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Abstract

Phylogenomic approaches to the resolution of inter-species relationships have become well established in recent years.
Often these involve concatenation of many orthologous genes found in the respective genomes followed by analysis using
standard phylogenetic models. Genome-scale data promise increased resolution by minimising sampling error, yet are
associated with well-known but often inappropriately addressed caveats arising through data heterogeneity and model
violation. These can lead to the reconstruction of highly-supported but incorrect topologies. With the aim of obtaining a
species tree for 18 species within the ascomycetous yeasts, we have investigated the use of appropriate evolutionary
models to address inter-gene heterogeneities and the scalability and validity of supermatrix analysis as the phylogenetic
problem becomes more difficult and the number of genes analysed approaches truly phylogenomic dimensions. We have
extended a widely-known early phylogenomic study of yeasts by adding additional species to increase diversity and
augmenting the number of genes under analysis. We have investigated sophisticated maximum likelihood analyses,
considering not only a concatenated version of the data but also partitioned models where each gene constitutes a
partition and parameters are free to vary between the different partitions (thereby accounting for variation in the
evolutionary processes at different loci). We find considerable increases in likelihood using these complex models, arguing
for the need for appropriate models when analyzing phylogenomic data. Using these methods, we were able to reconstruct
a well-supported tree for 18 ascomycetous yeasts spanning about 250 million years of evolution.
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Introduction

Phylogenomic methods have become a standard approach to

resolving species phylogenies. Classic molecular systematic meth-

ods rely on one or a few genes that are considered to be

phylogenetically informative such as ribosomal RNA or mito-

chondrial genes. In contrast, genome-wide analysis tries to utilize

the maximum amount of information encoded in multiple

genomes to reconstruct inter-species relationships [1]. By com-

bining data from different parts of the genomes we try to minimize

the effect of sampling error which is encountered when a small

number of characters (e.g. single genes) is analyzed and which can

affect phylogenetic reconstruction.

While phylogenomic approaches surpass these stochasticity

issues, they are often hampered by other sources of error. Those

include between-gene heterogeneity in the evolutionary process,

accuracy of multiple sequence alignments, gene- and taxon-

sampling and gene duplications and losses that can all result in

conflicting signal (see [2] for an in-depth review). In addition to

methodological problems, processes such as independent-lineage

sorting and horizontal gene transfer can lead to the most likely

gene tree being incongruent with the species phylogeny, adding

‘‘biological noise’’ [3]. In theory, the the majority of these issues

are equally problematic for single-gene phylogenetics (but see [2]).

Between-gene heterogeneity however is specific to phylogenomic

studies is the focus of this study.

In a classic phylogenomics study encompassing 106 genes from

seven species of yeast, Rokas et al. [4] concluded that a supermatrix

analysis, where all individual gene alignments were concatenated

into a ‘‘superalignment’’ and analyzed using a standard evolu-

tionary model, could give a confident species tree where individual

analysis of the genes failed to find a congruent solution. It is well-

known, however, that heterogeneities in the evolutionary process

within single genes, such as different substitution rates across sites,

can markedly affect phylogenetic reconstruction (e.g. [5], [6], [7]).

So in order to gain maximum profit from the increased amount of

data, which can only be expected to increase heterogeneity as data

from different regions of the genomes are included, it is necessary

to use appropriate models that deal with variations in the

evolutionary processes across different loci and between different

species.

As increasing amounts of data from yeasts and other organisms

are becoming available, it is an appropriate time to consider

whether supermatrix methods are still practical and reliable when

applied to larger datasets like those that we are able to assemble

today. We have investigated this, and generated a phylogeny that

is robust to the effects of between-gene variation, by revisiting a

classic problem in yeast phylogenomics.
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Considerations with the supermatrix approach
There are a number of issues that can influence the accuracy of

phylogenetic reconstruction in general. The most well-studied

among those is probably across-site rate variation [8] which is

typically accommodated by adding gamma-distributed rates to the

evolutionary model [9]. Patterns of substitutions between different

residues are also known to differ depending on their physiochem-

ical properties and placement within the protein structure. Those

differences are accounted for by increasingly complicated models

of nucleotide substitutions such as those used in this study and by a

variety of amino acid replacement matrices (e.g. [10–12]) as well as

mixture models (e.g. [13]). In addition to variation in space,

variation of the evolutionary process in time such as site-specific

rate variation across lineages, referred to as heterotachy [14] can

adversely affect the outcome of phylogenetic reconstruction.

Whilst some solutions towards accommodating those processes

are beginning to appear (e.g. [15], [16]), they remain less well

understood and are computationally expensive. Other issues that

are difficult to account for per se include compositional bias [17]

and mutational saturation that can lead to long branch attraction

artifacts [18].

Seeing that the effects of those factors are already apparent even

in single-gene studies, they can only be expected to gain in impact

when data from multiple genomic regions are being analysed.

Even when we account for processes such as different rates across

sites, concatenation and subsequent supermatrix analysis using an

evolutionary model with a single set of parameters for the entire

dataset is assuming homogeneity, or rather a ‘‘constant heteroge-

neity’’, of the evolutionary process.

This is highly unlikely to hold and it has been shown that

systematic errors resulting from the model violations mentioned

above can be exacerbated by concatenation to the extent where

highly-supported but incorrect topologies are recovered [5–7]. A

number of treatments to mitigate such effects have been proposed,

e.g. increased taxon sampling to break up long branches and

thereby reduce the effect of multiple substitutions [1]; the removal

of fast-evolving species, genes or sites as those are suspected to be

most prone to accumulate non-phylogenetic signal [7,19,20]; and

recoding of data as purines and pyrimidines only (RY-coding) for

nucleotides [21] or according to functional categories for amino

acids, to reduce compositional bias [20]. Although these measures

seem to work in some cases (e.g. [20]), they are treating the

symptoms of the problems, not the causes. Typically they discard

potentially informative parts of the data and it is unclear in what

way this affects the accuracy and robustness of inferences.

We prefer to address heterogeneity issues by using more

sophisticated models to fit our data, aiming to retain all useful

information rather than discarding parts of the data to fit the

models being used. Partitioned analysis in which parameters of the

evolutionary model are estimated separately for each partition (in

our case, each gene) in the dataset is a solution whose efficacy has

recently been demonstrated in studies on simulated data [22] as

well as empirically in a study of the branching order at the base of

the mammals [7]. The term ‘supermatrix analysis’ often refers to

the simple concatenation approach, in this paper we will use it to

refer to all such approaches and distinguish these levels of

complexity by denoting them as either ‘‘concatenated’’ (all

partitions treated equally) or ‘‘partitioned’’ (subset of the sites

treated differently).

Mixture models also provide means for addressing heterogene-

ities in the data by using different substitution matrices (e.g.

[13,23]) or different sets of branch lengths [15] for different pre-

defined or learned partitions in the dataset. They are however

computationally expensive for large datasets. Partitioned models,

which are essentially an extreme case of mixture models, are

computationally more feasible due to the ability to easily

parallelize computation and are likely to scale well and we thus

decided to focus on those.

Yeast phylogenomics
The ascomycetous yeasts have been the focus of many smaller

[24–27] and larger [4,19,21,28–33] multigene studies. While the

smaller studies cited encompass a large range of species, they

incorporate only a handful of purposely sequenced genes in their

supermatrix analyses and thus add relatively little extra data. The

first study attempting larger scale was conducted by Rokas et al. [4]

with 106 genes, focussing on the relationships within the

Saccharomyces sensu stricto species only. Fitzpatrick et al. [29] extended

this by using a slightly larger dataset (153 genes) and a wider

phylogenetic range across the Ascomycota. More recent studies

[30,33] further increased the number of genes and species studied,

analysing concatenated datasets of 531 and 1137 genes in 21

species respectively.

With the exception of the studies presented in [25], [28], [26]

and [27] all supermatrix analyses mentioned above have been

carried out in a concatenated manner. Some (e.g. [4]) do not

address systematic error at all; others try to account for non-

phylogenetic signal simply by removal of fast-evolving sites or by

RY-recoding [19,21,29]. As mentioned earlier, however, those

treatments are not well-suited for a comparative analysis and do

not directly address heterogeneity issues between the concate-

nated genes. In order to examine the species tree for 18

ascomycetous yeasts in the light of such potential heterogeneities

and to investigate how more data contribute towards solving

more difficult phylogenetic problems, we have extended the

well-known phylogenomics study of Rokas et al. [4] by

considering 10 additional species. This increased the diversity

to a range of species that shared their last common ancestor

about 250 million years ago while approximately trebling the

number of genes to 343. This represents a phylogenomic dataset

of a scale that is more typical of the problems that are studied

today. While this number is smaller than the number of genes

studied in previous studies [30,33], we have aimed to collect a

dataset of high quality by omitting genes belonging to large gene

families which are prone to spurious orthology assignments,

especially when the annotation of some of the genomes included

is of low quality [34].

Furthermore we want to examine the effects of more

sophisticated models accounting for both intra- and inter-gene

heterogeneity of evolutionary dynamics, especially with regards to

the conclusions drawn by Rokas et al. [4], who claim to have

obtained high-confidence results from rather simplistic analysis. It

is known that over-simplification can lead to over-confidence

[35,36] and it is interesting to see if those conclusions hold for

more complex datasets and analyses such as ours.

The nucleotide sequences of the 343 genes were analyzed both

individually and as a supermatrix. We explored the signals

present in the data when analyzed as single genes and determined

the impact of model choice. We examined the validity of using a

supermatrix analysis on a dataset of this scale and investigated

more sophisticated maximum likelihood (ML) analyses, account-

ing for heterogeneities between the genes while considering the

entire dataset. Furthermore we were able to achieve robust

estimates of controversial regions of the phylogeny using

thorough modeling of inter-gene heterogeneity in supermatrix

data. Analysis of the 343 genes’ amino acid sequences confirmed

these results.

Yeast Phylogenomics
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Methods

Data collection and preparation
The core of the species we selected for analysis were the eight

species that were included in the Rokas et al. [4] study. We

considered 10 additional, more divergent, ascomycetous yeasts

including the well-studied pathogenic fungus Candida albicans and

the distantly related Yarrowia lipolytica as an outgroup [37]. Primary

analyses were performed on nucleotide coding sequences. In order

to reinforce the results obtained with the nucleotide dataset in

concatenated and partitioned supermatrix analyses, we repeated

those using amino acid data.

We obtained orthologs from the Fungal Orthogroups Repos-

itory (FOR) at the Broad Institute [38] which contains orthology

assignments of protein-coding genes for 14 out of the 18 species

considered in this study. The orthology assignments available in

FOR are results of computational synteny-asissted homology

reconstruction [38] but also incorporate curated homology

assignments from the yeast gene order browser YGOB [39] and

are therefore more robust to erroneous grouping of paralogs due

to reciprocal gene loss. We screened FOR for groups of

orthologous genes (‘‘orthogroups’’ hereafter) with exactly one

representative in each of the species studied that were included in

FOR, resulting in an initial list of 1148 orthogroups.

For the purpose of mapping those orthogroups to the remaining

four species that were not included in FOR we used the amino acid

sequence of the representative S. cerevisiae protein for each

orthogroup to search against the remaining four genome sequences

using tblastn [40]. In order for an orthogroup to be considered for

further analysis we required it to be complete, i.e. containing all 18

species, as well as sufficiently divergent in order to avoid the

possibility of unknowingly analyzing paralogous sequences and

thereby introducing bias. The last point was addressed by further

tblastn searches against the respective protein annotations using the

S. cerevisiae member of each orthogroup. If each of the respective

orthogroup members was found to be the best hit in its genome and

its blast score was at least twice that of the next match the

orthogroup was considered sufficiently divergent.This filtering step

led to a reduction in the number of orthogroups to 629.

Within each orthogroup, the amino acid sequences were

mapped to the corresponding genomes and their nucleotide

sequences were extracted if we could find an exact match to the

respective genome sequence. We again filtered the orthogroups by

requiring nucleotide sequences for all 18 species to be present,

further reducing the set of orthogroups to 357. This represents a

large reduction in the number of orthogroups and was mainly due

to the Candida albicans genome release used in this study (Assembly

20) which we later discovered was a superposed ‘‘mosaic’’ haploid

assembly of the previous diploid assembly (Assembly 19). A final

six orthogroups were removed due to convergence problems in

phylogenetic analyses (see below).

Upon release of the current version of FOR (release 1.1), which

included updated annotations for Saccharomyces kluyveri and Lodder-

omyces elongisporus, we reexamined the orthogroups we had collected

for analysis. Overall, we found changes in orthology assignment in

14 orthogroups which were updated accordingly, and a further

seven orthogroups that were no longer in agreement with the

conditions outlined above were removed from our analysis.

The amino acid orthogroups were aligned using Mafft version

6.24 [41]. Regions of potentially low quality in the alignments

were removed using Gblocks version 0.91b [42], using default

parameters apart from the minimum number of sequences for a

flank position which was set to 10; the minimum block length, set

to 5; and gaps were allowed for half the sequences. Arguably,

trimming alignments in this manner may also discard potentially

useful information but we considered this necessary to avoid

introducing conflicting signal through misalignment. We used

BLAT [43] to map the trimmed alignments to their respective

genomic location, to create the nucleotide alignments of the

coding sequences used in all further analyses.

We consider these data collection and filtering procedures to be

stringent, and used them in order to avoid introducing any

confounding sources of error whilst trying to be as inclusive as

possible. The trimmed nucleotide and amino acid alignments used

in this study are available on request.

Evolutionary Models
We tested an array of combinations of evolutionary models

(with varying degrees of complexity) and partitionings of our data,

summarized in Figure 1. The Jukes-Cantor model (JC; [44]), being

the simplest of all those evolutionary models, assumes equal

nucleotide frequencies and no difference in rate between

transitions and transversions. The Hasegawa-Kishino-Yano model

(HKY; [45]) parameterizes the different nucleotide frequencies (p)

and includes a rate ratio parameter (k) for the ratio of the rates of

transition and transversion substitutions. Finally, the general time

reversible model (REV; [46,47]) includes parameters for the

different nucleotide frequencies (p), as for HKY, as well as

exchangeability parameters (sij ; [48]) for every possible type of

substitution (also referred to as the exchangeability parameters a–f

in the PAML package [49]). Among-site heterogeneity in the rate

of evolution was modeled using a discrete gamma distribution (+C
with parameter a; [9]) and six rate categories.

Supermatrix analyses were performed using a range of nested

models, each increase in complexity allowing for more amongst-

genes heterogeneity. Here, REV was chosen as the basic model of

evolution (see below) and we successively added a discrete gamma

distribution and separate categories for the different codon

positions to allow for the differences in the evolutionary process

experienced between the first, second and third codon position.

Partitioning of codon positions (see Note a in Figure 1) was

carried out using the ‘‘Mgene’’ options implemented in baseml

from the PAML package [50]. G0 is the simplest of those options,

introducing parameters for different rates at each codon position

in the form of branch length scaling factors (c). G2 and G3

additionally estimate separate nucleotide frequencies or separate

exchangeability parameters for each codon position, respectively

(pk or sk
ij for k = 1, 2, 3); G4 estimates separate nucleotide

frequencies, exchangeability parameters and different rates (pk, sk
ij ,

c). Finally G1, the most general option, estimates separate

nucleotide frequencies, rate ratio parameters and different non-

proportional branch lengths (blk) for each position.

To address between-gene heterogeneities, partitioning by genes

was performed with both unpartitioned genes (rows 1 and 2 in

note b; Figure 1), and in addition to partitioning by codon

positions (rows 3 to 7 in note b; Figure 1). Due to the capabilities of

available software and the computational cost involved, we could

only carry out the partitioning between genes by calculating

likelihoods individually for each gene and then summing over the

trees tested, treating genes entirely independently: this equates to

Mgene option G1. The most complicated model thus estimates

separate branch lengths, nucleotide frequencies and exchange-

ability parameters for each codon position in every gene as well as

a separate a for each gene in the dataset.

Amino acid analyses were carried out using he WAG and LG

models of evolution [10,11] with a gamma distribution (again

using six rate categories).

Yeast Phylogenomics
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Single-gene analyses
We used ML phylogenetic methods for all of our analyses due to

their power and ability to explicitly model different evolutionary

patterns both within and between genes [51]. Gene trees were

built using Leaphy 1.0 [52]. We estimated trees using the JC,

HKY and REV nucleotide models of evolution (Figure 1, ‘‘Single

genes’’ rows). Rate heterogeneity among sequence positions was

modeled using a gamma distribution [9]. In order to assess

confidence in the individual nodes of the tree we performed non-

parametric bootstrap analyses with 100 replicates each [53].

Supermatrix analysis
We chose baseml [50] to perform the supermatrix analyses of

our dataset due to the wealth of models it implements. As baseml

lacks sophisticated tree search algorithms, we specified a candidate

tree set for exhaustive analysis (CTS1; Supplementary Data S1)

based on prior knowledge about the evolutionary relationships in

some parts of the phylogeny (see below).

Figure 2A shows the ‘‘backbone’’ species tree of the 18 yeasts we

studied. The three major clades shown in different colors in

Figure 2A are stably recovered by sequence analysis and are

further supported by other shared genomic features, namely the

2:1 syntenic correspondence of the ‘‘post-WGD’’ species (green) to

the ‘‘pre-WGD’’ species (blue) [39] and a change in the genetic

code, translating the CTG codon into serine instead of leucine on

the lineage leading to the Candida clade (red; [54,55]). These well-

accepted relationships are shown fully resolved, whereas regions of

uncertainty in the phylogeny are collapsed into polytomies. CTS1

initially included all trees found by resolving all the polytomies

shown in the tree into all possible arrangements. In order to keep

the number of topologies manageable, we initially resolved the

relationship between Candida glabrata and Saccharomyces castellii as

shown in Figures 2B and 2C, resulting in 3150 topologies. We then

ran an initial analysis using the partitioned REV+C+G0 model (see

Figure 1) that was found to be a good model for supermatrix

analysis of nucleotide data (as described below). In order to test

whether the possible resolution shown in Fig. 2D need be further

considered, we identified the 500 best-scoring topologies from

these analyses, modified those to incorporate the resolution shown

in Fig. 2D and performed further ML analysis using the same

model. Based on this analysis, we excluded the possibility of C.

glabrata and S. castellii branching as sister species (Figure 2D) due to

consistently very low likelihoods for those trees (results not shown).

Both nucleotide and amino acid analyses were carried out on a

concatenated as well as a partitioned form of the data using the

CTS1 and the evolutionary models described in Figure 1

(‘‘Supermatrix’’ rows). Bootstrap analyses were performed using

the RELL method [56] with 1000 samples for all of the above

analyses.

Model and tree comparison
The likelihood ratio test (LRT, [57]), a widely-used statistic for

model selection, was used to perform hypothesis testing between

two nested models. In addition to LRTs we also calculated the

AIC scores [58], allowing for the comparison of non-nested

models [59]. Because our sample size was small in comparison to

the number of free parameters (n=kv40) we used AICc, the

second order approximation of the AIC score, for our tests [60].

As additional parameters for partitioned models are added for

each partition rather than the entire dataset, we calculate the

Figure 1. Evolutionary models used and the number of parameters estimated per model. The number of parameters for partitioned
analyses is based on the dataset size of 351 genes, where each parameter is estimated separately for each gene. a is the shape parameter of the
gamma distribution, bl are the branch lengths, k and sij are the rate ratio parameters (see Methods) and p are the nucleotide frequencies. When the
Mgene options in baseml are used, c represents two scaling factors for proportional branch lengths at different codon positions and the ‘‘k’’
superscript indicates that in these models, those parameters are estimated separately for each codon position. The area shaded in red (note a)
indicates partitioning by codon positions, blue (note b) indicates partitioning by genes and purple indicates partitioning by both codon positions and
genes.
doi:10.1371/journal.pone.0022783.g001
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penalty term on a per-partition basis:

AICc~{2lnLz2kz
X

partitions i

2ki(kiz1)

ni{ki{1
ð1Þ

where lnL is the maximized log-likelihood of the data, ki is the

number of parameters estimated for partition i with k~
P

i ki,

and ni is the sample size (number of alignment positions) for

partition i with n~
P

i ni.

The AIC score is known to favor parameter-rich models under

some conditions while the BIC score [61] is generally considered

to be more conservative [60,62]. In order to obtain a conservative

estimate of model-fit we repeated model testing using the BIC as

detailed in the Supplementary Text S2.

In order to gauge the heterogeneity inherent in our dataset, we

examined the distributions of estimates of two parameters included

in our models and the average GC content across alignments.

These estimates were taken from our single-gene analyses under

the REV+C model of evolution, which was found to be optimal in

single-gene analyses (see below). The average transition/transver-

sion ratio R [51] for a gene is given by:

R~
(sTCpT pCzsAGpApG)

(sTApT pAzsTGpT pGzsCApCpAzsCGpCpG)
ð2Þ

where pi are the nucleotide frequencies and sij are the

exchangeability parameters as defined by the REV model [48].

Considering the distributions of R and a, the shape parameter of

the gamma distribution [9], over all genes presents a way to

display the diversity of the parameterization of the same model for

different genes and hence heterogeneity between them. Similarly,

the differences in GC content between genes reflect an aspect of

between-gene heterogeneity that is ignored when the supermatrix

is analyzed using a single parameterization.

We measured the difference between estimated trees using the

normalized version of the Robinson-Foulds (RF) distance [63].

Results and Discussion

Single-gene analyses
The influence of model choice on gene tree reconstruc-

tion. To investigate the impact of model choice on tree

reconstruction we analyzed the 343 gene nucleotide dataset

using the JC + C, HKY + C and REV + C models of evolution.

We present only results for models including gamma-distributed

intra-gene rate heterogeneity since these models were always

significantly preferred (results not shown). When we examined

how often the ML trees for a gene using the different models

were identical, we found the topologies recovered using the

HKY + C and REV + C models to be the same for about 47%

of the genes. In contrast, the number of identical topologies

recovered when REV + C results were compared to JC + C

Figure 2. Species considered in this study and their phylogenetic relationships. A: ‘‘Backbone’’ species tree based on well-accepted
phylogenetic relationships and secondary genomic features (see Methods). Branches colored in green indicate the post-WGD clade, blue the pre-
WGD clade and red the CTG clade. B–D: Alternative resolutions recovered for the post-WGD clade.
doi:10.1371/journal.pone.0022783.g002

Yeast Phylogenomics
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results was much smaller, with the same ML tree obtained for

just 8% of genes. Similarly, JC + C and HKY + C analyses

resulted in 9% of shared trees. This discrepancy was also

detected when we investigated the degree of differences between

the trees recovered by the different models for a given gene. On

average, the normalized RF distance (RFN ) between the

REV + C and the HKY + C topologies was 0.08 whereas

RFN between REV + C and JC topologies was 0.27.

Examination of the bootstrap support for conflicting nodes in

alternative trees recovered by different models showed few

strongly supported conflicts when comparing the REV + C and

HKY + C topologies (see Supplementary Figure S1C), in line with

recent results by [64] who found the differences between trees

constructed with alternative well-fitting models to be of little

importance. The support for conflicting nodes between REV + C
and JC + C trees is markedly higher (Suppl. Fig. S1B). The

increase in congruence and the decrease in well-supported conflict

when more complex models are used both show that choosing a

better model improves results and that it is important to choose a

model that best fits the data.

Figure 3. Heterogeneity of parameters estimated across single genes. A: ts/tv ratio (R) and B: gamma-distribution shape parameter a,
estimated on the ML topology for each of 343 genes (see Methods).
doi:10.1371/journal.pone.0022783.g003
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Best-fit models. We used hierarchical LRTs to determine

the optimal model for each gene. HKY+C was always found to be

better than JC+C and REV+C was found to be the best-fitting

model for all of the 343 genes studied. We consequently focussed

on REV+C as the model for analysis of our nucleotide data.

Nevertheless, even with the best available models there remain

discrepancies that can affect downstream analyses, as is shown

next.

Large amounts of incongruence among the single-gene

datasets. We now concentrate on the results of analyzing the

single-gene datasets using the optimal model found for each gene

(see above). We found very large amounts of incongruence within

the set of ML trees recovered. In total we obtained 336 distinct

ML topologies for the 343 genes: in other words, a different

phylogeny of the 18 yeasts for almost every individual gene. The

mean pairwise RFN distance among the 336 topologies is 0.54. So

whilst they are clearly more similar to each other than 336

randomly drawn trees of the same size (Pv0:0001 from 10000

simulations; mean RFN distance ~0:93, std. dev. ~0:0006), it still

means that on average the gene trees for any two genes differ by

16 unique bipartitions.

The analysis of single genes proved inconclusive in our case and

we were unable to derive a species phylogeny supported by the

individual gene phylogenies. Incongruence among gene trees is not

specific to our dataset but instead is found in a large fraction of

studies comparing single-gene phylogenies [65]. Even though it is

as yet unclear how much incongruence between gene trees in a

genome is ‘‘normal’’, the level of incongruence we have

encountered (i.e. 336 phylogenies from 343 genes) is surprising.

In order to confidently resolve inter-species relationships we need

a way of combining the data in a sensible manner. Supermatrix

analysis promises resolution of conflict where individual analyses

fail.

To illustrate the heterogeneity across the single-gene datasets

and thereby speculate about the validity of a concatenation

approach for further analysis we investigated distribution of the

transition/transversion ratio R (Fig. 3A), a, the shape parameter of

the C distribution used to model among-gene rate variation

(Fig. 3B) and the average GC content (Fig. 3C) for each of the

genes. Each of these measures demonstrates a potential source of

inter-gene variation in evolutionary dynamics that we were able to

account for in supermatrix analysis using partitioned models (see

Figure 1). We used the parameter estimates of each gene under the

REV+C model of evolution as calculated by baseml.

The lower and upper 95% percentiles of R are 1.48 and 2.81

respectively while the full range of R is large, extending from 1.30

to 4.22. This is similar to previously compiled distributions of R

over a range of different genes [66]. Similarly, 95% of the

estimates of a fall between 0.34 to 0.81 while again the full range

extends from 0.25 to 1.03, showing that variation between genes in

rate heterogeneity across sites can also be considerable. GC

content follows a similar trend, with lower and upper 95

percentiles at 38% and 47% average GC content respectively.

The level of variation for all three of the examined parameters,

although not extreme, is considerable and it is currently unclear

how much of between-gene heterogeneity is sufficient to result in

model violation when genes are concatenated.

In order to assess whether extreme values of the distributions of

R and a are simply the result of noisy parameter estimation we

investigated their distribution with respect to alignment length and

standard errors. Although there is a weak association, as would be

expected, it does not appear to account for the extreme ranges of

these distributions (see Supplementary Text S1; Supplementary

Figure S2).

The number of distinct topologies recovered in single-gene

analyses underlines the need for phylogenomic methods to distill

the shared ‘‘historical’’ signal between the genes analyzed. At the

same time, the level of heterogeneity encountered between the

genes when examining three key parameters of the optimal

evolutionary model suggests that a simple concatenation super-

matrix approach might not be valid and complex models are

needed to analyze a dataset containing this much variation.

Supermatrix analysis
Complex data require complex models. We performed

supermatrix analyses using a range of different models and partitions

of increasing complexity, allowing for amongst-gene and between-

gene heterogeneity (Fig. 1, Table 1). The optimal model was

determined using LRTs where applicable and AICc as well. The

order in which LRTs for the different Mgene options were performed

is as follows; G0 - (G2,G3) - G4 - G1. G2 and G3 are not nested and

can thus not be tested against each other in a LRT. The results of this

are shown in Table 1. The most comprehensive model, partitioned

REV+C+G1, was found to be optimal for our supermatrix –

reflecting the complexity of the signal encoded in these data.

(Comparisons using the more conservative BIC differ very slightly–

see Supplementary Text S2; Supplementary Figure S3.)

Model testing and the choice of an appropriate model proved to

be important in our case, because the ML tree again changes

depending on which model is used (Table 1). Both different rates

across sites (+C) as well as different rates at each codon position

(+G0) influenced which tree was found to be the ML tree.

Interestingly, as more parameters are free to vary at different

codon positions the likelihood increases but the ML topology

remains the same, reinforcing our confidence in having found a

good species tree (see Table 1).

It is also noteworthy that the bootstrap support across the ML

trees recovered using the overly-simple REV and REV+C models

(Suppl. Fig. S4, trees A and B) is high and thus it is not acting as a

reliable indicator when trying to assess the confidence for trees

recovered in our analyses. In general, large amounts of data can

give over-confidence in the result obtained when there is model

mis-specification and, in particular, in cases of over-simple models

[35]. Great care should be taken to find the best available model

for any given dataset.

Partitioned analysis outperforms concatenated analysis.

All models we tested were implemented both using a conventional

concatenation approach where a single parameterization of the

evolutionary model is used to analyze the entire dataset, as well as

more sophisticated partitioned analysis where parameters are

estimated for each partition (in this case genes), thus allowing for

more amongst-genes heterogeneity.

Partitioned analysis consistently outperformed concatenated

analysis independently of the model of evolution used (Table 1;

Figure 4). LRTs were highly significant and the difference in AICc

between partitioned and concatenated analyses is substantial for all

models, representing a major improvement in model fit. In contrast

to results obtained with a mammalian dataset [7], the use of

partitioned versus concatenated analysis had no effect on which

topology was found to be optimal in the nucleotide analyses – a poor

choice of model (e.g. REV or REV+C) still leads to a sub-optimal

tree, even if partitioned analysis is used. Model testing using BIC

confirmed those results (see Supplementary Information).

Amino acid analyses. Amino acid-level analysis are less

prone to mutational saturation and the effects of base composition

variation between different genome sequences that may affect

nucleotide data [19]. Although appropriate nucleotide-level

models should be able to account for such effects, in addition to
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analyzing the nucleotide dataset we also investigated supermatrix

analyses on the translated amino acid sequences. We used the

WAG+C model [10] as well as LG+C [11] to perform

concatenated and partitioned analyses of CTS1 using the codeml

program from the PAML package [50]. The LG+C model was

preferred by LRT and the AICc criterion. Again we found the

partitioned model to outperform the concatenated model, with

significant improvements in likelihood confirmed by both LRT

and AICc (Table 1; Figure 4). (The alternative BIC criterion

disagrees in this one case, see Supplementary Text S2, but this

does not affect the proposed ML topology.) The proposed ML

topology was found to be identical across all partitioned and

Table 1. ML trees and test statistics for model tests performed on the supermatrix dataset.

Concatenated Partitioned

Model ML tree DAIC P(LRT) ML tree DAIC P(LRT)

REV A 990359 - A 872007 -(0*)

REV+C B 431437 0* B 315551 0*(0*)

REV+C+G0 C 283288 0* C 155540 0*(0*)

REV+C+G2 C 279792 0* C 146131 0*(0*)

REV+C+G3 C 162718 0* C 30691 0*(0*)

REV+C+G4 C 144273 0*/0* C 7156 0*/0*(0*)

REV+C+G1 C 123756 0* C 0 0*(0*)

WAG+C C 74186 - C 25394 -(0*)

LG+C C 52235 - C 0 -(0*)

ML trees and test statistics for model tests performed on the supermatrix dataset. Models used are as in Figure 1. LRTs were performed between the model considered
and the next-smallest nested model. Models with Mgene option G4 were tested against both G2 and G3 models. DAIC is the difference in AICc between a model and
the best-fitting model. Partitioned models were also tested against their concatenated version (in brackets). Significant P-values (v0.001) are indicated by a star. Trees A
and B are shown in Supplementary Figure S4.
doi:10.1371/journal.pone.0022783.t001

Figure 4. AIC score profiles for supermatrix analyses, differentiated by evolutionary model and type of analysis. Partitioned analysis
(light colors) consistently outperformed concatenated analysis (dark colors). The choice of a partitioned vs. concatenated model does not affect
which tree was found to be optimal when analyzing nucleotide data (green) as well as amino acids (blue). The ML topology obtained using the
optimal model for both nucleotide and amino acid data is the same (red boxes) and is depicted in Figure 5. Trees A, and B are depicted in
Supplementary Figure S4.
doi:10.1371/journal.pone.0022783.g004
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concatenated amino acid analyses and identical to the one

obtained using the best nucleotide model (Fig. 5), reinforcing the

results obtained with the nucleotide dataset.

Species phylogeny of 18 ascomycetous yeasts. The

species phylogeny we obtained in our supermatrix analysis is

shown in Figure 5. It receives high bootstrap support across the

tree. The pre-WGD species were recovered as a monophyletic

clade where Saccharomyces kluyveri and Kluyveromyces waltii, and Ashbya

gossypii and Kluyveromyces lactis, respectively, are sister species that

form sister clades to one other. This agrees with some of the more

recent large phylogenomic studies [19,29] but is in contrast to

results obtained by smaller studies (e.g. [24,31]) which both infer

A. gossypii at the base of the remaining pre-WGD species. We infer

Pichia stipitis to be basal to the Candida species and Lodderomyces

elongisporus although bootstrap support for this node is relatively

lower and the branch length very short, retaining the possibility of

alternative placement at the base of the clade containing the

Debaryomyces hansenii and Pichia guilliermondii.

The branching order at the base of the WGD clade in our ML

tree sees C. glabrata splitting off before S. castellii. This is in

disagreement with the branching order inferred from synteny data

[67] but also frequently recovered by other supermatrix-based

phylogenomic analyses of this clade, especially when a large

number of genes was analyzed (e.g. [19,30–33]). As above, this

stands in contrast to the smaller multigene analyses (e.g. [24,27]).

When we examined the support for either of three possible

branching orders (C. glabrata first and S. castellii second or vice versa,

or with S. castellii and C. glabrata as sister species) in our single-gene

Figure 5. ML tree obtained using the optimal nucleotide and amino acid models of evolution (tree C in Fig. 4). Bootstrap values are
from 1000 iterations of RELL resampling and branch lengths, in expected number of substitutions per nucleotide, are calculated as the weighted
mean of individual estimates in partitioned analysis of the 343 genes of the nucleotide datasets. The branches marked by lowercase letters were
extended for the purpose of visualization.
doi:10.1371/journal.pone.0022783.g005
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dataset (REV + C) we found the first branching order to be most

strongly represented amongst the genes trees (150 occurrences) in

relation to the other two branchings (66 and 58 occurrences,

respectively). The study of substitution patterns hence consistently

suggests C. glabrata as the species at the base of the WGD clade.

This disagreement of substitution patterns with synteny

information could be due to the fact that, as yet, we have limited

knowledge of how to statistically and reliably estimate phylogenies

from chromosome rearrangement data. Alternatively, it is possible

that the observed discrepancies are the result of biological

processes such as independent lineage sorting (reviewed in [3])

or introgression (e.g. [68]), especially seeing that the divergence

time between S. castellii and C. glabrata is relatively short [67].

Conclusions
The power of phylogenetic reconstruction is heavily dependent

on the evolutionary models being utilized. This is already well-

known (e.g. [35,36,64]) and it is thus not surprising to find model

choice having a large impact in phylogenomics.

Our datasets deliver another example where single-gene

phylogenetics fails to find a congruent solution when trying to

resolve the species tree that underlies the evolution of those genes.

In fact, in this difficult phylogenetic problem the number of

proposed ML trees increases almost linearly with the number of

genes studied. Phylogenomics approaches are well-suited to

address such incongruencies and we would like to see them

deliver resolution even as datasets increase in size and diversity.

Their ability to do so has been demonstrated in the past, largely on

smaller and easier studies (e.g. [4,24,25]). Given our results, it

appears that this remains true for a dataset of our size and

complexity, but with the qualification that it is vital that analyses

appropriate to the complexity of the data are used.

We have examined the impact of inter-gene heterogeneity in

phylogenomic analysis of yeasts by using partitioned models of

evolution, accounting for between-gene variation in the parame-

ters modeled. To our surprise, we found that the modeling of

differences between genes did not influence the identity of the ML

topology compared to a concatenated analysis using the same

model of evolution. Nevertheless, there were considerable

improvements in likelihood when the data were partitioned on a

gene by gene basis, confirming the significance of inter-gene

variation of evolutionary dynamics.

While the identity of the ML topology was not affected by the

choice of a partitioned over a concatenated model, it was highly

dependent on the evolutionary model employed, resulting in a

different ML tree for all three types of model (no heterogeneity;

among-site heterogeneity; and among-site heterogeneity plus

individual treatment of codon positions) used. This indicates that

the heterogeneity of the evolutionary process affecting substitution

patterns within a single protein-coding gene resulted in stronger

(misinterpreted phylogenetic) signal than the differences between

such processes acting on different loci across the genomes of 18

yeast species.

This also underlines the effectiveness of model-based approach-

es in addressing heterogeneous phylogenetic signal as is demon-

strated by the fact that we are able to recover the same phylogeny

for the nucleotide data as in the amino acid analysis, once the

differences in evolutionary rates between codon positions are

accounted for.

We obtained a fully-resolved species tree for 18 ascomycetous

yeasts that receives high bootstrap support and is robust to

between-gene variation of the evolutionary processes accounted

for here. We were able to confirm the relationships in the pre-

WGD species as a monophyletic clade as well as resolve the

branching order within the clade containing the Candida and Pichia

species. Our analysis suggests C. glabrata to be at the base of the

WGD clade.

The topologies we recover for the pre-WGD species and the

branching order at the base of the WGD are commonly recovered

in larger phylogenomic analyses (e.g. [19,29,33]) but sometimes

disagree with those recovered from smaller analyses (e.g. [24,27]).

In the case of the pre-WGD species this may be a taxon sampling

issue, seeing that smaller studies often consider more species (e.g.

[24]) that might help to resolve the deep divergence between the

pre-WGD species (see Fig. 5).

The discrepancies about the branching order at the base of the

WGD species, however, remain more difficult to explain. Both our

single-gene and supermatrix analyses provide overwhelming

support for C. glabrata to be at the base of the WGD species.

Nevertheless, we find support for either of the alternative

resolutions (Fig. 2B and C) in approximately a quarter of the

single-gene trees respectively, suggesting the presence of non-tree

like inheritance through e.g. introgression [68] or the strong

influence of population genetic processes.

Methods that take into account population genetic processes

that can lead to incongruence between gene trees and the species

tree have recently become available (reviewed in [3]). Those are

also still computationally expensive for phylogenomic analysis but

might help the resolution of shallow divergences, such as the

branching order of C. glabrata and S. castellii, in the future.

It is known that sources other than inter-gene heterogeneity can

affect the accuracy of phylogenetic reconstruction. These include

compositional heterogeneity (e.g. [69]), heterogeneity in the

pattern of substitution at different sites on the amino acid level

(e.g. [13]), heterotachy [14] and mutational saturation (e.g. [19]).

Models that address some of those issues (e.g. CAT: [13]) are

available, but phylogenetic inference with them is computationally

expensive and as such currently not feasible in an analysis of the

size attempted here. It will however be interesting and necessary to

assess the robustness of the species tree recovered here against

other types of heterogeneous process.

Overall we are confident that phylogenomics methods, given

the right evolutionary models, can give robust answers to a

number of yet-to-be-resolved branches of the Tree of Life.

Supporting Information

Figure S1 Bootstrap support for shared and variable
nodes of gene trees estimated using different models of
evolution. Gene trees for each alignment were estimated using

Leaphy 1.0 with 100 bootstrap replicates each. The distribution of

bootstrap values for nodes shared between the gene trees estimated

using respective models of evolution are shown in blue, bootstrap

values of variable nodes are shown in red.

(EPS)

Figure S2 Distribution of the distance of a (A) and R (B)
to the mean of the respective distributions by alignment
length. For a, the distribution of the standard error of the

estimate with respect to the alignment length is also shown.

(EPS)

Figure S3 BIC score profiles. BIC scores were calculated as

outlined in Supplementary Text S2. As for the AIC results (Fig. 4),

partitioned analysis (light colors) consistently outperformed

concatenated analysis (dark colors) on the nucleotide data. Here,

for amino acid data we found concatenated models to be preferred

to partitioned ones however.

(EPS)
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Figure S4 Supermatrix ML trees recovered using non-
optimal evolutionary models. Lettering corresponds to the

labels used in Table 1 and Figure 4 in the main text. Bootstrap

values are indicated as a percentage out of 1000 replicates using

RELL resampling (see Methods in main text).

(EPS)

Text S1 Additional analyses investigating the effects of model

choice and between-gene heterogeneity in the single-gene

dataset.

(PDF)

Text S2 BIC model testing.

(PDF)

Data S1 Candidate tree set (CTS1) compiled for exhaustive ML

analysis using PAML [50].

(TXT)
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