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Ca2C-dependent inactivation (CDI) is a negative feedback
regulation of voltage-gated Cav1 and Cav2 channels that is
mediated by the Ca2C sensing protein, calmodulin (CaM),
binding to the pore-forming Cav a1 subunit. David Yue and
his colleagues made seminal contributions to our
understanding of this process, as well as factors that regulate
CDI. Important in this regard are members of a family of Ca2C

binding proteins (CaBPs) that are related to calmodulin.
CaBPs are expressed mainly in neural tissues and can
antagonize CaM-dependent CDI for Cav1 L-type channels.
This review will focus on the roles of CaBPs as Cav1-
interacting proteins, and the significance of these interactions
for vision, hearing, and neuronal Ca2C signaling events.

Neuronal excitability and synaptic transmission are regu-
lated by a vast array of voltage-dependent ion channels of
which voltage-gated Cav Ca2C channels are crucial. Inward
Ca2C currents mediated by Cav channels help shape neuronal
firing properties, neurotransmitter release, and synaptic plas-
ticity.1 Cav channels also couple fast electrical signals with
slower Ca2C-dependent signaling pathways that can involve
Ca2C-release from intracellular stores and phosphorylation by
protein kinases.2 For example, Ca2C influx via Cav1 (L-type)
channels promotes the phosphorylation of the transcription
factor, cAMP response element-binding protein (CREB),
which plays a role in activity-dependent gene expression.3,4

Therefore, factors that modulate Cav channel output can
have a large neurophysiological impact.

Of these factors, Ca2C ions that permeate the channel play
a fundamental role in inhibiting further Ca2C entry (Ca2C-
dependent inactivation, CDI). CDI was first characterized as
greater inactivation of Ca2C currents compared to Ba2C cur-
rents in voltage-clamp recordings of Paramecium.5 CDI has
since been observed for Cav1.2 and Cav1.3 channels (L-type),
as well as Cav2.1 (P/Q), Cav2.3 (R-type), and Cav2.2 (N-
type) channels in heterologous expression systems.6 The
mechanism involves calmodulin (CaM), which is constitu-

tively tethered to site(s) in the C-terminal domain of the
pore-forming Cav a1 subunit. Upon channel activation, CaM
binds incoming Ca2C and induces conformational changes
that underlie CDI.7 The hallmark of CDI is a rapid inactiva-
tion of Ca2C currents during a prolonged depolarization,
which is reduced for Ba2C currents, which undergo primarily
voltage-dependent inactivation (Fig. 1). The structure/func-
tion relationships of CaM regulation of Cav channel CDI are
summarized in previous reviews.7-9

The importance of CDI as a regulatory mechanism in cardiac
myocytes was elegantly elucidated by David Yue and colleagues.
By expressing dominant negative CaM mutants that cannot bind
Ca2C, a maneuver that inhibits CDI of native Cav1.2 channels in
cardiac myocytes, they demonstrated a role for CDI in restricting
the duration of the cardiac action potential.10 Human mutations
that affect Ca2C binding to CaM cause long QT syndrome char-
acterized by prolonged myocyte action potentials, arrhythmia,
and sometimes cardiac arrest.11 In collaboration with Al George’s
group, the Yue lab showed that these long QT-causing CaM
mutations suppress CDI of Cav1.2 channels in transfected
HEK293T cells. When expressed in cardiac myocytes, the CaM
mutations prolonged action potential durations and caused
arrhythmia.12

Compared to cardiac myocytes and heterologous expression
systems, CDI is generally weaker for Cav1 channels in neuronal
cell-types. This is most extreme for Cav1.4 channels in retinal
photoreceptors, due to a C-terminal modulatory domain (CTM)
in the Cav1.4 a1 subunit. The CTM nullifies CDI by competing
with CaM binding to the proximal C-terminal domain.13,14 Pro-
longed Cav1.4 Ca2C currents are thought to support tonic gluta-
mate release by photoreceptors in darkness, which is modulated
by light stimuli. As in photoreceptors, Cav1 channels are local-
ized at specialized “ribbon” synapses in inner hair cells (IHCs) –
the major sound receptors in the cochlea. Cav1.3 channels are the
predominant Cav channels in these cells, and exhibit surprisingly
little CDI in IHCs to channels in transfected HEK293T
cells.15,16 Multiple factors may cause the reduced CDI of Cav1.3
channels in IHCs, such as alternative splicing and editing of
RNA,17,18 and interactions with other proteins.19,20 In the latter
category, a family of Ca2C binding proteins (CaBPs) similar to
CaM have emerged as candidate regulators of CDI in IHCs and
potentially other neuronal cell-types. Comprised of 7 family
members,21 CaBPs have distinct modulatory effects on Cav1 and
Cav2 channels in heterologous expression systems.9,22,23 This
review will summarize our current understanding of CaBPs as
Cav1 channel regulators with an emphasis on their neurophysio-
logical significance.
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Curbing CaM Modulation: CaBPs Antagonize Cav1
CDI

CaBPs are »50% homologous to CaM,24 and have the fol-
lowing characteristics consistent with roles as Cav1 channel mod-
ulators in neurons. First, CaBPs (CaBP1, 2, 4, and 5) inhibit
CDI when coexpressed with Cav1.2 or Cav1.3 channels in trans-
fected HEK293T cells and in Xenopus oocytes (Fig. 1).15,16,25-28

This effect results from CaBPs competitively displacing CaM
from the Cav1 a1 subunit,

26,29 as well as non-competitive actions
that may be due to CaBPs binding to other site(s) on the chan-
nel.30-32 Like CaM, CaBPs have an N-terminal and C-terminal
lobe separated by an inter-lobe a-helical linker domain. Each
lobe contains 2 EF-hand Ca2C binding domains, at least one of
which has amino acid substitutions that would inhibit Ca2C

binding.24 For CaBP1, the key determinants for suppression of
Cav1.2 CDI are the N-terminal lobe and a glutamate residue in
the interlobe linker. This glutamate residue (E94), conserved
among CaBP family members, abolishes CDI suppression by
CaBP1 when mutated to alanine.27

Unlike CaM, which is expressed in most cells, CaBPs are
expressed primarily in neuronal cell-types in the brain, retina,
and inner ear.15,16,33,34 In each of these tissues, CaBPs are

localized in similar cell-types as Cav1 channels (Table 1),
although alterative splice variants of CaBPs may be expressed at
varying levels. For example, there are 3 CaBP1 splice variants
(CaBP1-S, CaBP1-L, and caldendrin) of which caldendrin is the
most abundant in the brain.33,35 Our understanding of the physi-
ological relevance of CaBPs as Cav1 channel modulators has
emerged largely from genetically modified mice lacking expres-
sion of particular CaBPs, as well as human genetic studies.

CaBP4 and CaBP5 as Modulators of Cav1 Channels
in the Retina

The first evidence suggesting that CaBP4 is an essential regu-
lator for Cav1.4 channels in photoreceptor nerve terminals was
the similar visual phenotypes of mice lacking CaBP4 or Cav1.4
(CaBP4 KO and Cav1.4 KO, respectively). In both strains of
mice, there is a loss of synaptic transmission from rod photore-
ceptors to second-order rod bipolar neurons, which is evident as
a diminished “b-wave” in the electroretinogram.34,36 Cav1.4
channels containing a CTM exhibit little CDI, even in the
absence of CaBPs.13,14,37,38 However, coexpression of CaBP4
leads to enhanced voltage-dependent activation of the Cav1.4 in
transfected HEK293T cells.34,39 Thus, Cav1.4 channels would
be expected to activate at more positive voltages in CaBP4 KO
mice, which may explain the loss-of function of photoreceptor
transmission in these animals. In addition, mutations in the genes
encoding CaBP4 and Cav1.4 cause similar visual phenotypes in
humans.40,41

Unlike CaBP4, CaBP5 is expressed primarily in bipolar cells
in the retina, where it colocalizes with Cav1.2.

42 In transfected
HEK293T cells, CaBP5 causes a modest suppression of CDI, an
effect that could explain the reduced rod-mediated ganglion cell
responses to light in mice lacking CaBP5.42

CaBP2 as a Modulator of Cav1.3 Channels
in Auditory Inner Hair Cells

Cochlear IHCs express CaBP1, CaBP2, CaBP4, and
CaBP5,15,16 which were proposed to serve as suppressors of CDI
of the native Cav1.3 channel. In transfected HEK293T cells,
each of these CaBPs except CaBP2 inhibited CDI of Cav1.3.

15,16

However, subsequent work showed that expression of higher lev-
els of CaBP2 induced strong CDI suppression.43 Moreover, a
mutation that leads to premature truncation of CaBP2 causes
moderate to severe hearing loss in humans. When tested in
HEK293T cells, the mutant CaBP2 was less effective than the

Figure 1. CaBPs antagonize CDI in whole-cell patch clamp recordings of
HEK293T cells transfected with Cav1.2. (A) Normalized Ca2C and Ba2C

currents evoked by 1-s pulses from ¡80 mV to C10 mV for Ca2C cur-
rents or 0 mV for Ba2C currents. Faster decay of Ca2C currents due to
CaM (left) is not evident in cells co-transfected with CaBP1 (right). (B)
Ca2C and Ba2C currents were evoked by 100 Hz-trains of 5-ms pulse
from ¡80 mV to C10 mV for Ca2C currents, or 0 mV for Ba2C currents.
Fractional current represents current amplitude normalized to that for
the first in the train. CDI due to CaM causes rapid declines in Ca2C cur-
rent (left), unlike the full channel availability maintained at the end of
train in cells co-transfected with CaBP1. Adapted from 26.

Table 1. Tissue distribution of CaBPs

CaBP Region References

CaBP1/caldendrin Brain 26,33,35,46

CaBP1, CaBP2, CaBP4, and CaBP5 Cochlea 15,16

CaBP4 and CaBP5 Retina 42,56
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wild-type CaBP2 in suppressing Cav1.3 CDI.43 In individuals
affected by the mutation, stronger CDI of Cav1.3 might impair
sound-evoked transmission at the IHC synapse. It is possible that
a more severe phenotype is not observed due to potential com-
pensation by the other CaBPs in IHCs.

CaBP1/caldendrin as a Potential Modulator
of Cav1.2 and Cav1.3 Channels in the Brain

While CaBP2, CaBP4, and CaBP5 are largely restricted in
expression to the retina and inner ear, CaBP1 splice variants
including caldendrin (CaBP1/caldendrin) are also expressed in
the brain.15,34 CaBP1/caldendrin is localized to subgroups of
neurons known to express Cav1.2 and Cav1.3 channels, such as
in the cerebral cortex and hippocampus. Within these neurons,
Cav1.2 and CaBP1/caldendrin are localized primarily to somato-
dendritic regions.33,35,44,45 CaBP1/caldendrin strongly sup-
presses CDI of Cav1.2 and Cav1.3 in transfected HEK293T cells
and Xenopus oocytes.15,16,26,46 In the brain, Cav1 channels are
important regulators of neuronal excitability. These channels
have roles in shaping incoming synaptic inputs, sustaining regen-
erative dendritic spikes, and activating Ca2C-dependent KC cur-
rents that curtail cell excitability.47-49 Some forms of
hippocampal synaptic plasticity and learning and memory
depend on Cav1 channels, particularly Cav1.2.

50 Thus, CaBP1/
caldendrin could have important roles in regulating diverse Cav1
functions in the brain.

Since data are not yet available regarding the neurophysiologi-
cal phenotypes of mice lacking CaBP1/caldendrin,33 one can
only speculate on the potential role of CaBP1 in modulating
Cav1 channels in neurons. During a train of depolarizations at
100 Hz, a physiologically relevant frequency often used for
inducing synaptic plasticity in brain slices,51 CaM-dependent
CDI causes a robust depression of Ca2C influx through Cav1.2
channels at the end of the train in transfected HEK293T cells.
This effect is completely blocked by coexpression of CaBP1, such
that channel availability remains as strong at the end of the train
as it was at the beginning (Fig. 1).26 Thus, during high frequency
bursts in vivo, CaBP1 may help support postsynaptic Cav1.2
Ca2C signals that are involved in synaptic plasticity, activity-
dependent gene transcription, and learning and memory.52 The
coexistence of CaM and CaBP1/caldendrin in neurons may allow
for a push-pull modulation to fine-tune plasticity involving Cav1
channels.

Conclusions

Cav channels are essential and versatile regulators of Ca2C sig-
nals in excitable cells. Compared to the molecular diversity
within the family of voltage-gated KC channels, there are rela-
tively few genes encoding the pore-forming subunit of Cav chan-
nels. The interaction of Cav channels with proteins that can
modulate their function represents another route by which the
activity of Cav channels can be adjusted according to cell-type.53

The opposing regulation of Cav channels by CaM and CaBPs
represent 2 extremes on the modulatory spectrum. As in the
heart, Cav channels in some neuronal cell-types may require CDI
to control neuronal excitability.54 However, in other cells, such
as IHCs in the cochlea, sustained Ca2C currents due to CaBP1/
caldendrin-modulated Cav1.3 channels may be required for faith-
ful transmission of sensory input.

Studies of how CaBPs oppose CDI of Cav1 channels in
heterologous expression systems have revealed major insights
into the molecular and biophysical mechanisms controlling
CDI (reviewed in 7 and 9). However, direct evidence that
CaBPs do indeed suppress CDI of Cav channels is currently
lacking. While phenotypes in the CaBP4 and CaBP5 KO
mice are consistent with roles for these CaBPs in regulating
Cav1 channels in vivo, voltage clamp recordings of Cav1 cur-
rents in retinal photoreceptors and bipolar cells have not
been done to confirm that there is indeed a loss of CaBP
modulation in these cells. A definitive role for CaBP1/calden-
drin in suppressing CDI of neurons in the brain awaits simi-
lar recordings of neurons from CaBP1 KO mice. It also is
important to note that CaBPs can interact with partners
other than Cav channels.

55-60 Therefore, phenotypes in CaBP
KO mice might not necessarily arise from altered Cav1 chan-
nel regulation. Detailed studies of CaBP knockouts, or
knock-in Cav mutants with disrupted CaBP but not CaM
binding, will provide further clues as to the physiological role
of CaBPs as modulators of neuronal Cav1 channels.
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