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Two distinct roles are described for Dorsal, Dif and Relish, the three NF-kB/Rel proteins of Drosophila, in the development of
the peripheral nervous system. First, these factors regulate transcription of scute during the singling out of sensory organ
precursors from clusters of cells expressing the proneural genes achaete and scute. This effect is possibly mediated through
binding sites for NF-kB/Rel proteins in a regulatory module of the scute gene required for maintenance of scute expression in
precursors as well as repression in cells surrounding precursors. Second, genetic evidence suggests that the receptor Toll-8,
Relish, Dif and Dorsal, and the caspase Dredd pathway are active over the entire imaginal disc epithelium, but Toll-8
expression is excluded from sensory organ precursors. Relish promotes rapid turnover of transcripts of the target genes scute
and asense through an indirect, post-transcriptional mechanism. We propose that this buffering of gene expression levels
serves to keep the neuro-epithelium constantly poised for neurogenesis.
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INTRODUCTION
The proneural genes of the achaete-scute (ac-sc) and atonal families

encode related transcription factors of the basic helix-loop-helix

family that function as heterodimers together with the co-factor

Daughterless/E2A/HEB/E2-2 [1]. The structure and function of

these proteins is highly conserved throughout the animal kingdom.

They are expressed in the neuro-epithelium during development

and confer neural potential to cells through activation of neuronal

precursor genes that regulate differentiation of neurons.

Single neuronal precursors are generated in a spaced array

within domains of proneural gene expression through Notch-

mediated lateral inhibition. This is a conserved process involving

an indirect auto-regulatory loop whereby the proneural genes

repress their own transcription. Cells chosen to be precursors

sustain high threshold levels of expression and signal to the cells

surrounding them causing them to gradually lose proneural gene

expression [1]. Neuronal precursors move away from the neuro-

epithelium and subsequently proneural genes are re-expressed.

Successive waves of proneural gene expression thus allow the

repeated generation of waves of neuronal precursors. This suggests

that the neuro-epithelium is constantly poised to express the

proneural genes in the absence of the inhibitory signal.

The array of sensory bristles on the Drosophila thorax is a useful

paradigm for understanding the control of neuronal precursor

development [2,3]. In the imaginal disc ac and sc are expressed in

small clusters of cells from which one or two sensory organ

precursors (SOP) are singled out [4,5,6]. High levels of Ac-Sc in

cells chosen to be SOPs activate neuronal-specific genes such as

asense (ase) and senseless (sens) [7,8,9,10,11,12,13].

Culi and Modolell [2] described a regulatory element in the sc

gene, the SOP element, which mediates lateral inhibition. It drives

auto-regulation of sc in the SOP itself and is probably a target for

repression in the inhibited cells. The enhancer bears binding sites

for Ac-Sc/Da (E boxes) and a potential site for repression by the

E(spl) bHLH proteins, targets of Notch signalling (N box). Three

a boxes, motifs resembling the consensus binding sequence for

transcription factors of the NF-kB/Rel family and a T-rich motif

of unknown function were also found. Mutation of the a boxes in

the sc SOP enhancer demonstrated a role for these sequences for

maintenance of transcription in SOPs and for repression in

inhibited cells [2]. This suggests a possible involvement of NF-kB/

Rel proteins in SOP development. Three genes encoding NF-kB/

Rel proteins are present in Drosophila: dorsal (dl), Dorsal related

immunity factor (Dif) and Relish (Rel). All three are involved in innate

immunity and dl is also required for dorso-ventral polarity of the

embryo [14,15].

Toll-1 is known to initiate signalling leading to activation and

nuclear translocation of the NF-kB/Rel proteins in Drosophila

[15,16]. Here we demonstrate a dual role for the three NF-kB/Rel

proteins and one of the receptors of the Toll family, Toll-8, in the

regulation of neurogenesis. We find that the NF-kB/Rel proteins

promote the neural fate in SOPs. Activation of sc via the a boxes in

the SOP enhancer might be direct. In addition, Toll-8 and Relish

act to maintain low levels of expression over most of the epithelium

of the target genes sc, ase and sens, by promoting rapid turnover of

mRNA. This is mediated by a post-transcriptional mechanism

affecting both RNA stability and translation. It appears to involve

a heptamer nucleotide motif present in the coding regions similar

to that described for the indirect regulation by NF-kB of MyoD and

Sox9 in mammalian cells [17]. We discuss the possibility that

Relish regulates steady state levels of expression of genes required

for the neuronal fate, so that the neuro-epithelium of the discs is

constantly primed for neurogenesis.
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RESULTS

Mutants of Toll-8 and dorsal, Dif and Relish display

ectopic bristles at 18uC
The three NF-kB/Rel proteins Dorsal, Relish and Dif are detected

ubiquitously in the imaginal epithelium [2,18]. Since there are

potential binding sites for these proteins in the sc promoter, we

examined mutants of the three NF-kB/Rel genes for perturbations

in the patterns of the large bristles (macrochaetes) of the notum.

Flies homozygous for loss of function alleles of dl, Dif and Rel were

found to display ectopic bristles on the notum in dorsocentral,

scutellar and lateral regions (Figure 1B,C,D). The phenotype is in

Figure 1. Loss-of-function mutants of NFkB/Rel genes display both loss and gain of macrochaetes on the notum. (A), a schematic representation
of a wild-type heminotum, with the medial domain shaded yellow and the lateral domain orange. Large grey circles represent the positions of the
eleven macrochaetes found on each heminotum. (B–D), heminota of flies homozygous mutant for dorsal (dl4/dl1), Dif (Dif1/Dif1) and Relish (RelE20/
RelE20); white arrows indicate ectopic bristles. Below, pie charts represent the percentage of heminota displaying ectopic bristles from a total of 200.
Red sectors indicate the percentage with one ectopic macrochaete, yellow sectors two or more ectopic macrochaetes (p.0.001 when compared with
wild type). (E, F), heminota of Ore-R and dl4/+ animals respectively, showing the lateral notum. Red arrows mark the pSA bristle, which is missing in
a large fraction of dl4/+ (and also dl4/Df(2L)TW119, dl2 dif2 animals) (p.0.001). (G), the percentage of flies trans-heterozygous for various mutant
combinations that display ectopic bristles (p.0.001).
doi:10.1371/journal.pone.0001178.g001
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the form of one or more ectopic bristles per hemi-notum in

a significant fraction of individuals for each genotype (typically

30% of heminota, n = 200 unless otherwise specified). It is

observed in females reared at 18uC and is statistically significant

(p,0.001). The phenotype is not seen at 25uC.

Animals heterozygous for these mutations also display bristle

phenotypes at 18uC. While RelE20/+ and Dif1/+ flies display

ectopic dorsocentral bristles in the medial notum (26% and 8%

respectively), bristles are missing in the lateral notum of dl4/+ flies

(Figure 1G and E–F). In addition, while 32% of heminota of

double heterozygous Dif1/+; +/RelE20 flies display ectopic medial

bristles, this phenotype is suppressed by heterozygosity for dl, so

only 4% of heminota of animals triply heterozygous for dl, Dif and

Rel display ectopic medial bristles. We also recovered imagos triply

homozygous mutant for dl, Rel and Dif. Few animals of this

genotype are viable, but the ten that did survive displayed a wild-

type pattern of bristles. Taken together, the lack of observable

phenotypes in the triple heterozygote and triple null suggests that

the relative stoichiometric ratios between the three proteins are

important in the final outcome on bristle patterning.

We also examined the activity of Toll-8, a member of the Toll-

family of transmembrane receptors that initiate NF-kB/Rel

signalling. A Gal4 insertion in the Toll-8 gene [19,20], MD806,

was identified in a screen for insertion lines reporting gene

expression in the adult thorax [21]. Toll-8 mutants were generated

by imprecise excision of the transposon insertion in MD806. Here

we employ Toll-81, a null allele (Figure S1). Toll-81 mutants are

viable and display a phenotype similar to dl, Dif and Rel mutants:

63% of heminota in homozygous females display ectopic

macrochaetes at 18uC.

Previous work has shown that Dorsal and Dif are sequestered in

the cytoplasm by the IkB factor Cactus whereas Relish has its own

IkB domain [15,22,23,24]. Two signalling pathways allowing

nuclear translocation of these proteins are known to function in

Drosophila. The first involves a phosphorylation cascade and the

release of Dorsal and Dif from Cactus [15,23]. The second

pathway leads to proteolytic cleavage of Relish by the caspase

Dredd to remove the IkB domain [25,26]. Flies mutant for Dredd

were found to display ectopic bristles at 18uC (not shown, 43% of

heminota, n = 200). No involvement of cactus in bristle patterning

could be detected from visible phenotypes in loss-of-function

clones or in over-expression experiments (not shown).

Ectopic bristles were also observed in flies heterozygous for Toll-

8 (10% heminota) and this trait was used to detect interacting

components. The bristle phenotype of flies simultaneously

heterozygous for either DreddEP1412 and Toll-81 (57% heminota),

or RelE20 and Toll-81 (55% heminota), was significantly enhanced

compared to the single heterozygotes (DreddEP1412/+ 12%, RelE20/

+ 26%; Figure 1G). No interaction was detected between Toll-81

and Dif1 or between Toll-81 and dl4 (not shown). These results

suggest a link between Toll-8 and NF-kB/Rel signalling via the

Dredd pathway.

We conclude from these observations that NF-kB/Rel proteins

are active in the imaginal epithelium and that the receptor Toll-8

also plays a role. The mutant phenotypes suggest a function for

Dorsal, Dif and Relish in repression of the neural fate.

Over-expression experiments suggest that NF-kB/

Rel proteins both promote and repress the neural

fate
Ectopic bristles in the loss-of-function mutants are generally

observed close to extant ones, suggesting that they arise from the

proneural clusters of ac-sc expression. Therefore sca-Gal4, which is

expressed in all proneural clusters on the notum, was used to over-

express Rel, Dorsal and Dif.

Over-expression of full-length Rel at 25uC resulted in loss of

bristles in the lateral notum and ectopic bristles in the medial notum

(Figure 2A, B). Over-expression of Dorsal and Dif at 25uC resulted in

a loss of bristles over much of the notum, although the loss is greater

in the lateral notum (Figure 2C, 2G). However, over-expression of

Dorsal at a lower temperature of 18uC also resulted in the generation

of ectopic bristles on the medial notum in the dorsocentral and

scutellar regions (Figure 2E). Note that the Gal4-UAS system used

Figure 2. Over-expression of NF-kB/Rel proteins can result in both
loss and gain of macrochaetes. scabrous[537.4]Gal4 was used to over-
express Relish (A, B) Dorsal (C–F) and Dif (G) in proneural clusters. This
resulted in a loss of bristles in lateral regions (red arrows in B, D, F and
G). Ectopic bristles were present in medial regions of animals after over-
expression of Relish and Dorsal (white arrows in A, E).
doi:10.1371/journal.pone.0001178.g002
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for these over-expression experiments is temperature-dependent:

lower amounts of Gal4 and consequently less over-expressed Dorsal

are synthesized at the lower temperature.

We conclude that the NF-kB/Rel proteins can promote or repress

the neural fate in a region-specific manner and that differences are

apparent between the activities of the three proteins.

Toll-8 expression is down-regulated in sensory

organ precursors
Genetic interactions suggested a role for Toll-8 in NF-kB/Rel

regulation of the neural fate, so we examined the expression pattern

of Toll-8 in the larval wing disc. We employed MD806, a Gal4

insertion in the 59UTR of Toll-8. Toll-8-Gal4 drives GFP reporter

gene expression at very high levels in the lateral halves of the notum

in discs at the third larval instar (Figure 3A,B). In situ hybridization

with a Toll-8 probe revealed a very similar pattern of expression

(Figure 3C), see also [27]. This covers the region where most of the

bristles form, except the dorsocentral and scutellar bristles that arise

just at the border where expression levels fall. Ectopic expression of sc

using Toll-8-Gal4, resulted in the generation of ectopic bristles on the

lateral notum as well as in the dorsocentral and scutellar regions (not

shown). This suggests that Toll-8 is expressed in the medial notum

but that the levels there are much lower. We also used Toll-8-Gal4 to

drive UAS-Flp and obtain mitotic recombination with a cuticular

marker f36a and found labelled cells over the entire notum in these

flies (Figure 3D). This also indicates that Toll-8 is expressed in the

medial notum (or was expressed there earlier in development).

Overall these results suggest that Toll-8 activity is likely to be higher

in the lateral notum. It is noteworthy that the bristle phenotypes seen

after loss or gain of function of NF-kB/Rel gene activity display

differences between the medial and lateral notum.

Significantly, levels of transcription of Toll-8 differ in the SOP

with respect to cells surrounding it. Expression of Toll-8, visualized

with Toll-8-Gal4.UAS-GFP, is gradually excluded from the SOPs

as they arise (Figure 3B, B’). Exclusion from SOPs was confirmed

by double labelling with the SOP reporter A101-lacZ (Figure 3A,

Figure 3. Toll-8 is expressed at varying levels in the disc epithelium and expression is extinguished in the neural precursors. (A–B’), GFP
expression driven by the Toll-8[MD806]Gal4 driver in discs from third instar larvae (A, A’) and white prepupae (B, B’) respectively. Expression is strong
over the lateral notum but is excluded from the sensory organ precursors, which are stained for neuralized activity (A101, anti-b galactosidase; red). At
the third larval instar, expression is clearly missing from the aPA precursor, and by prepupal stages, additional ‘‘holes’’ corresponding to the posterior
supraalar (pSA) and sensilla trichoidea 1 (tr1) precursors are obvious in the lateral notum. (A’) and (B’) are higher magnifications of boxed areas in (A)
and (B). (C), the expression of Toll-8 as revealed by in situ hybridisation with a Toll-8 RNA probe. Expression is strong in the lateral notum. (D), thorax of
a fly of the genotype y f36a abx.f+.Gal4; UAS Flp; Toll-8-Gal4. All MD806-positive cells in these flies simultaneously express flipase which induces high
levels of FRT-mediated recombination. Consequently, all bristles marked with f36a arise from cells expressing Toll-8. As can be seen in (3D), f36a bristles
can be seen even in the medial region of the notum. (E), thorax of a neurGal4.UAS-E(spl)m8 fly showing a complete loss of bristles. (F), thorax of Toll-
8Gal4.UAS-E(spl)m8 fly showing a full complement of bristles, indicating that Toll-8 is not expressed in the precursors.
doi:10.1371/journal.pone.0001178.g003
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A’) and is particularly well illustrated by the anterior postalar

(aPA), posterior supraalar (pSA) bristles and sensilla trichoidea1 (tr1)

precursors in the lateral notum. In late third instar larval discs, GFP

expression fades in the early arising aPA precursor, which can be

seen marked in red in Figure 3A, A’. By white prepupal stages,

additional ‘‘holes’’ in the GFP expression pattern appear at positions

corresponding to the later arising pSA and tr1 precursors

(Figure 3B’). Ectopic SOPs also lose Toll-8 expression: mis-

expression of sc using Toll-8-Gal4 generates several ectopic cells

positive for the neuronal marker A101-lacZ, all of which lose GFP

expression (not shown). Furthermore, whereas mis-expression of

E(spl)m8 using the SOP-specific neur-Gal4 driver results in a complete

loss of notal bristles (Figure 3E), mis-expression with Toll-8-Gal4 is

without effect (Figure 3F), reinforcing the observation that Toll-8

expression is not retained within SOPs. Exclusion of Toll-8 from

neural precursors in the embryo has been previously reported [20].

Expression of Toll-8, visualized in Toll-8-Gal4.UAS-GFP flies, is

retained in the epithelium after pupariation when all of the SOPs

for the large bristles have formed (not shown). The significance of

this, as discussed below, may lie in the fact that a further round of

neurogenesis takes place some hours later, when precursors of the

small bristles arise.

Expression of Toll-8 is non-uniform in the disc epithelium and

transcription is down regulated in the SOPs. If Toll-8 is affecting

the activity of one or more NF-kB/Rel proteins, this would

suggest, by extrapolation, a similar discontinuity between the levels

of NF-kB/Rel proteins in the SOP compared to the cells

surrounding it.

NF-kB/Rel might recruited to the a boxes in the

scute sensory organ precursor enhancer
Is sc a direct target of NF-kB/Rel signalling? The SOP enhancer

of sc (sc-SOPE) [2] contains three consensus binding sites, a boxes,

for NF-kB/Rel proteins (upper cartoon in Figure 4). To examine

NF-kB/Rel-mediated transcriptional regulation of sc we employed

sc-SOPE-lacZ, a construct containing the native SOPE (called SRV-

lacZ in [2]) and sc-SOPEa32-lacZ, a construct in which one of the

a boxes, a3, has been mutated. In wild-type discs sc-SOPE-lacZ is

expressed in all SOPs (Fig 4A), but expression of sc-SOPEa32-lacZ

Figure 4. A protein composed of a fusion of Relish and VP16 can bind to the scute SOP-enhancer and activate transcription in vivo. (A–C),
expression of sc-SOPE-lacZ in wild type (A), Bx-Gal4.UAS-RelVP16 (B) and Bx-Gal4.UAS-ase discs (C). Over-expression of asense results in activation of
the reporter gene over a larger area than over-expression of RelVP16. (D–F), expression of sc-SOPEa32-lacZ (a version of the enhancer construct in
which one of the NF-kB/Rel binding sites, a3, has been mutated) in wild type (D), Bx-Gal4.UAS-RelVP16 (E) and Bx-Gal4.UAS-E(spl)m7VP16 (F) discs.
Expression is decreased in wild-type flies and after over-expression of RelVP16, but strongly increased in the presence of E(spl)m7VP16 whose activity
does not rely on the same binding sites.
doi:10.1371/journal.pone.0001178.g004
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is eliminated in all but four cells (Figure 4D) suggesting this motif is

essential for activation [2].

To test for a direct role of NF-kB/Rel we expressed a chimeric

protein containing full length Relish fused in-frame to the trans-

activation domain of VP16, a potent transcriptional activator. The

Gal4.UAS system was used to express Rel-VP16, but note that

signalling is nevertheless required to process Rel-VP16 and allow

nuclear access. We used Bx-Gal4, which drives expression in the

wing pouch (visualized in Figure 4F, see below). The Bx expression

domain overlaps an area of Toll-8 expression as well as proneural

clusters of ac-sc expression from which sensilla of the wing margin,

dorsal radius and third wing vein arise. sc-SOPE-lacZ staining was

increased in Bx-Gal4.UAS-Rel-VP16 wing discs in a region in the

centre of the Bx-Gal4 expression domain (Figure 4B). More cells

are labelled than in wild-type discs (Figure 4A). In contrast, sc-

SOPEa32-lacZ is only very weakly expressed in Bx-Gal4.UAS-Rel-

VP16 animals, although it can still be detected in more cells than in

the control discs (Figure 4D,E). Therefore Rel-VP16 cannot

efficiently activate ectopic transcription of the SOPE in the

absence of the a3 site.

As a control for this experiment we employed a chimeric protein

comprised of E(spl)m7, a transcription factor that would bind the

intact E or N boxes in sc-SOPEa32-lacZ, and the activator VP16

[28]. Expression of this protein using Bx-Gal4 results in dramatic

expression of sc-SOPEa32-lacZ in most cells of the Bx expression

domain (Figure 4F).

We noted that the ectopic cells with sc-SOPE-lacZ staining in Bx-

Gal4.UAS-Rel-VP16 flies were close to the positions of extant

SOPs (seen in Figure 4A) suggesting that they have arisen from

cells of the proneural clusters originally expressing ac-sc (Figure 4B).

In contrast, when the same Bx-Gal4 driver is used to ectopically

express Ase, a proneural transcription factor that would bind the E

boxes in sc-SOPE-lacZ, a dramatic up-regulation in many more

cells throughout much of the Bx expression domain is seen

(Figure 4C) These include cells outside the areas of ac-sc expression

in the wild type. These results suggest that Rel-VP16 can only

activate the SOPE in the cells that have high levels of Ac/Sc.

We suggest that NF-kB/Rel proteins might be recruited to the

sc SOP enhancer via the appropriate a binding sites and could

therefore directly activate or repress sc expression. Activation in

the sensory organ precursor may require high levels of Ac/Sc.

scute, asense and senseless are ectopically

transcribed in Relish mutants
Toll-8 is expressed throughout the epithelium and is excluded from

SOPs. Further, loss-of-function mutants in Toll-8 and the NF-kB/

Rel-encoding genes bear ectopic bristles. We therefore examined

expression of the neuronal genes sc, ase and sens in these mutants.

We chose to examine Toll-81 and RelE20 mutant discs because of

the strong phenotype of RelE20 and the genetic interaction between

these two mutants.

Two surprising features were observed. First, sc, ase and sens

were seen to be expressed at higher levels in Toll-81 and RelE20

mutants than in wild-type control discs (Figure 5A–I). Samples for

each genotype were fixed, processed and stained under identical

conditions. Staining times were kept short to better visualize

differences in staining intensity. Typically, within 5 minutes of

staining, ase expression was apparent in the SOP cells of mutant

discs, but not the wild-type controls. Second, the neuronal genes

were expressed in significantly broader domains in the mutants.

scute was seen to be expressed in enlarged proneural clusters

(Figure 5A–C). asense and sens, whose expression is usually confined

to the SOP, were globally de-repressed in the mutants and

transcripts for these genes accumulated over much of the disc

(Figure 5D–I). This is unexpected because only a few ectopic

bristles develop in these mutants and ectopic expression of Ase and

Sens in wild-type discs results in the generation of vast numbers of

ectopic bristles. However, the ectopic transcripts were not

mirrored by a corresponding accumulation of the protein products

of these genes. We found that Sens protein is restricted to the SOP

cells (Figure 5J–L). It appears that the de-repressed ase transcripts

in Toll-81 and RelE20 mutants are not translated either (see Figure

S2A–C). The distribution of other neuronal markers such as

Achaete (Ac) (Figure S2D–F) or Hindsight (not shown) was also

confined to the precursors in Toll-81 and RelE20 mutants.

We conclude that transcripts of sc, ase and sens are present both

ectopically and at higher levels in Toll-81 and RelE20 mutants. The

transcripts are not translated, however, and therefore do not result

in the formation of large numbers of ectopic bristles.

The de-repression of target genes in Relish mutants

is mediated by post-transcriptional effects on mRNA

stability
To investigate whether the increased levels of sc, ase and sens

mRNA present in mutant RelE20 discs are a result of increased

transcription or greater transcript stability, we used a heterologous

expression system based on Gal4.UAS activation. A recombinant

chromosome bearing sca-Gal4 and UAS-GFP was placed in trans

with chromosomes bearing UAS-ac, UAS-sc or UAS-ase, either with

or without functional copies of the Rel gene. If the increase in

mRNA in the Rel mutant is due to increased transcription, then no

increase should be possible from a heterologous promoter. If, on

the other hand, the transcripts are stabilized then mRNA from the

heterologous promoter should accumulate in this experiment.

Reverse primers located within the 39UTR of the ectopic

transcripts (see Experimental Procedures) were used to prime

cDNA synthesis and detect transcript levels. Transcripts specific

for ac are not present at higher levels in the mutant, suggesting that

this gene is not subject to regulation by NF-kB/Rel (Figure 6A).

This result also indicates that loss of Rel activity does not have

a significant impact on the expression of sca-Gal4. We detected

enhanced levels of sc and ase transcripts in the RelE20 homozygous

mutant background (Figure 6A). Unexpectedly, GFP transcripts

were also present at much higher levels in the mutant (Figure 6A).

GFP transcripts similarly result exclusively from activity of the

Gal4.UAS driver and therefore cannot be subject to direct

transcriptional regulation by Relish. We conclude that stability of

the ectopic GFP, sc and ase mRNAs is increased in the mutant.

It has been shown that NF-kB can regulate target gene

expression using post-transcriptional as well as transcriptional

mechanisms. Loss of NF-kB signalling causes a increase in

endogenous mRNA levels of MyoD and Sox9 in C2C12 cells, an

effect dependent on a heptamer motif, ACTACAG, present in the

coding sequence of both genes [17]. Examination of the coding

sequences of sc, ase and GFP reveals the presence of a similar, but

slightly modified motif, in which six of the seven nucleotides are

conserved (ACTACA- Figure 6B). Two copies of the motif are

present in the coding region of sc; a single copy is present in both

the ase and sens genes. Notably the motif is present twice in the

coding sequence of GFP. It is also present in other genes involved

in patterning the notum (Figure 6B). Interestingly this sequence is

not found in ac, a fact consistent with the lack of transcript

accumulation in ac mutants.

If the heptamer motif does indeed mediate rapid turnover of sc,

ase and sens transcripts, then mRNA of mutants devoid of this motif

should be stabilized. Examination of existing sc mutants led us to

Neurogenesis and NF-kB/Rel
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one such mutant: scHwUa. scHwUa carries a complete copia element

within the sc coding sequence causing a truncated transcript [29].

We have located the copia insertion to position 904bp within the sc

gene near the end of the coding region. The aberrant transcripts

would therefore retain only one of the heptamer motifs (Site M2,

Figure 6D). Interestingly, scHwUa mutant flies display one or two

ectopic bristles (Figure 6C,E) and furthermore a 5-fold increase in

sc transcript levels [29]. If Relish acts via the heptamer motif, then

double mutant scHwUa RelE20 flies may be expected to display

a more extreme phenotype than that of scHwUa. Indeed scHwUa

RelE20 flies have more bristles than scHwUa Rel+ animals (Figure 6E).

scHwUa RelE20 flies also have more bristles than RelE20 flies

suggesting that Relish is not the only NF-kB/Rel factor involved in

this phenotype. These results suggest a possible role of the

heptamer sequence in transcript stability.

We conclude that Relish acts on sc and ase through a post-

transcriptional mechanism inducing rapid mRNA turnover. The

scHwUa phenotype is consistent with a role for a heptamer motif in

Figure 5. Expression of neuronal genes in Toll-8 and Relish mutants. (A–I), in situ hybridisation with probes for scute, asense and senseless in wild
type and in Toll-81 and RelE20 mutant discs. Each set of three discs was processed in the same way and stained for the same length of time. scute
transcripts are present at higher levels in the proneural clusters and the clusters themselves appear enlarged (A–C). Expression of asense (D–F) and
senseless (G–I) is also much stronger in the mutant discs in bristle precursors, the cells to which they are confined in the wild type. Staining in the
mutants was already strong before any staining in the wild type had become visible. Arrows in (E) and (F) point to the precursors arising from the
dorsocentral cluster and insets in (D) and (G) show SOPs in wild-type discs stained for 40 minutes. In addition, asense and senseless transcripts can be
seen to accumulate ectopically over most of the epithelium at very high levels. (J–L), staining with an antibody against Senseless. The protein is
present only in sensory organ precursors.
doi:10.1371/journal.pone.0001178.g005
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Figure 6. Transcript stability in Relish mutants correlates with the presence of a heptamer sequence in the coding regions of target genes. (A),
levels of heterologous (UAS) achaete, scute, asense and GFP transcripts driven by sca-Gal4 in wild-type (left column) and RelE20 (right column) flies. The
ribosomal RNA RP49 was used as a loading control. Levels of scute and asense but not ac transcripts are elevated in the mutant. In addition levels of
GFP transcript are elevated. (B), a sequence motif similar to that described in Sox9 and MyoD (ACTAGA) is present in scute, asense, senseless and
a number of other genes involved in patterning the notum. The central five core element nucleotides, CTACA, are conserved in all cases. The 39-most
nucleotide, G, is replaced in most cases by a T or an A. The 59-most nucleotide, A, is replaced by a G in three cases (shown in grey). The final base, G, is
mostly substituted by A or T. (C), the sequence of scHwUa is presented. Transcription stops within the copia element whose sequence is given in red.
The two MyoD motifs are outlined in grey; one, M2, is predicted to be absent from the truncated transcript. (D), a photograph of a scHwUa mutant fly
showing the presence of an ectopic dorsocentral bristle (white arrow). (E), pie charts representing the percentage of heminota displaying ectopic
bristles from a total of 200. Red sectors indicate the percentage with one ectopic macrochaete, yellow sectors two or more ectopic macrochaetes
(p.0.001 when compared with wild type).
doi:10.1371/journal.pone.0001178.g006
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the transcribed regions of these genes that is similar to that

regulating transcript stability in MyoD and Sox9 [17].

DISCUSSION

Dual regulation of neural genes by NF-kB/Rel
Our results suggest a dual role for the NF-kB/Rel proteins of

Drosophila in the formation of SOPs (Figure 7). First, they could be

recruited directly to the sc promoter and regulate transcription. The

SOP enhancer of sc, required for auto-regulation of sc in the SOPs,

contains a boxes, consensus sequences for NF-kB/Rel [2]. Culi and

Modolell (1998) obtained evidence for a role of these sequences in

both activation and repression of sc. Expression of Rel-VP16,

a potent transcriptional activator form of Relish, is able to ectopically

activate a reporter gene containing the intact sc SOP enhancer but

not one in which the a3 box is mutated. So activation in this

experimental situation requires the presence of an intact a3 site. The

experiment does not rule out indirect effects, so further work is

required to verify whether activation is direct. We suggest the NF-

kB/Rel proteins participate in activation and repression of

transcription of sc, a hypothesis consistent with dl, Dif and Rel

mutant phenotypes of additional as well as missing bristles. Second,

we describe an unexpected role of Rel in mRNA turnover of sc, ase

and sens, neuronal genes required to specify and/or maintain the

neuronal fate of SOP cells [8,9,10,11,12,13]. In Rel mutants,

transcripts of sc, ase and sens accumulate due to increased transcript

stability. Therefore in the wild type, Relish promotes rapid mRNA

turnover, presumably indirectly through an unidentified transcrip-

tional target. A similar phenotype is observed in Toll-8 mutants,

which furthermore, interact genetically with Rel mutants. Transcripts

for Rel are reduced in the Toll-8 mutant suggesting a role for Toll-8 in

maintaining the levels of Rel transcript (Figure S3). This might be the

reason for the genetic interaction.

A number of differences are apparent between mutants of the

three NF-kB/Rel-encoding genes of Drosophila. Mutants triply

homo- or hetero-zygous have a normal complement of bristles,

while single homo- or hetero-zygous animals have either

additional or missing bristles. This suggests possible opposing

functions for these genes. Furthermore bristle phenotypes due to

loss or gain of function differ in detail between the three mutants.

Together these results point to the importance of the stoichiomet-

ric relationships between the three NF-kB/Rel proteins and raise

the possibility that different Dorsal/Dif/Relish homo- or hetero-

dimers may have distinct binding sites and therefore different

targets [30,31,32]. This merits further investigation.

Figure 7. A model for the role of NF-kB proteins in buffering levels of the neural genes scute and asense. Epidermal cells express high levels of
Toll-8, which promotes high nuclear levels of NF-kB/Rel. Relish activates the transcription of an unknown target gene, whose activity results in the
degradation of scute and asense transcripts. This activity extends throughout the neuro-epithelium of the disc. Once mature precursors are chosen,
they stop expressing Toll-8 and low levels of the NF-kB/Rel proteins might be recruited to the scute SOPE, where they would synergize with the bHLH
protein Scute to activate transcription of high levels of scute.
doi:10.1371/journal.pone.0001178.g007
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The ratio of proneural to NF-kB/Rel proteins might

determine activation or repression of transcription

of scute
If NF-kB/Rel proteins both activate and repress sc, then they are

expected to activate in SOP cells and repress in cells of the

proneural clusters not chosen to be SOPs. We discuss two possible

ways that this could occur. First, activation in the SOP may rely on

high levels of proneural protein and low levels of NF-kB/Rel

protein; conversely repression may require low levels of proneural

and high levels of NF-kB/Rel protein. Notch-mediated lateral

inhibition results in high levels of Sc in the SOP and lower levels in

surrounding cells. Toll-8 expression is excluded from SOP cells

suggesting, that, if Toll-8 affects NF-kB/Rel activity, there would

be lower levels of NF-kB/Rel in SOPs. NF-kB has been shown to

activate transcription even without stimulus if IkB levels are low

enough to allow NF-kB-dependent gene expression in the basal

state [33]. Interestingly, it has been shown that low levels of Dorsal

can act synergistically with bHLH proteins to activate target genes

in the embryo [34]. This depends on direct association of Dorsal

and bHLH proteins and cooperative binding to closely linked

binding sites for the two respective proteins [34,35]. Furthermore

these authors demonstrated cooperative binding for Sc and

Dorsal. In the sc SOP enhancer one of the a boxes is indeed

close to an E box, so perhaps high levels of Sc and low levels of

NF-kB/Rel combine to activate transcription in the SOP. Two

observations are consistent with this hypothesis: Rel-VP16 was

able to ectopically activate sc-SOPE-lacZ only at sites where ac and

sc are expressed and, after over-expression of NF-kB/Rel proteins,

bristles are generally missing on the lateral notum (where Toll-8

levels are high), whereas ectopic bristles are found on the medial

notum (where Toll-8 levels are low).

A second means by which NF-kB/Rel proteins could act

differently in SOP and in non-SOP cells, may be the presence/

absence of co-factors. It has been shown that Dorsal can be

converted from an activator to a repressor by association with the

co-repressor Groucho [36]. This bi-functionality is attributable to

the fact that Dl only weakly interacts with Gro [37]. During

embryogenesis both Cut and Deadringer bind an AT-rich silencer

sequence, AT2, present in target genes of Dorsal and both Dorsal

and Deadringer bind the co-repressor Groucho and recruit it to

DNA [38]. A similar AT-rich sequence (the b box) is present in the

sc SOP enhancer [2]. Furthermore repression of sc by the E(spl)

proteins, targets of Notch signalling in non-SOP cells, is already

known to require the activity of Groucho [2,39,40,41].

Toll-8 and Relish promote rapid turnover of

transcripts of neuronal genes
Transcripts for sc, ase and sens (and GFP) accumulate in Rel and

Toll-8 mutants as a result of increased transcript stability.

Transcript stability correlates with the presence of a six or seven

nucleotide motif in the transcribed sequence of these genes. The

motif is present in sc, ase and sens, but not ac the transcription of

which is unaffected in Rel mutants. The motif is almost identical to

the heptamer in MyoD and Sox9 that is associated with transcript

stability after inhibition of NF-kB/Rel signalling in C2C12 cells

[17]. A sc mutant with a truncated sc transcript lacking one of the

two motifs present in the coding sequence of this gene, has

a phenotype similar to Rel and Toll-8 mutants and an increase in sc

mRNA. Rabinow et al (1993) suggested that increased stability of

the transcripts rather than increased transcription underlies this

phenotype. We note the presence of the heptamer in a number of

genes involved in sensory organ patterning suggesting possible

regulation by NF-kB/Rel of a battery of genes in the imaginal

epithelium. A similar motif is present in other vertebrate targets of

NF-kB/Rel [42]. Post-transcriptional regulation of target genes by

NF-kB/Rel could therefore be an ancient feature common to

Drosophila and mammals and possibly even jellyfish. Sitcheran et al

[17] suggest that an unknown factor, presumably a transcriptional

target of NF-kB/Rel, regulates messenger turnover through

association with this sequence. In Rel and Toll-8 mutants the

accumulated transcripts are not translated. This must be an effect

of the mutants because ectopic expression in wild-type flies allows

translation and ectopic bristle formation.

Promotion of a rapid turnover of transcripts of neuronal genes

presumably does not take place in the SOPs where high levels of

the protein products of these genes are required. Accordingly Toll-

8 expression is extinguished in the SOPs after their formation.

Factors specific to the SOP presumably allow translation of the

transcripts. We therefore suggest that high levels of Relish

provided by Toll-8 in non-SOP cells might be required for post-

transcriptional regulation of neuronal genes.

Maintenance of steady state levels of gene

expression by NFkB/Rel may keep the neuro-

epithelium primed for neurogenesis
In wild-type animals expression of neuronal precursor genes such

as sens and ase is restricted to SOPs where they are activated by

high levels of Ac and Sc [9,10,11]. Our results suggest that they

are in fact expressed over the entire neuro-epithelium but that

mRNA turnover is rapid due to NF-kB/Rel activity. Activation of

ac-sc in proneural clusters would counteract the effects of NF-kB/

Rel to allow selection of SOPs. After selection of SOPs for the

large sensory bristles is finished, Toll-8 expression is maintained in

the epithelium, suggesting that high levels of NF-kB/Rel are still

required for continued transcript turnover. Continuous buffering

of neuronal gene expression presumably continues until the next

round of neurogenesis that takes place after pupariation when

precursors for the small bristles form. Therefore we hypothesize

that NF-kB/Rel plays a subtle role in maintaining steady state

levels of expression of many genes required for neural de-

velopment. The maintenance of low levels of expression of

neuronal genes would keep the tissue poised for neurogenesis that

takes place in repeated rounds. Perhaps low levels of expression of

neuronal genes are characteristic of neuro-epithelia in general.

Conclusions
Our hypothesis concerning the dual role of NF-kB/Rel in

neurogenesis in Drosophila is as follows. The neuro-epithelium of

the imaginal discs expresses neuronal genes. Prior to development

of SOPs, high levels of Toll-8 maintain high levels of Rel and

result in nuclear accumulation of NF-kB/Rel. Through an

unknown transcriptional target(s), Relish promotes rapid turnover

of neuronal transcripts by a post-transcriptional mechanism. This

might be mediated by a specific sequence in the coding regions of

target genes. Activation of ac and sc in proneural clusters by

regulatory proteins of the notal prepattern counteracts the effects

of Relish. After singling out of SOPs by Notch-mediated lateral

inhibition, Toll-8 expression ceases in the SOPs. Reduced levels of

signal uncover a trans-activator function for NF-kB/Rel that,

synergistically with Sc, helps to maintain high levels of sc

expression in the SOP, possibly through direct binding to

consensus sequences in the sc SOP enhancer. The NF-kB/Rel

proteins may also directly repress sc in non-SOP cells of the

proneural clusters. It remains to be seen to what extent each of the

three proteins participates in these two processes.
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MATERIALS AND METHODS

Drosophila culture and stocks
Flies were maintained on standard cornmeal-agar medium at 18uC
and Oregon-R was used as a control. Strains used were: dl1 cn sca1/

Cyo, dl4 pr1 cn1 wxwxt bw1/CyO, Dif1 cn bw/CyO, Df(2L)J4/

Cyo-GFP, Df(2L)TW119/Cyo, RelE20/TM6b (other alleles of Rel

(RelF13, RelF40 and RelKG display a similar phenotype, not shown),

Toll-81/TM6b, DreddEP1412, sc[HwUa] and sc[HwUa]; RelE20.

Strains used for NFkB/Rel misexpression were sca[537.4]-

Gal4.GFP, Bx[MS1096] Gal4, pnr[MD237]Gal4.GFP, Mae-

UAS.6.11-dlUY2278, Mae-UAS.6.11-DifLA00958, UAS-HA-Rel and

UAS-HA-VP16-Rel. lacZ reporter strains used were sc-SOPE-lacZ,

sc-SOPEa32-lacZ and neur[A101]-lacZ. Other strains used for

ectopic expression were UAS-E(spl)m8, UAS-E(spl)m7ACT, UAS-

ac, UAS-sc and UAS-HAase. The genotype y f36a abx.f+.Gal4;

UAS Flp; Toll-8-Gal4 was used to ascertain the extent of Toll-8

expression. See FlyBase for a description of mutants (http://flybase.

bio.indiana.edu/).

UAS-constructs for ectopic expression of haemagglutin (HA)-

tagged Rel were generated by standard techniques. The VP16 TA

domain was PCR-amplified from a fly bearing the Ubx-VP16

fusion, and cloned in frame into pHA-Rel to generate an N-

terminal HA-VP16-Rel fusion.

Mutagenesis
The fly strain MD806 [21] was identified as an insertion in the 59-

UTR of Toll-8 by plasmid rescue and used to generate the Toll-81

deletion by standard P-element excision. Several P[w-] strains were

established and the extents of the deletions were confirmed by PCR.

Primer pair U6 (CTCAGCCACCGCCACCTCAT) and L10

(GGTGACAAGCGGAGAGCATTG) was used to determine the

precise breakpoints of the R5A strain and primer pair U5 (AGCC-

CTCAGCAAGACGGTG) and L5 (AAGATTCCTGGGGGC-

CAGTAC) was used to generate a probe for in situ hybridization.

Bristle scoring
All mutant chromosomes used for the scoring were placed over

either CyO-GFP (Chr II) or TM6b,Tb (Chr III) chromosomes and

animals of the appropriate genotypes were selected as Non-GFP or

Non-Tb individuals. Triple null animals were selected as Non-

GFP, Non-Tb animals and confirmed by single-fly genomic PCR

using primers specific for dorsal (DLf1 AGGGTCCAGCAGTT-

GATG, DLr1 TGCTTGTGGACATCCGTG), Dif (DIFF1

CCAGCATGGAGTTGAATGG, DIFR1 GATCTCGGTGTT-

CCTGTAG), Rel (Rel5 CCAACCTTAATCTCCGAG, Rel9

AATATGCGTGTGCGAGCG). The unrelated third chromo-

some gene delilah (Dei1 GATCTGAATGACATGGCC, Dei2

CGGCCTGTATTAGTTCGT) was used as an independent

control.

Females grown at 18uC were examined for ectopic bristles and

200 hemithoraces were scored for each genotype, except dl4/dl1

(146 hemithoraces). Statistical analysis was performed using

Student’s T-test. Pie charts were generated using Microsoft Excel.

Histochemistry and immunolabelling
Primary antibodies used included Anti-GFP-Alexa 488 (Molecular

Probes), anti-Senseless (Bellen lab), anti-bgal 40-1a, anti-Achaete

and Anti-Hindsight (DSHB). Secondary antibodies coupled to

Alexa-488, Alexa-546 and Alexa-647 (Molecular Probes) were

used. Fluorescence images were taken with a Leica microscope

using FW4000 software. Images were processed with Adobe

Photoshop.

In situ hybridization
Samples were fixed overnight in 4% formaldehyde and then

processed for in situ hybridization using standard techniques. Full-

length cDNA clones of sc and ase and a 1kb PCR-amplified

fragment of sens were used as templates to generate DIG-labelled

RNA probes. All samples were processed in identical fashion. The

experiments were repeated at least 4 times.

Ectopic expression assay
sca[537.4].GFP, UAS-ac, UAS-sc and UAS-HA-ase second-chro-

mosome insert stocks were established individually with RelE20 on

the third chromosome. Gal4.UAS crosses were set up simulta-

neously as the Gal4.UAS; RelE20 crosses. 10 wandering larvae

were collected for each pair and processed for semi-quantitative

RT-PCR. RNA was extracted using TRIzol reagent (Life

Technologies) and 200ng of this RNA was used for reverse

transcription using gene-specific reverse primers and Super-

ScriptTM II RNAseH2 Reverse Transcriptase (Life Technologies).

Total RNA was treated with DNAse I to remove possible

contaminating genomic DNA. Transcripts of the ribosomal

protein RP49 were used as RNA loading controls. PCR

amplification using gene-specific forward and reverse primers (25

cycles) was performed using Taq DNA polymerase (Roche) on an

Eppendorf Mastercycler. Since the amplified transcripts repre-

sented a mixture of endogenous and ectopic RNA, we repeated

the reverse priming with primers located in the SV40 tail of the

UAS constructs. Subsequent PCR using gene-specific primers then

resulted in the exclusive amplification of ectopic (UAS) transcripts.

Primers used were SV401 CCGGTAGGTAGTTTGTCC,

SV402 GGGGCCTTCACAAAGATC, RP49-59 ATGACCAT-

CCGCCCAGCATAC, RP49-39 TTACCTCGTTCTTCTTGA-

GAC, Acf1 GCTTGCAGAAAGTTCTTCATG, Acr1 GTTTT-

TTTCAGGTCGTCCTG, Scf1 CCATGTCATCGAGTGTGC,

Scr1 ACTGTGACTGCTGGACTC, Asef3 GGCACAACCAG-

CAGAATC, Aser3 CTTCTTGAATCCGGGAAG, Gfp1 AG-

GAGAAGAACTTTTCACTG, Gfp2 CCCTTGTTAATA-

GAATCGAG

The scute gene from the HwUa allele was amplified using primers

Scf1 (CCATGTCATCGAGTGTGC) and Copiar1 (GTGCTG-

GTGTTGCAGTTG). This PCR fragment was sequenced and

the exact breakpoint of the copia insertion was established.

SUPPORTING INFORMATION

Figure S1 Recovery of a null allele of Toll-8. The insertion in

MD806 maps 160bp upstream of the site of initiation of

transcription and 640bp upstream of the translation start site

and so was used to generate Toll-8 mutants by imprecise excision

(A), several mutant lines were established and the extents of the

deletions were confirmed by genomic PCR. Several primer pairs

spanning the length of the Toll-8 gene and its upstream sequences

were used to test the R5A strain and a 1.8kb U6L10 fragment

normally spanning 4kb in wild-type flies was cloned and sequenced

to confirm the extent of the deletion. This mutant strain was found

to have a deletion of 2.24kb in the Toll-8 gene and was renamed

Toll-81. (B), Toll-81 flies lack detectable transcript as judged by in

situ hybridization with a U5L5 probe (C) and are predicted to be

protein-null due to the absence of the usual translational start site.

Found at: doi:10.1371/journal.pone.0001178.s001 (0.29 MB TIF)

Figure S2 The protein products of neuronal precursor genes are

confined to sensory organ precursors in Toll-8 and Relish mutants.

The neuronal-specific reporter gene sc-SOPE, lacZ is found in

a normal complement of precursors in wild type (A), Toll-81 (B)
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and RelE20 (C) mutants. sc-SOPE-lacZ contains three E-boxes,

which are binding sites for bHLH proteins such as Scute and

Asense. Over-expression of ase in wild-type animals leads to

ectopic expression of sc-SOPE-lacZ, presumably due to generation

of functional Ase protein (see Figure 3C). However, the ectopic

expression of ase observed in the NF-kB mutants does not

generate a corresponding global overexpression of sc-SOPE-lacZ

(A–C), leading to the conclusion that Ase function in these discs is

still confined to the SOPs. Staining with an antibody against

Achaete shows a pattern of expression in the normal numbers and

positions of the bristle precursors in wild type (D), Toll-81 (E) and

RelE20 (F) mutants.

Found at: doi:10.1371/journal.pone.0001178.s002 (0.63 MB TIF)

Figure S3 Toll-8 is required to maintain transcription of

Relish.Relish transcripts are reduced in Toll-81 homozygotes (A),

so Toll-8 may affect transcription of Relish. However, over-

expression of Toll-8 in Gal4-C765.UAS-Toll-8 does not lead to

a concomitant elevation in levels of Relish transcripts (B), indicating

that the role of Toll-8 may be confined to maintenance of Relish

transcript levels.

Found at: doi:10.1371/journal.pone.0001178.s003 (0.08 MB TIF)
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