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ABSTRACT: Leishmaniasis, which is caused by a parasitic protozoan of the genus
Leishmania, is still a major threat to global health, impacting millions of individuals
worldwide in endemic areas. Chemotherapy has been the principal method for managing
leishmaniasis; nevertheless, the evolution of drug resistance offers a significant obstacle
to therapeutic success. Drug-resistant behavior in these parasites is a complex
phenomenon including both innate and acquired mechanisms. Resistance is frequently
related to changes in drug transportation, drug target alterations, and enhanced efflux of
the drug from the pathogen. This review has revealed specific genetic mutations in
Leishmania parasites that are associated with resistance to commonly used
antileishmanial drugs such as pentavalent antimonials, miltefosine, amphotericin B,
and paromomycin, resulting in changes in gene expression along with the functioning of
various proteins involved in drug uptake, metabolism, and efflux. Understanding the
genetic changes linked to drug resistance in Leishmania parasites is essential for creating
approaches for tackling and avoiding the spread of drug-resistant variants. Based on which specific treatments focus on mutations
and pathways could potentially improve treatment efficacy and help long-term leishmaniasis control. More study is needed to
uncover the complete range of genetic changes generating medication resistance and to develop new therapies based on available
information.

1. INTRODUCTION
Leishmania is a parasitic eukaryotic protozoan that belongs to
the class Trypansomatidae (order Kinetoplastida). These species
are distinguished by the presence of a prominent Feulgen
stain-positive kinetoplast. All of the species of this class are
pathogenic from invertebrates to vertebrates, and their
morphology changes as they progress through their life cycle.
Over fourteen Leishmania species are harmful to mammals,
nine of which are identified as human parasites.1,2 Based on the
morphological characterization, Leishmania exists in two
different forms: a promastigote stage that penetrates inside
the host’s phagocytic cell and later transforms into an
obligatory intracellular amastigote stage. This parasite performs
a digenetic life cycle; each time the parasite shuttles between
the host and the carrier, it undergoes morphological differ-
entiation.3,4 The female sandfly (Old World: genus Phleboto-
mus and New World: Lutzomyia and Psychodopygus) becomes
infected after consuming blood from a diseased host. Once the
parasite is inside the sandfly, it goes through the first stage of
differentiation and becomes a procyclic promastigote.
Promastigotes are flagellated and migratory parasites with
thin bodies that range in length from 15 to 20 μm and 0.5−3.5
μm in width. The flagellar size is about 5−14 μm, which aids
the parasite in adhering to the sandfly’s gut.5 The procyclic

forms divide in the sandfly’s abdominal midgut, culminating in
the formation of indivisible nectomonad promastigotes. These
nectomonad promastigotes pass through the midgut of the
abdomen to the anterior midgut, where they change into
leptomonad promastigotes. The leptomonad promastigotes
then mature into metacyclic promastigotes and travel to the
insect’s proboscis, where they can be transferred to mammalian
hosts. The following phase in the lifecycle is known as
metacyclogenesis, and the promastigotes are introduced into
the host species via a sandfly bite. Through the proboscis by
biting, metacyclic promastigotes transmit to the host organism,
where they initiate a phagocytic procedure by attaching to the
cell membrane. In this way, the promastigotes infiltrate the
phagocytes and attack the parasitophorous vacuole. Here,
promastigotes convert into oval-shaped amastigotes two and
four micrometers in width. It is crucial to highlight how the
parasitic organism survives both the macrophages’ acidic
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circumstances and the stomach’s acidic environment. The
amastigotes grow and multiply within the parasitophorous
vacuole until the macrophage breaks off, secreting all matured
amastigotes. These released amastigotes set off a chain reaction
that finally develop into leishmaniasis as shown in Figure 1.3,4

According to the World Health Organization (WHO),
leishmaniasis is a parasitic infection that causes tropical and
subtropical illnesses that are spread in over 89 countries
including Africa, Asia, America, and the Mediterranean,
thereby creating a global health crisis. About 10 to 15 million
individuals worldwide are affected, with an annual incidence of
new infections exceeding 0.7−1 million.6 This prevailing
epidemiology shows a wide range of clinical symptoms ranging
from minor skin lesions to life-threatening systemic infections,
in the case of cutaneous leishmaniasis (CL) and visceral
leishmaniasis (VL) respectively.7 There are medications
available for such illnesses, including antimonial, pentamidine,
amphotericin B, miltefosine, paromomycin, and others, as
shown in Figure 1. The drug structure (PubChem) and its
mode of action is described in Table 1.8 Despite continued
attempts to manage and treat leishmaniasis, the emergence of
drug-resistant strains presents a serious problem, weakening
the effectiveness of current treatment strategies. Drug
resistance in leishmaniasis is a complex problem driven by
genetic, environmental, and clinical factors that could be
considered innate and acquired mechanisms. The innate
mechanism in clinically relevant Leishmania species shows
that the presence of different molecular and biochemical

components generates variances in in vitro drug susceptibility.
Although pharmacokinetics and host immune responses play a
role in the infected host, these species-specific changes often
result in distinct in vivo medication efficacy. On the contrary,
due to the defensive acquired mechanisms in the Leishmania
parasite, it exhibits amazing genomic plasticity; genetic
alterations can rapidly occur, allowing it to survive under
pharmacological strain. The development of such resistance
mechanisms can be linked to changes in drug uptake, drug
efflux or sequestration, enzymatic drug inactivation, improved
cellular responses to deal with drug-induced stress or cell
damage, and/or changes in the expression, abundance, or drug
binding affinity of the primary therapeutic target.9,10 The
convoluted life cycle of Leishmania, which involves both
mammalian hosts and sandfly vectors, adds to the complication
of drug resistance development. Furthermore, socioeconomic
factors, inadequate healthcare infrastructure, and restricted
access to effective treatment choices have led to the
proliferation of drug-resistant parasites. The goal of this
study is to provide a complete overview of the mechanisms
causing drug resistance in leishmaniasis, the factors that
contribute to its emergence, and the strategies used to tackle
this challenge. This review focuses on investigating the genetic
basis of drug resistance and looking at how changes in critical
genes can lead to resistance to antileishmanial medicines. In
addition, it also focuses on the influence of treatment practices,
such as monotherapy and incomplete treatment sessions, on
the selection of drug-resistant strains. To address this critical

Figure 1. Life cycle of the Leishmania parasite along with its mode of action.
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Table 1. Antileishmanial Drugs along with Their Mode of Action−
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issue, researchers and healthcare practitioners are implement-
ing a variety of strategies to reduce the impact of drug
resistance. Combination therapy, which involves the admin-
istration of numerous medications with diverse mechanisms of
action, has the potential to postpone or overcome resistance.
Understanding the complicated host-parasite interactions in
leishmaniasis reveals new targets for innovative drug develop-
ment. This review aims to shed light on the complex interplay
between drug resistance and leishmaniasis by an examination
of current research and clinical experiences, emphasizing the
significance of a multidisciplinary approach to address this
public health concern. We can pave the road for more tailored
therapies and better treatment results in leishmaniasis by
identifying the mechanisms causing drug resistance and
evaluating the effectiveness of various strategies.10

2. THE GENOME OF LEISHMANIA
Leishmania species have a wide range of chromosomes and
gene sets. A recent genome assembly of L. major reported 32.8
Megabase genomic with 11,238 genes scattered among thirty-
six chromosomes.23 Initially, Leishmania species were assumed
to possess atypically diploid genomes; however, mosaic
aneuploidy has since been determined to be the norm in
these parasites’ genomes, with aneuploidy varied depending on
strain or species.24 Almost all trypanosomatid protein-coding
genes lack introns and organize themselves in unidirectional
polycistronic transcriptional zones that lack functional gene
associations. Polycistronic transcription yields pre-mRNAs,
which are later processed to form mature mRNAs. Every gene
is continuously produced, mainly by RNA polymerase II, but

Table 1. continued
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the timing of the initial stages of the gene transcriptional
process is unknown due to canonical promoter sites not yet
being identified in these parasitic organisms.25 Epigenetic
processes that influence DNA accessibility seem to have an
essential function in Leishmania transcription initiation. Having
the base J results in transcriptional completion at the final
point of each polycistronic transcriptional region.26 However,
due to the lack of transcriptional regulation, it is hypothesized
in the literature that protein production in these species is
modulated via post-transcriptional mechanisms such as
ribonucleic acid deterioration, translational management, and
protein breakdown. Numerous investigations have discovered a
link between the chromosome copy number and transcription
levels, lending support to the theory that expression regulation
occurs after transcription. However, transcript and protein
levels are not always related.27

3. GENOME VARIATION AND PLASTICITY
Mutations within the parasite gene have been connected to
geographic location and illness symptoms, which may impact
leishmaniasis treatment. A surprisingly extensive study
incorporating an enormous number of isolates from many
different regions indicates that genetic variation is considerably
greater than earlier stated.28 Single-cell sequencing recently
showed the existence of multiple distinct karyotypes inside the
same Leishmanial clone, implying that multigenotype
infections can occur within the same host’s cells as well as in
tissue.29,30

Aside from the function of mutations in parasite variety,
these species’ genomes are exceptionally flexible and constantly
reorganize, which leads to changes in gene copy values, sets of
DNAs, as well as the entire chromosome makeup. As a result,
mosaic aneuploidy is not common within several species, but it
also serves as a key adaptation process, allowing a certain
genomic pattern to be rapidly selected during times of
difficulty.31,32 Ploidy alterations are not entirely random but
appear to follow an identical sequence in specimens exposed to
a variety of stressors, and each strain often follows the same
pattern, indicating the presence of selecting processes.33 In this
ploidy, a gene’s copy number could either be altered by
inserting or removing genes in tandem, as well as through
making extrachromosomal replicas of genetic material, that are
either circular or linear.34,38 These genes are generally detected
under wild-type conditions but are expressed through
alterations in Leishmania populations under stress conditions.
In Leishmania, the genome contains sets of recurring regions
enclosing several genes, and double-stranded DNA breakages
close to or inside the repetitive regions can promote
homologous recombination, and this is linked to an increase
in gene reorganizations.35−37

3.1. TXNPx. TXNPx is a member of the 2-cysteine
peroxiredoxin group and is classified according to as it is
found in the cytosol or the mitochondria.39 Enzymes such as
these have been extensively conserved and found in a variety of
Leishmania species. Most parasitic organisms, involving
Leishmania spp., tend to be more vulnerable to reactive oxygen
compounds than their hosts. Organisms have evolved several
antioxidant defense systems to counteract cell damage caused
by reactive oxygen species (ROS).40 Compared to other
eukaryotes that utilize glutathione and catalase, trypanosoma-
tid parasites possess trypanothione [N1, N8-bis(glutathionyl)-
spermidine] (TS2) that acts as the main detoxifying agent
against oxidative damage. Trypanothione synthetase (TryS)

plays a role in this dithiol synthesis which is later reduced to
T(SH)2 by the trypanothione reductase (TR). The trypar-
edoxin/tryparedoxin peroxidase I (TXN/TXNPx) complex
uses this T(SH)2 to reduce the negative effect produced by
macrophages through hydrogen peroxide neutralization. By
catalyzing the reduction of H2O2, and small-chain organic
hydroperoxides to alcohol and water, respectively, these
antioxidant enzymes protect against chemical and oxidative
stress.41 The cooperative function of trypanothione reductase,
tryparedoxin, and tryparedoxin peroxidase is thus critical for
maintaining a low hydrogen peroxide (H2O2) content.42 This
enzyme is essential for Leishmania’s survival during oxidative
stress caused by macrophages and medications.43

3.2. ABC Transporters. ABC transporters make up a well-
known family of proteins that perform important physiological
tasks. These molecules observed in organisms such as
prokaryotes as well as in humans utilize ATP hydrolysis for
the elimination of numerous kinds of substances throughout
the cell membranes.44 ABC proteins have an important activity
in resistance toward drugs via 2 modes of action. The initial
phase is when ABC-carrying genes are amplified or expressed
more, increasing carriers at the cell surface membrane and have
been associated with a large amount of drug efflux through
cells.45 The subsequent phase is a mutation in the gene, which
alters the biochemical characteristics of ABC transporters and,
thus, their carrier capacity. ABC protein is a multidrug-resistant
protein (MRP) in Leishmania that contributes to metal
resistance via thiol metabolic processes and drug elimination
pathways. And, the P-glycoprotein A (PGPA) is a member of
the MRP ABC transporter family that has been linked to
arsenite and antimoniate resistance. The Leishmanial parasite
genome has forty-two ABC genes, designated ABCA to ABCH.
In L. major infection, some investigations suggest that there is a
link between nonresponding to glucantime and alleles such as
ABCC7, ABCC3, ABCG2, and ABCI4.46,47 The ABCI4
transporter, which is present in parasite mitochondria and
cell membranes, is involved in heavy metal transfer. The
ABCI4 gene is found on chromosome no. 33.48 The ABCG2
transporter is in intracellular vesicles and the plasma
membrane and is expressed with the help of the ABCG2
gene on the sixth chromosome. It transports the conjugated
thiol-antimony complex outside the amastigote cell. The
ABCC7 (PRP1) transporter is also in intracellular vesicles
and is expressed by ABCC7 on chromosome 31.49 Similarly,
the ABCC3 transporter (MRPA), encoded by the ABCC3
gene on chromosome 23, is present in vesicles across the nuclei
and the flagellar pocket of the cell. As these are related to
tubulin vesicles, ABCC7 and MRPA proteins bind in both
endocytosis and exocytosis processes. These protein carriers
are important in drug response.50

3.3. Glycoprotein. The zinc-dependent metalloprotease
glycoprotein 63 (GP63) or leishmanolysin, which was
discovered on the surface of the Leishmania parasite in the
1980s, has been identified genetically as well as biochemically
as a crucial surface antigen presented on Leishmania
promastigotes from different species and to have an array of
materials including casein, gelatin, albumin, hemoglobin, and
fibrinogen.51,52 This protease is included in the metzincin class,
which includes the HExxHxxGxxH sequence motif and the N-
terminus pro-peptide that suppresses the pro-enzyme during
translation and is eliminated during maturation and
activation.53,54 GP63 is prevalent in promastigotes, but not
in amastigotes. As it is found in both phases, it is expected to
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serve various functions based on the parasitic stage. GP63 was
discovered to cleave C3b into iC3b in promastigotes of L.
amazonensis and L. major, hence assisting the parasite to evade
complement-mediated lysis. Alongside, iC3b production can
operate as an opsonin, allowing the parasite to engage with
macrophages via complement receptors 1 and 3, thereby
promoting parasite internalization. GP63 has also been shown
to have interactions with the fibronectin receptor (FR), which
may aid parasite adhesion to macrophages.55 Another
significant discovery was that when L. mexicana promastigotes
encounter the outermost layer of subcutaneous tissue, GP63
could break down extracellular components, allowing for faster
migration over matrix gel in vitro. According to these findings,
GP63 shows a drastic impact on macrophage processes that
favor Leishmania survival by cleaving and/or degrading
different proteins.56

3.4. Aquaglyceroporins. The AQPs are a superfamily of
aquaporins as well as aquaglyceroporins, which are channels in
animals ranging from prokaryotes to eukaryotes that aid in the
submissive pathway of water and tiny neutral molecules
through the plasma membranes. Despite these channels not
being found in many microorganisms, most eukaryotic
genomes encode a minimum of one channel; plants have
more than 30, some vertebrates have more than ten, and
Plasmodium spp. and other Apicomplexa generally have one.57

There are three types such as AQP1, AQP2, and AQP3 out of
which AQP1 is a flagellar membrane protein, and the AQP3 is
a cell membrane protein that carries water, glycerol, urea,
dihydroxyacetone, and ammonia. Along with in vitro analysis, it
was found that the deletion of these genes leads to resistance
to antimonial drugs.58

3.5. L-Asparaginase. L-Asparagine synthase is essential for
Leishmania survival and was recently recognized as a potential
therapeutic candidate. A whole proteome BLAST revealed that
among numerous protozoan diseases, only Leishmania, Giardia,
and Trichomonas spp. have a unique genomic region coding for
suspected L-asparaginase.59

L-Asparaginases are amidohydro-
lase enzymes that have been employed as efficient antileukemic
medicines. Also, some studies suggest that this L-asparagine
(substrate for L-asparaginase) has an inhibitory influence on
the Leishmanial autophagosomal pathway. According to a
recent study, Mycobacterium tuberculosis L-asparaginase (MyAn-
sA) provides survival advantages to the pathogen by decreasing
the acidic conditions inside the host cell. Each M. tuberculosis
and Leishmania donovani uses a phagolysosome fusion process
to establish infection. Transaminases and synthases may
collaborate in a particular subcellular region to restore
important chemical byproducts, as it was hypothesized that
LdAI might not be the only one contributing to the
metabolism of nitrogen. The STRING database added to the
evidence by anticipating a functional relationship between
LdAI and important enzymes that govern the metabolism of
parasite aspartate, arginine, and purine metabolism. Some of
the major enzymes, arginosuccinate synthase engaged in
arginine biosynthesis and adenylate synthetase involved in
purine biosynthesis salvage pathway, were predicted to interact
strongly with LdAI.60,61 These two enzymes were demon-
strated to produce arginosuccinate (ATP dependent) and
adenylate (GTP dependent) using ASP as a source. It has been
demonstrated that functionally inactivating these enzymes
causes deficiencies in parasite development and contagious-
ness. The knowledge that could be combined to successfully
target the N2 metabolic processes of parasites does, therefore,

indicate the synergistic interdependence of these pathways.
Fortunately, utilizing an overexpression system, this undesir-
able potential was eliminated; by overexpression of LdAI in
parasites, it was found that longevity increased by 20 percent,
by having the ability to withstand detrimental impact at all
doses of both inhibiting agents. The findings conclusively show
L-asparaginase of L. donovani is one of the essential enzymes
involved in metabolism for early cautious reaction to
Amphotericin B used to treat visceral leishmaniasis.62

3.6. Cysteine Synthase. Cysteine is a sulfur-containing
amino acid that plays a crucial role in cellular redox
homeostasis; cysteine synthase plays an important role in the
synthesis of cysteine, which is a precursor for the antioxidant
molecules glutathione, and trypanothione, which is crucial for
maintaining cellular redox balance and protecting against
oxidative stress.63 An upregulation of cysteine synthase could
contribute to increased levels of cysteine and, subsequently,
glutathione, enhancing the pathogen’s antioxidant defense
mechanisms and aiding in the detoxification of drugs.64 The de
novo or assimilatory and reverse transsulfuration (RTS)
processes are 2 pathways for cysteine production. RTS has
been established in fungi and mammals, and it comprises the
entire process leading to cysteine from methionine via
cystathionine synthesis. Cystathionine β-synthase (CS),
which synthesizes cystathionine from homocysteine and serine,
and cystathionine γ-lyase (CGL), which produces cysteine
from cystathionine, catalyze these processes. The de novo
process is likewise a two-step catalytic reaction that begins with
serine acetyltransferase (SAT) to make O-acetyl serine (OAS)
from L-serine and acetyl coenzyme A, followed by an alanyl
transfer reaction driven by cysteine synthase (CS). This de
novo pathway for cysteine biosynthesis is found in plants,
bacteria, and several protozoan parasites such as Entamoeba
histolytica, Entamoeba dispar, Leishmania major, and Leishmania
donovani.65,66

3.7. Ascorbate Peroxidase. Ascorbate peroxidase (APx)
is an enzyme that is essential for the glutathione-ascorbate
cycle. Glutathione, which keeps cells in a reducing environ-
ment, is likely to be responsible for the reduction of many
cellular components.67 A single copy of the Leishmania major
ascorbate peroxidase gene has been shown to possess a crucial
role in the H2O2 detoxification, which is produced by both
endogenous and exogenous processes such as an oxidative
rupture of diseased host macrophages and Leishmania parasite
medication mechanism.68 Aminotriazole or sodium azide,
which blocks heme-containing enzymes like catalase and
peroxidase, dramatically slowed the elimination of H2O2
from amastigotes. Overexpressing ascorbate peroxidase in L.
major promastigotes enhanced adaptability toward oxidative
stress-induced apoptosis. Overexpression of APx (LmAPx) in
L. major mitochondria protects cells from the harmful effects of
oxidative damage, such as mitochondrial dysfunction and
apoptosis.69

3.8. Silent Information Regulator 2. The silent
information regulator 2 (SIR2) includes a family of NAD+-
dependent protein deacetylases and is conserved in microbial
to eukaryotic organisms. These genes regulate a wide range of
functions in eukaryotic cells, including transcriptional
repression, recombination, the division of cells, cellular
responses to DNA-damaging substances, and spindle organ-
ization.70 Sirtuins are currently studied in parasitic protozoa
such as Plasmodium and trypanosomes as they are required for
proper cellular functioning and proliferation. Recently it was
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discovered to have both conserved and unique functions that
regulate a wide range of biological processes; parasitic sirtuins
are promising therapeutic options for treatment. SIR2RP1,
SIR2RP2, and SIR2RP3 are SIR2 homologues found in the
Leishmania genome.71 The cytosolic sirtuin SIR2RP1 is known
to be critical for parasite infectivity and survival, making it an
interesting therapeutic target for antileishmanial treatment.
The role of SIR2RP2 in L. donovani was explored. LdSIR2RP2
is linked to the human orthologue HsSIRT4, which
corresponds to Sirtuin class II, according to phylogenetic and
sequencing analyses. Some studies show that LdSIR2RP2, like
HsSIRT4, exclusively exhibits NAD+-dependent ADP-ribosyl-
transferase activity. This protein, like HsSIRT4, was discovered
to be localized in the mitochondria of the parasite. LdSIR2RP2
was not proven to be needed for parasite survival, but null
variants showed delayed growth and lower infectivity. A G2/M
block was discovered in the null mutant protozoa cell cycle,
which could explain a mutant line growth issue. Thus, in
Leishmania, deletion of the mitochondrial sirtuin LdSIR2RP2
affects mitochondrial activity, leading to lower ATP content
and thus slower growth kinetics.72

3.9. Sterols. Lanosterol 14-demethylase (CYP51) is a
cytochrome P450 (CYP) monooxygenase that stimulates the
elimination of the 14-methyl group from various sterol
substrates. This elimination process includes an essential
stage within the cholesterol synthesis process, which produces
cholesterol in mammals and ergosterol and ergosterol-like
sterols in plants, fungi, and protozoa. As a result, CYP51 is
being identified as an option for drugs since human cells
possess sterol in their outermost layer, whereas parasitic
organisms need ergosterol. Leishmania CYP51 is a prime
example of a naturally occurring plant-like sterol 14-
demethylase that can be addressed specifically to produce
potent antileishmanial medications.73,74 Cell surface sterols are
crucial biological elements that help to produce functional cell
membranes. Sterol 14-demethylase inhibition prevents sterol
production, which is fatal in the affected organism. Sterol
methyltransferase (SMT) catalyzes the conversion of a methyl
group from adenosine to methionine into the sterol end chain
of the C24 position. This enzyme is necessary for the
protection of mitochondrial membrane potential, ROS
generation, and parasite pathogenicity in Leishmania major.75

4. DRUG RESISTANCE LINKED TO MUTATION
As drug resistance is frequent in these parasites, gene variation
is postulated as the primary factor in the evolution of various
drug-resistant phenotypes. There is no single indicator for
evaluating tolerance in clinical specimens since a variety of
alterations may cause resistance to existing medicines. It is
critical to understand the genetic basis of medication resistance
to create successful treatment techniques.76 By studying the
specific genetic variations that contribute to drug resistance,
researchers can identify potential targets for new drugs or
therapies. Additionally, investigating the correlation between
genetic variation and drug susceptibility in clinical specimens
and in vitro tests can provide valuable insights into the
mechanisms underlying drug resistance and guide future
research efforts. Some of the examples of drugs associated
with the mutation leading to its resistance are given in Table 2.
4.1. Pentamidine. Pentamidine, an aromatic diamidine,

was initially used for treating insomnia in 1937. The first use of
this drug in the treatment of VL in antimony-resistant patients
in India was in 1949. PMD is utilized to treat L. guyanensis and

L. panamensis-caused systemic CL. However, growing resist-
ance to PMD and unexpected consequences like low blood
sugar, low blood pressure, a cold, myocarditis, and renal
toxicity were the main reasons for the drug’s discontinuance
throughout India in the nineties. Although the precise
mechanism of PMD activity in Leishmania is unknown, a few
studies suggest that it alters the parasite organism’s
mitochondrial internal membrane potential.94 Pentamidine
buildup in mitochondria may cause death by apoptosis in L.
donovani by blocking respiratory cycle complexes I to III,
producing reactive oxygen species, and elevating cytosolic
Ca2+. It can also act on DNA topoisomerases (TOPs), an
enzyme that is required for the topology of DNA modulation
during transcription, replication, recombination, and repar-
ation. TOPI and TOPII of the parasite Leishmania differ
significantly in structure and biochemistry by comparing with
the human enzymes, as they play an important part within the
parasite’s kinetoplast DNA network organization.95 PMD has
been demonstrated as an arginine transport competitor in L.
donovani as well as a noncompetitive antagonist of spermidine
along with putrescine transportation in L. infantum, L.
donovani, as well as in L. mexicana. The medication can
enter both forms, promastigote and amastigote of L. mexicana,
through a transporter-mediated process by identifying the
medicine. Amastigotes, on the other hand, have a far higher
absorption rate than promastigotes.96

Mutations in several transporters have been associated with
PMD tolerance in the Leishmania parasites. ABC transporters
were recently discovered in a variety of Leishmania species, and
several of these species have been widely investigated and
linked to treatment resistance.97 The ABC transporters
superfamily (ABCC7) comprises the P-glycoprotein (PGP),
which includes the pentamidine resistance protein 1 (PRP1).
Aquaglyceroporin 2 (AQP2) is a transporter in trypanosomes
that regulates the resistance to pentamidine and melarsoprol.
AQP2 is a surface channel protein that aids in the passive
movement of liquids and tiny noncharged substances through
the plasma membrane. More research is required, but an AQP2
mutation may be the cause of pentamidine resistance in
Leishmania parasites.98,99 Verapamil, a Ca2+ channel and P-
glycoprotein inhibitor, has been demonstrated to restrict its
efflux, resulting in PMD buildup in resistant parasites.100

Flavonoid dimers were synthesized to avoid pentamidine
resistance in Leishmania parasites, and they demonstrated
much stronger reversal activity to pentamidine tolerance in L.
enriettii, because of increased drug accumulation in mitochon-
dria. These synthesized flavonoids work as reversal inhibitors
in parasite Leishmania to overcome PMD resistance. The
identical dimers functioned in tandem with quinacrine also
used to reverse PMD resistance in the Leishmania parasite.101

4.2. Antimonial. Sodium stibogluconate (SSG), as well as
meglumine antimoniate (MA), is currently the only viable
therapy for all types of leishmaniasis with positive clinical and
scientific outcomes. Because there are no oral medicines
available, these therapies have serious side effects such as
pancreatitis and renal and cardiac toxicity and can only be
administered via an injection. Both SSG and MA have been
shown to inhibit trypanothione reductase (TR), which is
thought to be important for the survival of parasites in the host
organism. TR degrades trypanothione, which is employed for
neutralizing ROS generated by macrophages during infec-
tion.102 In contrast to glutathione (GSH), which is the
principal redox defense molecule in mammals, trypanothione is

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c09400
ACS Omega 2024, 9, 12500−12514

12507

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c09400?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the primary detoxifying pathway for oxidative damage in
Trypanosomatid parasites. Pentavalent antimonials are consid-
ered prodrugs because their in vivo transformation results in
the generation of active as well as toxic trivalent antimonials
Sb(III), which causes Leishmania apoptotic death. Acidic pH
values and high temperatures aid in Sb(V) reduction.103 Both
macrophages and parasites can experience a decrease in
antimonial levels. The ability of Leishmania to convert Sb(V)
to Sb(III) changes with each stage. Because amastigotes can
transform Sb(V) to Sb(III), they are more sensitive to Sb(V),
while promastigotes are unable to. Many patients’ incorrect
antimonial therapy causes pharmacological stress on the
parasite organisms, resulting in adaptation and, finally,
persistence against Sb(V).103,104

The gradual evolution of antimony resistance raises the
notion that numerous mutations need to occur to produce a
resistant phenotype. Several in vitro processes may clarify the
reported antimonial resistance, albeit it should be noted that
the in vitro response is not always translated into clinical
resistance. The reduction in the concentration of drugs in the
parasitic protozoan may be due to reduced absorption or by
higher outflow of medicine; drug activity suppression;
deactivation of the active drug; and gene amplification, all
possible explanations for resistance evolution.105 Sb(III)
resistance relates to TXNPx overexpression and greater
intracellular thiol levels. In vivo, antimonial resistance was
demonstrated by inhibiting Sb(V) activity and decreasing
amastigotes’ absorption of active Sb(III) in thiol production.
The gene encoding aquaglyceroporin 1, gamma-glutamylcys-
teine synthetase, and ornithine decarboxylase, which are
involved in Sb(III) uptake and glutathione and trypanothione
digestion, was lowered throughout the procedure.106,107 The
overexpression of membrane ABC transporters on the surface
parasites is also the reason for the resistance. This transport
route influences drug efflux and intracellular accumulation,
which contribute to resistance development. Elimination of the
drug as a metal−thiol in combination with ABC carriers such
as ABCI4 and ABCG2 may improve antimony resistance. Sb-
resistant L. donovani parasites also boost host cell production
of the MRP, and the P-gp, reducing antimony influx and hence
suppressing drug accumulation inside the cell. For the binding
of parasites, the cholesterol membrane of the host is required
as well to invade phagocytes.108 Cholesterol is an important
lipid membrane component in eukaryotic organisms, where it
aids in the structure, dynamics, and activity of its constituents.
Statins, such as lovastatin, work by inhibiting HMG-CoA
reductase, which is the rate-limiting enzyme in the cholesterol
production pathway. Lovastatin inhibits the proteins MRP1
and P- glycoprotein in L. donovani, enabling antimony to
accumulate and decreasing Leishmanial cell growth, macro-
phage infection, and causing its death.109 As a result, the statin
class mitigates the Sb resistance. Flavonoids naturally inhibit P-
glycoprotein and its related ABC transporters in Leishmania.
Synthetic flavonoid dimers were employed to overcome
antimony drug resistance in L. donovani, enhancing intra-
cellular drug accumulation.110,111 Heat shock proteins
(HSP70) were found to play a function in antimony tolerance
by employing functional cloning to extract drug-resistance
genes. Antimony and Sb(III)-resistant variant cells were found
to have high levels of HSP70 proteins.

Transfected Leishmania species developed antimony resist-
ance, most likely due to improved cell tolerance to metals; this
enabled the cell to become a more specialized and more

efficient defense activity. HSP90 has been related to the
development of resistance in Leishmania in recent research. In
summary, antimonial resistance is a difficult issue. Several
antimonial resistance mechanisms in experimental Leishmania
isolates have been identified.112,113

4.3. Miltefosine. An alkyl phospholipid called miltefosine
(also known as hexadecyl phosphocholine, or MT) was first
created as an anticancer medication. As MT received approval
as an initial oral medication for VL in India in 2002. MT is
now used for treating VL as well as CL diseases, as it is the
first-line treatment for CL. It is easier to acquire and has lesser
toxicities when compared to antimonials.114 Hepatotoxicity
and nephrotoxicity are two of the medication’s side effects.
The main disadvantages of MT involve its teratogenicity, the
possibility of resistance resulting from its extended half-life (7
days), the occurrence of subtherapeutic dosages over time, and
the high price.115 Phosphatidylcholine formation is inhibited
by MT, changing the phospholipid biosynthesis. The proposed
mechanism of action begins with adhesion to the plasma
membrane and then proceeds to internalization via 2 protein
membranes: the miltefosine transporter (LdMT), as Ld stands
for the species L. donovani; this transporter is a member of the
P4-ATPase subfamily, as well as possessing LdRos3, a potential
noncatalytic component of LdMT. These 2 proteins reside
mostly in the cell membrane of Leishmania and present as an
important factor for the quick intracellular absorption of alkyl
phosphocholine medications. LdMT and LdRos3 combined to
form a stable protein assembly, allowing phospholipids to
migrate across the cell membrane from the exoplasmic to the
cytoplasmic sections.116,117 It is also shown that MT inhibits
mitochondrial cytochrome c oxidase, resulting in a decrease in
the L. donovani oxygen utilization rate and ATP levels. In
addition to other immunologic and inflammatory effects on
macrophages, MT was discovered to cause the death of cells
during the promastigote phase of L. donovani through
programmed cell death. Considering the most recent
emergence of miltefosine use, therapeutically resistant parasites
were observed in Nepal in the occurrence of VL. In the lab,
mutants were generated to forecast the development of MT
resistance and define the mutants that resulted.118

In the Indian subcontinent, miltefosine-resistant parasites
have been discovered. In the laboratory, 2 strains of visceral
leishmaniasis with evolved miltefosine resistance (L. donovani)
were morphologically as well as genotypically characterized.119

Even though there are just a few MT-resistant clinical strains,
their genetic and biological characteristics are strikingly similar
to those of laboratory-selected strains. Although the precise
mechanism of MT resistance is unknown, every miltefosine-
resistant Leishmania strain examined demonstrated a reduction
in drug accumulation. This could be because of decreased drug
absorption, increased efflux, faster metabolic rate, and altered
cell membrane permeability. A single locus variation within the
LdMT gene is two different alleles rendering the transporter
protein LdMT inactive. The LdMT mutations in genes L832F,
T420N, or L856P increased susceptibility (includes in vitro
and in vivo), as well as decreased absorption, greater emission,
quicker metabolic processes, and alterations in the lipid
makeup of parasitic cell membranes. Other LdMT gene
variants such as V176D, W210, the lately found Y354F, and
F1078Y, M1 mutation of LdRos3.120 Overexpression of ABC
carriers has been identified as another avenue for MT
resistance. The first molecule associated with experimental
MT resistance was LMDR1/ABCB4, a P-glycoprotein-like
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transporter found among ABC transporters. Leishmania is
more resistant to MT when the ABC transporters such as
ABCB4 (MDR1), ABCG4, and ABCG6 are overexpressed,
resulting in a decrease in their accumulation inside the cell
because of increased drug efflux across a cell membrane.121,122

Changes in MT-resistant promastigotes’ membrane lipid
content sterol production may also alter drug-membrane
interactions. Recently, it was revealed that the use of cosmid-
based functional cloning in conjunction with next-generation
sequencing genes implicated in ergosterol production and
translocation of phospholipid could result in L. infantum
resistance.120

To fight MT resistance, several substances have been
produced. Sesquiterpenes have been found to overcome
multidrug resistance with the help of ABC transporters and
by boosting intracellular drug concentration. An additional
flavonoid analogue is effective in reversing LMDR1 over-
expression at modest dosages. Sitamaquine, an 8-aminoquino-
line, reverses LMDR1-mediated MT resistance by elevating
intracellular drug accumulation, resulting in an effective
LMDR1-mediated miltefosine resistance reversal agent in this
parasitic organism.123

4.4. Amphotericin B. As the second-line therapy for VL,
amphotericin B (AMB) is a polyene medication produced by
the Streptomyces nodosus filamentous bacterium. It is the most
effective drug for pentavalent antimonial resistance.124

Although it has substantial adverse reactions, including severe
renal toxicity, which necessitated inpatient treatment and 4
weeks of patient monitoring. Another significant downside is
the expensive price of AMB. To overcome these limitations,
liposomal AMB (LAMB), a lipid-associated composition with
less harmful effects and a prolonged plasma lifespan that allows
for a single infusion, was developed. To treat leishmaniasis, oral
formulations of AMB are being developed. AMB’s mechanism
of activity could include interacting with surface sterols,
resulting in membrane disarray and increased accessibility of
protons and monovalent cations.125 AMB may influence cells
due to oxidation along with the following creation of reactive
oxygen species. Cell damage produced by AMB may be linked
to ion mobility, oxidative effects, and the formation of ROS.
Because of the advent of drug resistance to past therapies,
amphotericin B has become a more important therapy for
leishmaniasis. Because there are few options, the emergence of
AMB resistance is a real possibility. As a result, figuring out
how AMB resistance develops is a primary priority, which led
to the development of laboratory-based amphotericin B,
species that are resistant to it.126 A recurrence incidence of
about 3.7% following therapy with liposomal amphotericin
demonstrates that resistance to LAMB can also emerge.
Regardless of this minimal risk, recurrence is important in
transmission dynamics because it increases the worldwide
population of parasitic organisms in the host that are set to be
transmitted to the vector; in persons with HIV who are not
receiving antiretroviral medication, VL recurrence raises the
possibility of spreading by suppressing the immune system,
raising the parasite burden, along with a lack of responsiveness
to treatment, and there is a chance that parasites may become
resistant to antileishmanial drugs.127

To predict the emergence of resistance, several experimental
approaches have been developed. Many Leishmania species are
resistant to AMB. Promastigotes were selected and studied
through elevated drug pressure. Many alterations were
detected when the biological properties of these resistant

varieties were examined in the wild-type parent strain.
Variation within sterol biosynthesis, enzyme lanosterol 14-
demethylase (CYP51) was shown to have a function in L.
mexicana. Several AMB-resistant Leishmania strains exhibited
genetic changes in other sterol biosynthesis enzymes, including
sterol C24-methyltransferase (SMT), which adds the C24-
methyl group to the ergosterol side chain, and sterol C5-
desaturase (SC5D), which is required for sterol 5(6)-7(8)
double- bond pairing.128 Overall, resistance is associated with
decreased AMB adherence to a cell membrane due to sterol
modifications (declination of SMT gene expression). MDR1
effluxes AMB from the membrane, whereas the rest of the
intracellular AMB auto-oxidizes and generates ROS. The thiol
metabolic pathway’s tryparedoxin cascade may be able to
counteract the adverse effects of this ROS. The cumulative
effects of transformed membrane characteristics, including
MDR1 and the tryparedoxin cascade, might be the cause of
AMB-resistance.129

4.5. Paromomycin (PMM). PMM is an aminoglycoside
medication that was approved for the therapy of VL in 2006.
PMM tends to be tolerated effectively, can be given orally or
intramuscularly, and has few side effects.130 PMM inhibits the
production of proteins by interfering with the ribosomal
subunits and enhances the ribosomal subunit interaction in
bacterial infections. Escherichia coli was discovered to connect
to the major cleft at the A-site of the 16S rRNA sequence and
to activate mRNA misreading. However, the method through
which it works in Leishmania is uncertain. PMM may inhibit
protein production in Leishmania parasites by binding to the
16S ribosomal unit and creating a specific structural alteration
in the 16S rRNA’s A site. Alteration at the N1 sites of A1492
and A1493 on the minor groove regions of the A-site RNA
showed modal activity during the translational process.
Changes in membrane fluidity and lipid metabolism, a decrease
in mitochondrial membrane potential, and respiratory failure
have all been proposed as possible mechanisms of action.131,132

Endocytosis increases PMM intake by binding PMM to
parasitic membrane proteins like PFR 1D and 2D, inhibiting,
as well as a P-type H+ ATPase, the main purpose of which is to
induce endocytosis thus allowing the drug within vacuoles.133

PMM provides several benefits, including affordable prices,
quick administration, good protection characteristics, and
convenience of use. Paromomycin’s physicochemical nature,
on the other hand, prevents appropriate accumulation at the
location of infection. The application of solid nanoparticles of
lipids as a PMM transport vehicle increased drug absorption
into macrophages, raised immunological response, and hence
improved PMM efficacy.134 To target Leishmania parasites in
monocytes, a combination of albumin microspheres infused
with PMM was created for VL therapy. This formulation has
the advantage of preferentially targeting macrophages, which
means less toxicity and an easier procedure over an
intramuscular injection.135 PMM is additionally combined
with stearyl amine (SA)-containing phosphatidylcholine (PC)
liposomes. PMM-SA-PM revealed enhanced immune protec-
tion, antileishmanial activity, and no toxicity.136

5. CONCLUSIONS
Owing to the variation in the parasitic class, it is extremely
difficult to develop drugs that can be useful in curing diseases
triggered by distinct species or subspecies. Certain-omics-
based studies (metabolomics, genomics, proteomics, and
transcriptomics) have also focused on how the resistivity is
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enhanced and demonstrated in the Leishmania genus due to
the synthesis of specific proteins that provide such traits.
Furthermore, because these interactions are crucial for the
success of treatments, it is necessary to explore the host-
parasite interactions. Gene editing in parasites is an intriguing
method for learning more about proteins that aid in drug
metabolism. There are now various techniques for genetically
modifying Leishmania, including deletion via allelic substitu-
tion, overexpression, and heterologous expression. In addition,
parasite genome sequencing can work as a novel and crucial
method, since the parasitic genes could be a potential
therapeutic target for drug discovery, and the data collected
could act as a beneficiary repository for TritrypDB-like
databases focused on Leishmania.

Despite all of the tools available, studying the resistant effect
exhibited by parasites needs in vitro and artificial laboratory-
based genetic manipulation like the ones that are exhibited by
the parasite inside the host organism owing to their genetic
plasticity and vulnerable environment tolerance capacity.
Because parasites can undergo various modifications in vitro
to survive, it was proposed that genetic changes be undertaken
directly in clinical specimens to avoid experimental artifacts.
Similarly, gene deletion can lead to the selection of parasitic
organisms with aneuploidies and altered phenotypes that are
not found in nature. Unfortunately, inducible strategies for
modulating gene expression in Leishmania between active and
inactive states are currently being researched, and little is
known about their use. The diversity of the Leishmania genus
and the factors that determine diversity are the subject of this
review. We emphasize the need to apply genetic manipulation
methods to learn more about leishmaniasis drug resistance
mechanisms and chemotherapeutic targets. Single-cell se-
quencing will allow the discovery of numerous new parasite
species that were previously unknown. An integrated study that
combines data from these many approaches and aspects of
host-parasite linkages would improve understanding of the
intricacies of medication, resistance mechanisms, therapeutic
failure, and the sly parasites’ incredible durability. This
understanding will pave the path for the development of
more effective treatment choices as well as the discovery of
new therapeutic targets. It will also help to create preventive
techniques to stop the spread of drug-resistant strains, lowering
the burden of leishmaniasis on affected people.
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Holandino, C. A review of current treatments strategies based on
paromomycin for leishmaniasis. Journal of Drug Delivery Science and
Technology 2020, 57, No. 101664.
(135) Bhandari, V.; Sundar, S.; Dujardin, J. C.; Salotra, P.

Elucidation of cellular mechanisms involved in experimental
paromomycin resistance in Leishmania donovani. Antimicrobial
agents and chemotherapy. Antimicrob Agents Chemother. 2014, 58
(5), 2580−2585.
(136) Abaza, S. Recent advances in identification of potential drug

targets and development of novel drugs in parasitic diseases. Part II:
Parasite targets. Parasitologists United Journal 2022, 15 (1), 22−38.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.3c09400
ACS Omega 2024, 9, 12500−12514

12514

https://doi.org/10.1371/journal.pntd.0007827
https://doi.org/10.1371/journal.pntd.0007827
https://doi.org/10.1021/cr500365f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/cr500365f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.4103/2229-5070.129142
https://doi.org/10.4103/2229-5070.129142
https://doi.org/10.18433/J3CW23
https://doi.org/10.18433/J3CW23
https://doi.org/10.1128/AAC.01614-17
https://doi.org/10.1128/AAC.01614-17
https://doi.org/10.1128/AAC.01614-17
https://doi.org/10.1128/AAC.01614-17
https://doi.org/10.1371/journal.pntd.0003948
https://doi.org/10.1371/journal.pntd.0003948
https://doi.org/10.1371/journal.pntd.0003948
https://doi.org/10.1128/AAC.02095-17
https://doi.org/10.1128/AAC.02095-17
https://doi.org/10.1128/AAC.02095-17
https://doi.org/10.1128/AAC.00065-11
https://doi.org/10.1128/AAC.00065-11
https://doi.org/10.1128/AAC.00065-11
https://doi.org/10.3389/fmicb.2018.00205
https://doi.org/10.3389/fmicb.2018.00205
https://doi.org/10.1093/jac/dky450
https://doi.org/10.1093/jac/dky450
https://doi.org/10.2147/DDDT.S146521
https://doi.org/10.2147/DDDT.S146521
https://doi.org/10.1128/AAC.00030-11
https://doi.org/10.1128/AAC.00030-11
https://doi.org/10.1371/journal.pntd.0007052
https://doi.org/10.1371/journal.pntd.0007052
https://doi.org/10.1371/journal.pntd.0007052
https://doi.org/10.1371/journal.pntd.0004896
https://doi.org/10.1371/journal.pntd.0004896
https://doi.org/10.1371/journal.pntd.0004896
https://doi.org/10.4103/1995-7645.345944
https://doi.org/10.4103/1995-7645.345944
https://doi.org/10.2147/TCRM.S30139
https://doi.org/10.2147/TCRM.S30139
https://doi.org/10.3390/ijms20225748
https://doi.org/10.3390/ijms20225748
https://doi.org/10.1111/pim.12340
https://doi.org/10.1111/pim.12340
https://doi.org/10.1042/bse0510081
https://doi.org/10.1042/bse0510081
https://doi.org/10.1016/j.jddst.2020.101664
https://doi.org/10.1016/j.jddst.2020.101664
https://doi.org/10.1128/AAC.01574-13
https://doi.org/10.1128/AAC.01574-13
https://doi.org/10.1128/AAC.01574-13
https://doi.org/10.21608/PUJ.2022.129311.1160
https://doi.org/10.21608/PUJ.2022.129311.1160
https://doi.org/10.21608/PUJ.2022.129311.1160
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c09400?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

