidney larger than the 
left, which was contrary to MRI measurements. The image 
quality with intensity and contrast severely affected kidney 
tracing in some US images. This problem could be tackled 
by better handling of image acquisition protocol, modify-
ing probe setting parameters based on patient demographic 
information.

The proposed model was trained with pre-trained 
weights that performed better on the validation data than 
the randomly initialized model. From the state-of-art 
U-Net models, ResNet achieved similar performance to 

our proposed model but needed 1.7 × more parameters and 
more time to train the model. Since pre-trained weights 
were from our previously published model from a large 
dataset of MRI images, 2000 + patients corresponding kid-
ney segmentations, we chose to report the transfer learning 
model and perform prediction on the test dataset. Even 
though the AI model was trained on annotations received 
from Reader1, its performance was equally comparable to 
Reader2 annotations (Table 2). Table 3 demonstrates that 
the Dice score was reduced on the start and end frames 
from the kidney compared to the center frames from the 
kidney. This reduced DSC was primarily due to model 
under-performance where class imbalance was greater 
at the start and end frames in the kidney. Also, the con-
tribution from overfitting (shown by arrows in 3B, False 
positives) resulted in a ~ 2% increase in volume, which 
is significantly smaller than the interobserver annotations 
DSC loss of ~ 23%. The interobserver score measured 
between Reader1 and Reader2 (Table 2) through the DSC 
was 0.77. The primary reason behind Reader’s disagree-
ment was image quality which makes kidney boundary 
detection difficult. Although AI model performance looks 
impressive, we note that this is a small test dataset and 
may further improve with a larger dataset.

Yin et al. [33] reported a superior DSC performance on 
2D US images, also for segmenting a single slice contain-
ing the largest kidney cross section in sagittal view. Further 
Breysem et al. [34] found that the 2D US volumetry was 
prone to underestimation, and 3D US measured more accu-
rate kidney volume and was close to the MRI technique. 
We believe ours is the first study applying deep learning to 
3D US from ADPKD. Further, the AI model results were 
compared to both human annotations and MRI as a refer-
ence standard.

Considering the artifacts in US images affecting the AI 
model performance, manual segmentation comparison on 54 
kidney volume measurements helped understand the inter-
observer variability. The linear regression plot (Fig. 4a) of 
Reader1 and Reader2 displayed an interobserver correla-
tion of R2 = 0.81, likely reflecting the lower tissue contrast 
observed in the US versus MRI [19]. The  R2 coefficient was 
also low when Reader1 and Reader2 were compared on a 
small test dataset (Fig. 4b), mainly because a few observa-
tions significantly deviated. Figure 4c shows linear regres-
sion plots that help understand that Reader and AI predic-
tion are correlated. Furthermore, the  R2 may not be a good 
parameter to characterize performance when a small dataset 
is used. The 2nd column in Fig. 4 displays the Bland–Alt-
man test, and the mean and bias were small when applied on 
a test dataset (Fig. 4e).

The volume of kidneys from the US (left and right kidney 
volumes averaged over three scans) method and MRI method 
were also highly correlated with a value of R2 = 0.84. The 
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Bland–Altman bias of − 7.47% also confirms that the dif-
ferences in US and MRI measurements are small, indicating 
the possibility that US imaging may be used to measure total 
kidney volume if needed for frequent monitoring of kidney 
volumes where MRI is challenging.

The ADPKD group classification tool [37] classified 
patients in ADPKD groups based on age, height, and 
total kidney volumes measured from MRI, US, and AI-
predicted total kidney volumes. When the whole dataset 
of 22 patients was compared for MRI measurement vs 
US-manual traced measurement, one patient (PKD_015 
in Fig. 1e) was classified into a higher risk group based 
on the US, from 1D to 1E. On review of that case, it was 
found that the case was difficult to segment and one of 
the Readers added the volume from some portions of the 
liver (the patient also had polycystic liver disease). Based 
on five patient test datasets, ADPKD group classification 
was not ideal between MRI and AI-US on three patients, 
including one PLD case. The interscan variability (Sup-
plementary data, Fig S2), differences in three scans from 
the same kidney, calculated was ~ 56 mL. This volume has 
contributed to two patients whose kidney volume lies on 
the boundary of the ADPKD group classification thresh-
old, to shift the ADPKD group. So the benefit of margin 
from interscan variability needs to be considered perform-
ing ADPKD group classification from US data.

Furthermore, on the right kidney of a PLD patient 
(PKD_015), AI predicted a 4 × smaller volume than 
Reader1 traced. Interestingly, AI predicted that this lower 
volume was similar to MRI measurement, which indicates 
AI could help correctly trace kidneys and avoid liver inclu-
sion if trained with enough PLD patient data.

In the future, it could be interesting to add data from 
polycystic liver disease to the training data and perform 
segmentation on both kidneys and liver. In general, liver 
volumes are often calculated in patients affected by TKV 
and/or TLV. We believe that 3D US could also be applied 
to acquiring liver volumes, though this is beyond the scope 
of this present study. TKV is a strong biomarker of future 
renal insufficiency in ADPKD [38]. Various imaging tech-
niques (MRI, CT, and US) and post-processing methods 
(stereology and ellipsoid-based measurements) are being 
used to determine TKV [38, 39]. Analysis with stereology 
is time consuming, whereas the ellipsoid method is easy 
for volume estimation. Since the kidney organ is located 
deep in the body, the US technique could easily show arti-
facts in images due to air/fluid/tissue distribution in the 
body. The 2D US images have in general poorer resolu-
tion than MRI. Therefore, MRI is the preferred method 
for accurate measurement of renal volume compared with 
both US and CT. However, recent developments with the 
3D US could help improve results with US imaging. With 
a large dataset, the model performance would improve, and 

3D US imaging may become incorporated into the clinical 
practice for PKD monitoring. Another potential of the US 
method could be in pediatric patients since it would be 
desirable to avoid MRI or CT imaging in that population.

Conclusions

To the best of our knowledge, this is the first study to meas-
ure total kidney volume from 3D US images using deep 
learning. Our method shows promising segmentation per-
formance for auto-segmentation of kidneys and calculating 
total kidney volume, close to human tracing, and measure-
ment. We also compared its performance with MRI, and 
it achieved good performance, suggesting it may be use-
ful in populations where MRI is more challenging, such as 
children.
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