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Abstract

Background: The current obesity epidemic is thought to be partly driven by over-consumption of sugar-sweetened diets
and soft drinks. Loss-of-control over eating and addiction to drugs of abuse share overlapping brain mechanisms including
changes in motivational drive, such that stimuli that are often no longer ‘liked’ are still intensely ‘wanted’ [7,8]. The
neurokinin 1 (NK1) receptor system has been implicated in both learned appetitive behaviors and addiction to alcohol and
opioids; however, its role in natural reward seeking remains unknown.

Methodology/Principal Findings: We sought to determine whether the NK1-receptor system plays a role in the reinforcing
properties of sucrose using a novel selective and clinically safe NK1-receptor antagonist, ezlopitant (CJ-11,974), in three
animal models of sucrose consumption and seeking. Furthermore, we compared the effect of ezlopitant on ethanol
consumption and seeking in rodents. The NK1-receptor antagonist, ezlopitant decreased appetitive responding for sucrose
more potently than for ethanol using an operant self-administration protocol without affecting general locomotor activity.
To further evaluate the selectivity of the NK1-receptor antagonist in decreasing consumption of sweetened solutions, we
compared the effects of ezlopitant on water, saccharin-, and sodium chloride (NaCl) solution consumption. Ezlopitant
decreased intake of saccharin but had no effect on water or salty solution consumption.

Conclusions/Significance: The present study indicates that the NK1-receptor may be a part of a common pathway
regulating the self-administration, motivational and reinforcing aspects of sweetened solutions, regardless of caloric value,
and those of substances of abuse. Additionally, these results indicate that the NK1-receptor system may serve as a
therapeutic target for obesity induced by over-consumption of natural reinforcers.
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Introduction

Obesity-related pathology is an alarming public health problem
worldwide. Homeostatic control systems precisely regulate body
weight and adiposity in a restrictive food environment [l1].
However, non-homeostatic factors, such as palatability and
motivation, override these systems when a sedentary lifestyle is
combined with accessibility of palatable and calorically dense
foods or natural reinforcers [1]. In fact, the current obesity
epidemic is suggested to be partly driven by over-consumption of
natural reinforcers such as sugar [2-6].

Uncontrolled over-consumption of natural reinforcers share
characteristics with drug addiction. For example, stimuli no longer
‘liked’ are still intensely ‘wanted’ [7,8]. Additionally, there is
overlap between brain regions regulating secking and self-
administration of substances of abuse and those regulating
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motivational and reinforcing aspects of foraging and intake of
natural reinforcers [9-13]. For example, natural reinforcers,
including sucrose, activate neurons in the ventral tegmental area
(VTA). Conversely, VTA lesions selectively reduce sucrose
consumption [16]. Furthermore, sucrose consumption increases
dopamine release in the nucleus accumbens [17], a brain area
exhibiting opiate-like activation following excessive sugar intake
[18]. Finally, recent neuroimaging studies have discovered
neuroadaptations in obese individuals that mimic those in cocaine
addicted individuals [14,19,20].

The common molecular substrates underling the motivation to
consume natural reinforcers and drugs of abuse are largely
unknown. However, the endogenous opioid system is one possible
candidate [15]. An interaction between sugar consumption and
the opioid system is supported by cross-tolerance [21,22] and
cross-dependence [23-25] between sucrose consumption and
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opiates. In addition, both sugar and ethanol intake is decreased by
the opioid antagonist naltrexone [26-28].

Recently it has been suggested that the neurokinin 1 (NKI)-
receptor system, and its endogenous ligand substance P (SP),
interacts with the opioid receptor systems to regulate reward related
behaviors. For example, the NK1- and p-opioid (MOR)-receptors
are widely co-expressed in brain regions involved in reward, for
example the amygdala, hypothalamus, and nucleus accumbens
[29-33]. Furthermore, NK1-receptor knock-out mice are insensi-
tive to the rewarding properties of morphine [34,35]. NKI-
receptor knock-out mice fail to develop a preference for morphine,
using the conditioned place preference paradigm, and self-
administer morphine at lower levels than wild-type controls [35].
Additionally, recent series of preclinical and clinical experi-
ments identified the NK1-receptor as a novel therapeutic target
for alcohol use disorders (AUDs) [36]. The preclinical studies
showed that NKI-receptor knockout mice decreases voluntary
ethanol consumption and increased sensitivity to sedative effects of
ethanol [36]. In the clinical setting, the NK1-receptor antagonist
LY686017 suppressed alcohol craving and improved overall well-
being in recently detoxified AUD patients [36]. The role of NK1-
receptor system in AUDs is further supported by a study showing
that polymorphisms of the NK1-receptor are significantly associ-
ated with the development of AUDs in Caucasian individuals [37].

The involvement of the opioid system in rewarding properties of
both sucrose and drugs of abuse, together with the interaction
between the opioid and the NKl-receptor system in reward
related behaviors led us to the hypothesis that the NK1-receptor
system may play a role in appetitive behaviors. To further
elucidate the role of the NK1-receptor system in the regulation of
consumption of natural reinforcers and ethanol, we evaluated the
efficacy of a clinically safe and selective NK1-receptor antagonist,
ezlopitant (CJ-11,974) [38,39] to decrease sucrose and ethanol
consumption and seeking. Ezlopitant has previously been
investigated in clinical trials as a potential therapy for pain,
chemotherapy-induced emesis and irritable bowel syndrome
[40,41]. The present study gives further support to the hypothesis
that the NK1-receptor system might be a novel therapeutic target
for addictive disorders.
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Results

The NK1-receptor antagonist ezlopitant decreases both
sucrose and ethanol operant-self administration

The effect of the NKl-receptor antagonist, ezlopitant on
sucrose and ethanol operant self-administration was evaluated in
Long-Evans rats that had a stable level of ethanol or sucrose
responding on a FR3 schedule. Ezlopitant (2, 5 or 10 mg/kg i.p.)
or vehicle was administered 30 minutes before the start of the
operant self-administration session. Ezlopitant treatment had an
overall main effect on the number of presses on the active lever
during operant self-administration of 5% sucrose [F(3,15)=21.9,
P<0.001] and post hoc analysis revealed that all doses of
ezlopitant attenuated the number of active lever presses for 5%
sucrose (Figure 1A). In addition, ezlopitant treatment had an
overall main effect on the number of presses on the active lever
during operant self-administration of 10% ethanol [F(3,14)=5.5,
P<0.01]. Post hoc analysis revealed that the highest dose of
ezlopitant (10 mg/kg) significantly inhibited operant self-adminis-
tration of 10% ethanol compared with vehicle (Figure 1B). There
was no overall main effect on the number of presses on the inactive
lever in the ethanol or the sucrose group [sucrose: F(3,15)=1.4,
non-significant (n.s.); ethanol: F(3,14)=2.3, n.s., data not shown].

Ezlopitant inhibits progressive ratio responding for
sucrose, but not ethanol

The effect of ezlopitant on the incentive motivation to respond
for sucrose and ethanol was evaluated in Long-Evans rats that had
achieved a stable level of ethanol or sucrose responding on a FR3
schedule. Ezlopitant (2, 5 or 10 mg/kg i.p.) or vehicle was
administered 30 minutes before the start of the PR test. Ezlopitant
treatment had an overall main effect on the breakpoint during PR
tests for the 5% sucrose group [F(3,13)=5.9, P<<0.01] and post
hoc analysis revealed that the 5 and 10mg/kg doses of ezlopitant
attenuated the breakpoint for 5% sucrose (Figure 2A). In contrast,
ezlopitant treatment had no overall main effect the breakpoint
during PR tests for the 10% ethanol group [F(4,13)=1.5, n.s]
(Figure 2B). One sucrose animal was excluded from analysis
because of low breakpoint responding following vehicle treatment
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Figure 1. The NK1-receptor antagonist ezlopitant significantly inhibits both sucrose and ethanol operant self-administration in
rats. Ezlopitant (2, 5, 10 mg/kg i.p.) dose dependently decreases self-administration of 5% sucrose (A). Only the highest dose of ezlopitant (10 mg/kg
i.p.) decreases self-administration of 10% ethanol (B). All values are expressed as the mean = SEM number of presses on the active lever. **P<0.01,

***P<0.001 compared to vehicle.
doi:10.1371/journal.pone.0012527.g001
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Figure 2. The NK1-receptor antagonist ezlopitant significantly decreases the breakpoint for sucrose but not ethanol operant self-
administration in rats. Ezlopitant (5 and 10 mg/kg i.p.) decreases the breakpoint for 5% sucrose using a PR schedule (A), but had no effect on the
breakpoint for 10% ethanol (B). All values are expressed as the mean * SEM breakpoint. **P<<0.01, *P<<0.05 compared to vehicle.

doi:10.1371/journal.pone.0012527.g002

and one ethanol animal was excluded from analysis due to lack of
responding during regular FR3 sessions.

Ezlopitant selectively inhibits voluntary consumption of
both sucrose and ethanol

Ezlopitant treatment had an overall main effect on voluntary
consumption of 5% sucrose (g/kg) at both time points [6hrs;
F(3,11)=7.8, P<0.001; 24hrs: F(3,11)=7.1, P<<0.001]. Post hoc
analysis showed that all doses of ezlopitant significantly decreased
sucrose intake compared to vehicle at the 6 hour time point
(Figure 3A). At the 24 hour time point, the two highest doses of
ezlopitant significantly decreased sucrose intake compared to
vehicle (5 mg/kg: P<<0.05 and 10 mg/kg: P<<0.001; data not
shown). There was an overall main effect on the preference for
sucrose over water at the 6 hour, but not the 24 hour time point
[6hrs: F(3,11)=4.0, P<0.05; F(3,11)=2.1, n.s., data not shown].
Post hoc analysis of the 6 hour preference data revealed a
significant decrease following treatment with the highest dose of

ezlopitant (10 mg/kg) compared to vehicle (P<<0.05, data not
shown).

In the high ethanol consumption model (intermittent-access-
20%-ethanol), there was an overall main effect on the ethanol
consumption (g/kg) 6 and 24 hours after the administration of
ezlopitant [6hr: F(3,10)=8.2, P<0.001; 24hrs: F(3,10)=5.9,
P<0.01). Post hoc analysis revealed that the highest dose of
ezlopitant (10 mg/kg) significantly reduced the ethanol consump-
tion compared to vehicle at both time points (6hrs: Figure 3B,
24hrs: data not shown). In addition, there was an overall main
effect on the preference for ethanol over water at both time points
[6hrs: F(3.10)=6.9, P<0.01; 24hrs: F(3.10)=4.2, P<0.05],
however, post hoc analysis revealed a significant difference
between the highest dose of ezlopitant (10 mg/kg) and vehicle
only at the 6 hour time point (P<<0.01, data not shown).

The ability of ezlopitant to decrease sucrose and ethanol
consumption was specific for each of the solutions as treatment
with ezlopitant had no overall main effect on water consumption
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Figure 3. The NK1-receptor antagonist ezlopitant significantly and selectively decreases voluntary intake of both sucrose and
ethanol. Ezlopitant decreased consumption of 5% sucrose (A), whereas only the highest dose of ezlopitant (10 mg/kg) decreased consumption of
20% ethanol (B). All values are expressed as the mean intake (ethanol and sucrose: g/kg/6 hrs) = SEM. *P<<0.05, **P<<0.01, ***P<<0.001 compared to

vehicle.
doi:10.1371/journal.pone.0012527.g003
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in either the sucrose or ethanol group at any time point [sucrose
group: 6hrs: F(3,10)= 1.4, n.s., Table 1, 24hrs: F(3,10)= 1.8, n.s.
data not shown; ethanol group: 6hrs: F(3,11)=1.3, n.s., Table 1,
24hrs: F(3,11)=1.0, n.s., data not shown].

The NK1-receptor antagonist ezlopitant decreases
voluntary sucrose consumption in C57BL/6 mice

In the DID-model of sucrose consumption, the ezlopitant
treatment had an overall main effect on the sucrose intake in
C57BL/6 mice [F(3,39)=4.2, P=0.01]. Post hoc analysis showed
that the highest dose of ezlopitant (15 mg/kg) significantly
decreased the voluntary sucrose intake compared to vehicle
(Figure 4A). Furthermore, there was an overall main effect on the
preference for sucrose over water [F(3,39) = 4.8, P<<0.01]. Post hoc
analysis revealed that the 15 mg/kg dose decreased the preference
for sucrose over water compared to vehicle (P>0.01, data not
shown). The decrease in sucrose intake following ezlopitant
treatment was specific since there was no overall main effect on
the water intake [F(3,39)=1.1, n.s., data not shown].

In the DID-model of ethanol consumption, there was a trend,
but no significant overall main effect on the ethanol consumption
(g/kg/2hrs) after ezlopitant administration in C57BL/6 mice
[F(3,38)=2.6, P=0.06, n.s, Figure 4B]. Subsequently, there was
no overall main effect on the preference for ethanol over water
following ezlopitant treatment [F(3,38) = 2.2, n.s., data not shown].
Furthermore, there was no overall main effect on the water intake
following ezlopitant treatment [F(3,38) = 2.3, n.s., data not shown]
in the C57BL/6 mice.

Ezlopitant does not affect locomotor activity

To examine the possibility that ezlopitant inhibited operant self-
administration and consumption of ethanol and sucrose through a
general effect on locomotor behavior, we administrated ezlopitant
or vehicle to two different groups of Long Evans rats. Following
habituation to the locomotor activity boxes, the NKl1-receptor
antagonist (10 mg/kg) or vehicle was administered and the
ambulatory distance traveled was recorded for 60 minutes. The
NK1-receptor antagonist treatment induced no significant effect
on locomotor activity (ambulatory distance travelled) compared to
vehicle (P=0.92, n.s., Figure 5).

Ezlopitant selectively inhibits voluntary consumption of
the non-caloric sweetener saccharin

To evaluate if the marked ezlopitant-induced decrease in
sucrose compared to ethanol intake was dependent on the high
caloric value of the sucrose solution, we tested the effect of the
compound on a 0.2% saccharin solution with zero caloric value.

Table 1. Ezlopitant treatment had no effect on the water
intake in rats that were given intermittent-access to 5%
sucrose and 20% ethanol, respectively, in a two-bottle choice
setting.

Ezlopitant (mg/kg) Water intake when given access together with:

5% Sucrose (n=12) 20% Ethanol (n=11)

0 44+0.5 7.1*+06
2 3.6+0.3 7308
5 3.8+0.5 7.3*0.8
10 4.8*+0.5 8.5*+0.9

The values are expressed as mean water intake (ml/6 hrs) = SEM.
doi:10.1371/journal.pone.0012527.t001
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Ezlopitant treatment had an overall main effect on voluntary
consumption of 0.2% saccharin (g/kg) at both time points [6hrs:
F(3,9)=7.6, P<0.001; 24hrs: F(3,9)=6.5, P<<0.01]. Post hoc
analysis showed that the two highest doses of ezlopitant (5 and
10 mg/kg) significantly decreased saccharin intake compared to
vehicle at the 6 hour time point (Figure 6). At the 24 hour time
point, only the highest ezlopitant dose significantly decreased
saccharin intake compared to vehicle (P<<0.01; data not shown).

Ezlopitant does not decrease intake of water or a salty
solution

To further evaluate ezlopitant’s selectivity for sweet solutions,
we tested the effect of the NK1-receptor antagonist on water and
salty (NaCl) solution intake, respectively. There were no significant
difference in water or 0.175% NaCl solution intake at any time
point following ezlopitant (10 mg/kg) treatment compared to
vehicle (water: 6hrs: P=0.39, n.s. Figure 7A, 24hrs: P=10.52, n.s.
data not shown; NaCl: 6hrs: P=0.88, n.s., Figure 7B, 24hrs:
P=0.41, n.s.data not shown).

The NK1-receptor antagonist ezlopitant inhibits SP-
mediated [>**S]GTPyS-stimulated binding in rat brain
membranes

SP produced a dose-dependent stimulation of [*>S]GTPyS-
binding in rat membranes prepared from the cerebral cortex of both
water exposed (ECs50=57%£3.8 nM, Figure 8A) and sucrose
exposed rats (EC5o=750%£31 nM, Figure 8B). Furthermore, when
the SP-stimulated (1 umol/L) [*°S] GTPyS-binding was performed
in the presence of ezlopitant (0.1 nmol/L~100 umol/L) the bind-
ing was potently inhibited in both groups (water group,
1C50=1.5£0.5 nM, Figure 8C: sucrose group, IC50=61£3.1 nM,
Figure 8D).

Discussion

Emerging evidence indicates that the NKl-receptor system is
involved in reinforcing mechanisms of drugs of abuse including
alcohol. The NKl-receptor has been identified as a possible
therapeutic target for AUDs [36] and genetic studies indicate that
the NK1-receptor is involved in the etiology of AUDs [37]. The
present study gives further support for a role of the NK1-receptor
system in appetitive behaviors, as the NKI-receptor antagonist,
ezlopitant, inhibits SP binding in rat membranes and decreases
both sucrose and ethanol self-administration without decreasing
water or salty solution consumption or inhibiting general
locomotor activity.

In the present study, the NK1-receptor antagonist ezlopitant is
effective in attenuating both sucrose and ethanol intake in rodents.
Somewhat surprisingly, ezlopitant more potently inhibited sucrose
consumption when compared to ethanol in all drinking models
used. While the addictive properties of ethanol are well established
(for review see [10,49]), evidence for food or sugar addiction has
been largely based on anecdotal evidence. However, some people
claim that they feel compelled to eat sweet foods, similar to how an
alcoholic might crave alcohol [9] and it has recently been shown
that natural reinforcers stimulate the same neural systems and
reward mediating neurotransmitters (including dopamine, acetyl-
choline and opioids) as ethanol (for review see: [9,10]). Further-
more, emerging evidence indicate that sucrose is addictive in
rodents [9,18,23,50]. Several stages of addiction, for example
bingeing [51], withdrawal [9,23,52], craving [53-55] and cross-
sensitization to amphetamine and cocaine [56,57], can all be
induced following intermittent excessive sugar intake. Finally, the
reinforcing properties of sugar are supported by a recent study
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Figure 4. The NK1-receptor antagonist ezlopitant significantly decreases voluntary intake of sucrose using the drinking in the dark
model in mice. The highest dose of ezlopitant (15 mg/kg) decreased consumption of 5% sucrose (A). However, ezlopitant treatment failed to
induce a significant decrease in ethanol consumption compared to vehicle (B). All values are expressed as the mean intake (g/kg/2 hrs) = SEM.

**P<0.01, compared to vehicle.
doi:10.1371/journal.pone.0012527.9g004

showing that sweetened solutions can surpass cocaine reward, even
in drug-sensitized and -addicted rats [58].

Recently, the NK1-receptor antagonist LY686017 was shown to
suppress spontaneous alcohol craving in AUD patients [36].
Additionally, the amygdala, which expresses high levels of NK1-
receptors, plays a role in the motivational aspects of alcohol
drinking behaviors [59]. Thus, LY686017 might attenuate craving
by suppression of pathologically elevated activity in the amygdala
[36]. Furthermore, MOR and NK1-receptors are co-expressed in
amygdala neurons [60] which is an important area for the NK1-
receptor’s involvement in the motivational aspects of morphine
reward [29]. The present results support this hypothesis. In the
operant self-administration paradigm, the rats were trained on a
fixed ratio (FR3) schedule to obtain an sucrose or ethanol reward
and following establishment of stable baseline responding were
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Figure 5. The NK1-receptor antagonist ezlopitant has no
significant effect on general locomotor activity in rats. Rats
administered ezlopitant (10 mg/kg) did not display differences in
ambulatory distances traveled compared to vehicle-treated rats. The
values are expressed as the mean (= SEM) distance traveled (cm) per
3 minute-period over the 60 minute test-period.
doi:10.1371/journal.pone.0012527.9005
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challenged using a PR schedule. This paradigm is thus used as a
measure of the motivation to seek the reward [61]. Ezlopitant was
more effective in inhibiting sucrose and ethanol under FR3
operant conditions than in a two-bottle-choice setting where the
reward is freely available. Importantly, the decreases in operant
behaviors (on both fixed and PR schedules) were more dramatic in
the sucrose-trained animals when compared to the ethanol-trained
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Figure 6. The NK1-receptor antagonist ezlopitant significantly
decreases voluntary intake of non-caloric saccharin solution.
Ezlopitant (5 and 10 mg/kg) significantly decreased consumption of the
non-caloric 0.2% saccharin solution compared to vehicle. All values are
expressed as the mean saccharin intake (g/kg/6 hrs) = SEM. *P<0.05,
***P<0.001 compared to vehicle.
doi:10.1371/journal.pone.0012527.9g006
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animals. Because, ezlopitant had no effect on general locomotor
activity and NKl-receptor antagonists act as antidepressants in
rodents [62], the possibility that the ezlopitant-induced decreased
activity in the operant self-administration paradigm could be a
result of decreased general activity or anhedonia is minimal.
Furthermore, ezlopitant significantly attenuated intake of the non-
caloric sweetener saccharin, but had no effect on water and salty
solution consumption. These results indicate that NK1-receptors
play an important role in appetitive responding for sweet solutions,
regardless of caloric value, and may regulate the motivational
aspects of consumption of ethanol and sweetened solutions.

The present study shows that ezlopitant treatment significantly
decreases ethanol consumption in rats, supporting a study showing
that NK1-receptor knock-out mice have markedly lower ethanol
consumption than wild-type controls [36]. However, in contrast
to the rat data, we found that ezlopitant-treatment failed to
significantly decrease ethanol consumption compared to vehicle in
C57BL/6 mice. One possible explanation is that higher doses of
the NKl-receptor antagonist are needed to attenuate ethanol
consumption in mice than rats. This is supported by a study
indicating that a near-complete inactivation of NK1I-receptors is
needed to suppress ethanol consumption in mice [36]. Further-
more, in the present study, the lowest dose of ezlopitant (2 mg/kg)
significantly decreased sucrose consumption in rats, whereas a
markedly higher dose (15 mg/kg) was needed to decrease sucrose
intake in mice. These results indicate a species difference in the
sensitivity to the behavioral response following NKIl-receptor
antagonism.

The exact mechanism by which the NK1 receptor antagonist,
ezlopitant decreases sucrose and ethanol intake remains unclear.
There is strong evidence that both sucrose and ethanol stimulate
the brain reward system through endogenous opioids (see for
example [10,11,13]). The effectiveness of ezlopitant in attenuating
sucrose and ethanol consumption indicates there may also be an
interaction between NKl-receptors and the endogenous opioid
system in reward-related behaviors, but this possibility remains to
be determined.

In conclusion, the present study demonstrates that the NK1-
receptor antagonist, ezlopitant, decreases sucrose and ethanol
consumption and seeking in three different drinking models, giving
further support of an involvement of the NK1-receptor system in
AUDs and other reward-related behaviors. Additionally, these
results indicate that the NKl-receptor system may serve as a
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therapeutic target for obesity induced by over-consumption of
natural reinforcers. A clinical study is possible as ezlopitant is
known to be safe in human subjects [40,41].

Methods

Animals and Housing

Male, Long Evans rats (Harlan Indianapolis, IN) and C57BL/6
mice (Charles River Laboratories, Wilmington, MA) were
individually housed in ventilated, climate controlled Plexiglas
cages. The animals were acclimatized to the individual housing
conditions and handling before the start of the experiments. All
animals in the two-bottle-choice experiments were maintained on
a 12 hour reversed light-dark cycle (lights off'at 10 am) and rats in
the operant self-administration and locomotor experiments were
maintained on a regular 12 hour light-dark cycle (lights on at 7
am). Food and water were available ad libitum, except during initial
training in the operant self-administration paradigm, as described
below.

Ethical Consideration

The experiments contained herein comply with the current laws
of the United States of America. All procedures were pre-
approved by the Gallo Center Institutional Animal Care and Use
Committee and conducted in accordance with NIH guidelines for
the Humane Care and Use of Laboratory Animals.

Operant Self-Administration Paradigm

Fixed Ratio Schedule. One group of Long-Evans rats
(233£2 g, n=16) was trained to self-administer 5% sucrose, and
one group of Long-Evans rats (251 =4 g, n = 15) was trained to self-
administer 10% ethanol using a modified sucrose fading procedure
[42] in standard operant conditioning chambers (Coulbourn
Instruments, Allentown, PA), as described elsewhere [27]. Both
groups were kept on a fixed ratio 3 schedule of reinforcement (FR3;
three active lever presses required for 0.1 ml reward, 10% v/v
ethanol or 5% sucrose, respectively), daily (Monday through Friday)
for 30 minutes for at least five months prior to ezlopitant testing. All
rats received all four treatment doses (vehicle, 2, 5 and 10 mg/kg
intraperitoneal, 1.p.) and each injection was given seven days apart
using a Latin square design. Thus, each rat served as its own control.

Progressive Ratio Schedule. One group of Long-Evans rats
(214*3 g, n=15) was trained to self-administer 5% sucrose, and
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Figure 8. The NK1-receptor antagonist ezlopitant inhibits NK1-
receptor-stimulated [>>S]GTPyS binding in the cerebral cortex
of rats. SP produced a dose dependent stimulation of [>>S]GTPyS-
binding in rat membranes from naive (A) and sucrose- trained rats (B).
Ezlopitant potently inhibits SP-stimulated (1 pmol/L) [**SJGTPyS NK1-
receptor binding in the cerebral cortex of naive rats (C) and of rats
following long-term sucrose consumption (D). The values are expressed
as mean + SEM percentage increase in basal [*>SIGTPyS binding.
doi:10.1371/journal.pone.0012527.g008

one group of Long-Evans rats (238%3 g, n = 15) was trained to self-
administer 10% ethanol as described above. Following ~6 weeks
(~30 sessions) of 30 minute FR3 sessions, both groups of animals
were treated with ezlopitant (vehicle, 2, 5 and 10 mg/kg, i.p.)
30 minutes prior to a progressive ratio (PR) test. The PR ratio
method is as described by [43]. Briefly, the PR session was initiated
by presentation of a compound cue (extension of the levers,
illumination of the stimulus light over the active lever, tone
sounding, and illumination of a raised dipper cup filled with alcohol
or sucrose). After the compound cue, responding proceeded under a
PR schedule that was the same for alcohol and sucrose rats. The PR
schedule of reinforcement was determined by the equation
PR = 5¢(0-1 X reinforcers n previously earned) __ 5 Brieﬂy, after the com-
pound cue, rats could lick the dipper cup, press a lever, or do
nothing. If rats licked first, a PR schedule of reinforcement of 1, 1, 2,
2,3,4,5,6,7,9,10,12,13,15, 17, 20, 22, 25, 28, 32, 36, 40, 45, 50,
etc., ensued. If rats pressed first, a PR of 1, 2,2, 3,4,5,6, 7,9, 10,
12,18, 15, 17, 20, 22, 25, 28, 32, 36, 40, 45, 50, etc., ensued. If the
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rat chose to do nothing, a 20 s timeout period occurred, and the rat
was re-cued with the compound cue for up to 20 iterations. For the
few rats that required re-cue, one or two re-cues were sufficient to
elicit a response. Breakpoint was defined as the number of presses
contained 1n the last, successtully completed ratio in either a 1 hr
session or after 15 min of non-responding, whichever came first.
Null responses, where an animal completed the required number of
lever presses but did not lick to receive the reinforcer, were not
counted toward the breakpoint. Ezlopitant-PR tests were performed
on Tuesdays and Fridays in a Latin square design with regular FR3
sessions performed the other three days a week. Thus, each rat
served as its own control.

Two-Bottle-Choice Drinking Paradigms

All fluids were presented in 100-ml graduated glass (for rats) or
50-ml plastic cylinders (for mice), with stainless steel drinking
spouts inserted through two grommets in front of the cage. Bottles
were weighed 6 and 24 hours (for rats) and 2 hours (for mice) after
the fluids were presented, and measurements were taken to the
nearest 0.1 gram. The weight of each animal was measured daily
in order to calculate the gram per kilogram (g/kg) ethanol, sucrose
and saccharin intake, respectively. Ethanol and sucrose preference
(%) was calculated as the grams of ethanol, or sucrose, consumed
divided by the total fluid consumption (grams of ethanol or
sucrose+grams of water).

Intermittent-Access-20%-Ethanol: High Ethanol Con-
sumption Model. The intermittent-access-20%-ethanol two-
bottle-choice drinking paradigm does not require sucrose fading
and water is always available ad libitum [44,45]. On the Monday
following the end of the housing acclimatization period, 12 Long
Evans rats were given access to one bottle of 20% v/v ethanol and
one bottle of water. After 24 hours the ethanol bottle was replaced
with a second water bottle that was available for the next 24 hours.
This pattern was repeated on Wednesdays and Fridays. The rats
had unlimited access to water over the weekend after the 24 hour
measurement was taken on Saturday morning. After stable
baseline drinking levels of 20% ethanol for at least 12 weeks, the
rats were administered ezlopitant. All rats received all four
treatment doses (vehicle, 2, 5 and 10 mg/kg, ip.) and each
Injection was given seven days apart using a Latin square design.
Thus, each rat served as its own control.

Intermittent-Access-5%-Sucrose. Long-Evans rats (263%5,
n=11) were given intermittent-access to 5% sucrose solution
according to the same schedule as the intermittent-access-20%-
ethanol model. When rats had maintained stable baseline drinking
levels for 12 weeks, administration of ezlopitant began. All rats
received all four treatments (vehicle, 2, 5 and 10 mg/kg i.p.) and
each injection was given seven days apart using a Latin square
design.

Intermittent-Access-0.2%-Saccharin. Long-Evans rats
(n=10) were given intermittent-access to 0.2% saccharin solution
according to the same schedule as the intermittent-access-20%-
ethanol model. When rats had maintained stable baseline drinking
levels for ~5 weeks, administration of ezlopitant began. All rats
received all four treatments (vehicle, 2, 5 and 10 mg/kg i.p.) and
each injection was given seven days apart using a Latin square
design.

Continuous-Access to Water. The effect of ezlopitant on
consumption of water and salty solution, respectively, was
evaluated in the same group Long-Evans rats given intermittent-
access to 0.2% saccharin. Following the last ezlopitant-saccharin
test occasion, the saccharin was removed and the rats were given
continuous-access to two bottles of water. Following a four-day
washout period, ezlopitant (10 mg/kg, 1.p.) or vehicle was given to
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the rats to evaluate the effect on water consumption. The
treatment was repeated and reversed between animals 48hrs
later. Thus, each animal served as its own control.

Intermittent-Access-0.175%-Sodium  Chloride (NaCl)
solution. After the last ezlopitant-water test occasion, the rats
were given intermittent-access to one bottle of 0.175% NaCl in
water and one bottle of water. Following five days, ezlopitant
(10 mg/kg, 1.p.) or vehicle was given to the rats to evaluate the
effect on salty solution consumption. The treatment was repeated
and reversed between animals 48hrs later. Thus, each animal
served as its own control.

Drinking in the Dark Model. The “drinking in the dark”
(DID) model of ethanol consumption (adapted from [46]) induces
high levels of ethanol consumption in mice. In brief, male C57BL/
6 mice (56 weeks of age and 22+0.5g) were given access to one
bottle of 20% ethanol and one bottle of water during a two-hour-
period (1pm-3pm), Monday to Friday in a reverse light/dark cycle
room. Two bottles of water were available at all other times. The
weight of each mouse was measured daily to calculate the g/kg
ethanol intake. To habituate the mice to injections, one saline
injection (10 ml/kg body weight) was given on two consecutive
days, a week before the start of the treatment. Following stable
baseline consumption during six-seven weeks (30-38 drinking
sessions, 5.0%0.2 g/kg/2 hrs), the mice were randomly assigned
to four different doses of ezlopitant (vehicle (n=12), 5 (n=28), 10
(m=15) or 15 (n=7) mg/kg 1.p).

The DID method was also used as a model of sucrose
consumption. Male C57BL/6 mice (56 weeks of age and
19%£0.5g) were given access to 5% sucrose instead of ethanol
and subjected to ezlopitant treatment and the same habituation
schedule as described above (vehicle (n=15), 5 (n=10), 10 (n=12)
or 15 (n=6) mg/kg i.p).

General Locomotor Activity

Locomotor studies were run in activity-monitoring chambers
(40x40 cm) with horizontal photo beams (Med Associates, St
Albans, VT). Horizontal locomotor activity was monitored at
100 ms throughout the sessions. The study was run in 4 daily 2-
hour-sessions as described previously [47]. In brief, after
habituation of boxes (Day 1) and injections (Day 2 and 3) testing
was conducted on Day 4. Data from Day 3 was used to assign
animals to one of two treatment groups (vehicle, or ezlopitant
(10 mg/kg, ip.), n=6 per group). After 60 minutes, a single
mjection of the assigned treatment was given, subsequently, the
session continued for an additional 60 minutes. Data was collected
across the entire 2-hour-session and recorded as distance traveled
in cm.

[3SS]GTPyS Binding in Rat Membranes
Single drug dose-response curve of Substance P (SP)-stimulated

(0.1 nmol/1~100 umol/L) [**S]GTPyS-binding and SP-(1 umol/
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L)-stimulated [*>S]GTPyS-binding in the presence of ezlopitant
(0.1 nmol/L~100 pmol/L) were performed in triplicate in mem-
branes prepared from rat cerebral cortex as described previously
[48]. The brain tissue was collected from water rats (n = 3) as well
as from rats that had consumed 5% sucrose (n=3) according to
the intermittent-access schedule described above. [*°S]GTPyS-
stimulated binding was assessed with NXT TOPCOUNTER and
expressed as a percentage increase in basal [358] GTPyS-binding.

Drugs and Chemicals

[*°S]-guanosine 5'-(y-thio)triphosphate ([**S]-GTPyS) (250 uCi;
9.25 MBq) (Perkin-Elmer, Boston, Massachusetts) and SP (Sigma
Aldrich, St. Louis, MO, USA), other chemicals used in binding
assays supplied as described previously [48]. All solutions were
prepared in filtered water from 95% (v/v) ethanol (Gold Shield
Chemical Ac., Hayward, CA, USA), (w/v) sucrose (Fisher Scientific,
NJ, USA), saccharin or NaCl (Sigma Aldrich, St. Louis, MO, USA),
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vided by Pfizer Global Research and Development, Groton, CT,
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each injection. All injections were given as an acute 1.p. injection
(1 ml/kg for rats and 10 ml/kg for mice), 30 minutes before
bottles were presented or before the start of the operant self-
administration session.

Statistics

Statistical analysis was performed using GraphPadPrism
software. Data were analyzed by one way ANOVA (mouse data)
or repeated measures ANOVA (rat data) followed by Newman-
Keuls Post hoc analysis when a significant overall main effect was
found (P<0.05). The locomotor, water- and NaCl-2-bottle-choice
data were analyzed with Student’s t-test. Data from w wvitro
functional binding assays were analyzed by non-linear regression
with a sigmoidal curve with variable slope to determine EC5, and
1C5¢ values.
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