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Purpose. To illustrate a data-driven deep learning approach to predicting the gene responsible for the inherited retinal disorder
(IRD) in macular dystrophy caused by ABCA4 and RP1L1 gene aberration in comparison with retinitis pigmentosa caused by EYS
gene aberration and normal subjects. Methods. Seventy-five subjects with IRD or no ocular diseases have been ascertained from
the database of Japan Eye Genetics Consortium; 10ABCA4 retinopathy, 20 RP1L1 retinopathy, 28 EYS retinopathy, and 17 normal
patients/subjects. Horizontal/vertical cross-sectional scans of optical coherence tomography (SD-OCT) at the central fovea were
cropped/adjusted to a resolution of 400 pixels/inch with a size of 750× 500 pix2 for learning. Subjects were randomly split
following a 3 :1 ratio into training and test sets. /e commercially available learning tool, Medic mind was applied to this four-
class classification program. /e classification accuracy, sensitivity, and specificity were calculated during the learning process.
/is process was repeated four times with random assignment to training and test sets to control for selection bias. For each
training/testing process, the classification accuracy was calculated per gene category. Results. A total of 178 images from 75
subjects were included in this study. /e mean training accuracy was 98.5%, ranging from 90.6 to 100.0. /e mean overall test
accuracy was 90.9% (82.0–97.6)./emean test accuracy per gene category was 100% for ABCA4, 78.0% for RP1L1, 89.8% for EYS,
and 93.4% for Normal. Test accuracy of RP1L1 and EYS was not high relative to the training accuracy which suggests overfitting.
Conclusion. /is study highlighted a novel application of deep neural networks in the prediction of the causative gene in IRD
retinopathies from SD-OCT, with a high prediction accuracy. It is anticipated that deep neural networks will be integrated into
general screening to support clinical/genetic diagnosis, as well as enrich the clinical education.
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1. Introduction

Inherited retinal disorder (IRD) that has been lacking ef-
fective treatment is a leading cause of blindness in developed
countries [1–5], affecting around 1 in 3000 people world-
wide. /e successful identification of the causative genes for
retinal dystrophies with next generation sequencing tech-
nologies has increased the number of associated genes and
disease-causing variants; to date, over 250 genes and 300
genes and loci have been identified (RetNet: https://sph.uth.
edu/retnet/sum-dis.htm). Emerging treatment approaches,
such as gene replacement therapy, pharmacological agents,
regenerative therapies, retina prosthesis, and others, have
increased the therapeutic potential for IRDs [6, 7].

Recently, large cohort studies have provided powerful
information to determine clinical manifestations of IRD,
such as fundus appearance and morphological findings,
and characteristic morphological features caused by spe-
cific genes in macular dystrophy are well established [8–14].
For instance, typical cases with ABCA4 retinopathy show
disruption of photoreceptor layers with thinned sensory
retina at the macula, and cases with RP1L1 retinopathy
demonstrate blurring of photoreceptor ellipsoid zone (EZ)
and loss of photoreceptor interdigitation zone (IZ)
[8, 11, 15–22].

On the contrary, it has been challenging to make a di-
agnosis at general ophthalmology clinics without IRD
specialists since detailed and specific phenotypic assessment
is unavailable because of the limited information due to the
rarity of IRD. Recently, applications of artificial intelligence
(AI) including deep neural network have been increasingly
developed for screening/predicting several common retinal
diseases from fundus images or spectral-domain optical
coherence tomographic (SD-OCT) images [23–28]. How-
ever, such characterization/classification using automatic
image analysis methods has not been developed in orphan
retinal diseases.

/e purpose of our study was to illustrate a data-driven
deep learning approach to predict the causative genes of IRD
in macular dystrophy caused by ABCA4 and RP1L1 in
comparison with retinitis pigmentosa caused by EYS gene
aberration and normal subjects.

2. Materials and Methods

/e protocol of this study adhered to the tenets of the
Declaration of Helsinki and was approved by the Ethics
Committee of the participating institutions: National In-
stitute of Sensory Organs (NISO), National Hospital Or-
ganization, and Tokyo Medical Center (Reference number:
R15-037). A signed informed consent was obtained from all
patients.

For the purpose of this study, two most prevalent genes
for macular dystrophies and one most prevalent gene for
retinitis pigmentosa were selected from the dataset of Japan
Eye Genetics Consortium (JEGC): proportion of ABCA4
retinopathy, RP1L1 retinopathy, and EYS retinopathy were
5.5%, 8.5%, and 15.9%, respectively.

In total, 75 patients/subjects with molecularly confirmed
IRD or no ocular diseases have been ascertained from the
JEGC database [11]: 10 patients with ABCA4 retinopathy, 20
patients with RP1L1 retinopathy, 28 with EYS retinopathy,
and 17 normal subjects. SD-OCT images are obtained with
three OCT devices (Cirrus HD-OCT; Carl Zeiss Meditec,
Dublin, CA, USA, Spectralis OCT; Heidelberg Engineering,
Franklin, MA, USA; Swept Source OCT DRI OCT-1 At-
lantis, Topcon Corporation, Tokyo, Japan).

Horizontal and vertical cross-sectional scans of SD-OCT
at the central fovea of both eyes were cropped and adjusted
to a spatial resolution of 400 pixels/inch with a size of 750 ×

500 pix2 for deep learning. Four gene categories were defined
based on the clinical and genetic diagnosis; ABCA4, RP1L1,
EYS, and Normal (Figure 1). After preparation of SD-OCT
images for four gene categories, patients/subjects were
randomly split following a 3 :1 ratio into training and test
sets.

/e commercially available deep learning web tool,
Medic Mind (https://www.medicmind.tech/), was applied to
this four-class classification program [29]. /e classification
accuracy, sensitivity, and specificity were calculated during
the learning process. /e process was repeated four times
with random assignment of subjects to training and test sets
to control for selection bias, given the relatively small sample
size. For each training/testing process, the classification
accuracy was calculated per gene category.

3. Results and Discussion

A total of 178 images from 75 patients/subjects with IRD/
Normal were included in this study. /e detailed training
and test results of deep learning performance in prediction
of causative genes in IRD are presented in Table 1.

/e mean training accuracy of the four repeated ex-
periments was 96.9% and ranged from 90.6% to 100.0%./e
mean sensitivity was 100% for ABCA4, 88.1 (66.7–100%) for
RP1L1, 97.7 % (90.9–100%) % for EYS, and 100% for
Normal. Sufficient training accuracy over 66.7% was ob-
tained. /e mean test accuracy of the four repeated ex-
periments was 90.3%, ranging from 82.0% to 97.6%. /e test
accuracy per gene category was 100% for ABCA4 and ranged
from 66.7 to 87.5% for RP1L1, 82.4 to 100% for EYS, and 73.7
to 100% for Normal according to the four repeated
experiments.

/e test accuracy of ABCA4 and Normal was consid-
erably higher than that of RP1L1 and EYS, which suggests
overfitting. Four (10.5%) out of 38 with an original diagnosis
of RP1L1 were classified as EYS, two (5.3%) with RP1L1 were
classified as Normal, and one (2.6%) with original RP1L1
was classified as ABCA4 (Figure 2). Two (3.6%) out of 56
with an original diagnosis of EYS were classified as ABCA4,
two (3.6%) with original EYS were classified as RP1L1, and
two (3.6%) with EYS were classified as Normal.

/e potential efficacy of the automatic screening/
diagnostic system of IRD from SD-OCT has been illus-
trated. To the best of our knowledge, this is the first report of
utilizing deep learning technology in retinal orphan disorders.
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Since IRD exhibits strong gene-characteristic morpho-
logical features which are less influenced by environmental
factors, these present an ideal application of AI to assist
medical diagnosis. Furthermore, in general, deducing IRD is
not hard at general ophthalmology clinics, as the family
history, specific chief complains, and symmetric findings are
unique; complex diagnosis, therefore, with such de-
mographic information and AI-guided assessment for SD-
OCT could assist properly identifying patients with IRD.

Application of AI in common diseases such as diabetic
retinopathy and age-related macular degeneration manifests
huge impacts/effects on improvement of medical care and
saving the cost. /is study further supports the extended
utility of AI in relatively common IRD (covering 30% of total
IRD), which has a huge impact not only on ocular diseases
but also on other orphan disorders.

Interestingly, the predicted classification of ABCA4 and
classification of Normal were highly accurate in this study,
while there were still some difficulties in classifying RP1L1
and EYS retinopathies. /is may be because the charac-
teristic features of RP1L1 retinopathy with blurring of EZ
and loss of IZ are hard to be detected from image analysis,
and the disrupted zone of some EYS retinopathy might lie
outside of the observed field in SD-OCT images.

/ere are several limitations in this study. /e cohort size
of this study was relatively small both in control and affected
groups, and target ethnicity was only Japanese, in which larger
cohort studies with data from various ethnicities could

expand the potential utility of our approach. In our study,
comparison analysis of the variation in diagnoses by human
and AI prediction was not performed due to the limited data
resources, which could delineate the usefulness and weakness
of our approach. /ere are limitations to AI classifiers which
are trained to only distinguish between a finite number of
predefined classes for which we have sufficient training data.
However, as we know, there are over 300 genes that can cause
IRD; therefore, the four-class classifier we have developed
here cannot be usefully applied in practice to predict a gene
from an SD-OCT of a patient with a novel gene diagnosis. It
would however be expected that our algorithm would return
probabilities close to 25% (1/4) if presented with an SD-OCT
which does not fit any of the four classes. Instead, another
more clinically applicable approach may be to train several
one-or-rest classifiers to distinguish one gene from all others.
/ese could then be applied successively to an SD-OCT to
assess which gene diagnosis is the best fitting. However, this
would require training several classifiers and would require a
sufficient number of cases for each gene classifier, which
might not be possible for the rarer IRDs. /ere is also a
current interpretability limitation to AI classifiers which use
deep learning. /is field remains an active research area, and
we intend to explore approaches such as saliency and oc-
clusion maps to highlight what parts of an SD-OCT are
important to the classification decision.

Our approach could be extended to other retinopathy-
associated genes/loci, of which they are over 300. /e

(a) (b)

(c) (d)

Figure 1: Spectral-domain optical coherence tomographic (SD-OCT) images of four categories in prediction of causative genes in inherited
retinal disorders. For the purpose of this study, two most prevalent genes (ABCA4, PR1L1) for macular dystrophies and one most prevalent
gene (EYS) for retinitis pigmentosa were selected from the dataset of Japan Eye Genetics Consortium. Characteristic morphological features
are demonstrated in each spectral-domain optical coherence tomographic (SD-OCT) image. ABCA4 : disruption of photoreceptor layers
with thinned sensory retina at the macula. RP1L1 : blurring of photoreceptor ellipsoid zone and loss of photoreceptor interdigitation zone at
the macula. EYS : disruption of photoreceptor layers with thinned sensory retina at the paramacular with relatively preserved structure at the
macula. Normal: normal retinal structures.
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challenge lies in obtaining sufficiently large training datasets
for the rarest forms of IRD and in distinguishing similar
morphological changes within the same mechanism group/
cascade (e.g., generalized rod dysfunction, generalized cone
dysfunction, and confined macular dysfunction). Further
comprehensive studies in larger cohorts, in combination with
other phenotypic modalities such as fundus appearance,
fluorescein angiography, visual fields, and electrophysiolog-
ical findings, and imaging performed at different time points
in the progression of disease should improve the performance
of these prediction algorithms.

4. Conclusions

/is study highlighted a novel application of deep neural
networks in the prediction of the major causative genes
(30%) in IRD retinopathies from SD-OCT, with a mean
prediction accuracy of 90%. It is anticipated that deep neural
networks will be integrated into general screening to support

clinical diagnosis, suggest a causative gene to guide genetic
screening, as well as enrich clinical education of orphan
retinal disease.
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