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Abstract: Flexible electronics devices with tactile perception can sense the mechanical property
data of the environment and the human body, and they present a huge potential in the human
health system. In particular, the introduction of ultra-flexible and self-powered characteristics to
tactile sensors can effectively reduce the problems caused by rigid batteries. Herein, we report a
triboelectric nanogenerator (TENG), mainly consisting of an ultra-flexible polydimethylsiloxane
(PDMS) film with micro-pyramid-structure and sputtered aluminum electrodes, which achieves highly
conformal contact with skin and the self-powered detection of human body motions. The flexible
polyethylene terephthalate (PET) film was selected as spacer layer, which made the sensor work in
the contact-separation mode and endowed the perfect coupling of triboelectrification and electrostatic
induction. Moreover, the controllable and uniform micro-structure PDMS film was fabricated by using
the micro-electro-mechanical system (MEMS) manufacturing process, bringing a good sensitivity
and high output performance to the device. The developed TENG can directly convert mechanical
energy into electric energy and light up 110 green Light-Emitting Diodes (LEDs). Furthermore,
the TENG-based sensor displays good sensitivity (2.54 V/kPa), excellent linearity (R2 = 0.99522) and
good stability (over 30,000 cycles). By virtue of the compact size, great electrical properties, and great
mechanical properties, the developed sensor can be conformally attached to human skin to monitor
joint movements, presenting a promising application in wearable tactile devices. We believe that
the ultra-flexible and self-powered tactile TENG-based sensor could have tremendous application in
wearable electrons.
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1. Introduction

As an important part of wearable devices and medical care devices, flexible electronics have
drawn great attention in various fields, including tactile sensors [1], energy supply devices [2,3] and
flexible displays [4]. In particular, tactile sensors have had widespread interest due to their ability to
mimic human skin. Based on the principle of force–electricity conversion, the flexible tactile sensors
can be divided into piezoelectric, capacitive, piezoelectric, and triboelectric types. In the past ten
years, many strategies have been reported to realize high sensitivity, good linearity and good flexibility.
In particular, some studies have developed several micro-structures (silk-based [5], leaf-based [6],
interconnected networked [7,8], bionic structured [9] and double arched [10]) to improve device
sensitivity and output performance. Nevertheless, the energy supply is still an integral component
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of these devices. The traditional rigid battery has resisted the applications of flexible tactile devices
because of its un-comfort, low durability and low service time [11,12]. Hence, there is a pressing need
in the field of wearable devices to develop self-powered sensing devices.

Self-powered devices could directly convert mechanical energy into electrical responses
from ambient mechanical energy, which is a promising solution for the next-generation
flexible wearable devices. With the rapid development of nanoscience and nanotechnology,
various types of nanogenerators (piezoelectric-based, triboelectric-based, thermoelectric-based and
magnetoelectric-based) have been reported [2,3,13]. Among them, the piezoelectric nanogenerator
(PENG) and the triboelectric nanogenerator (TENG) present great potential both in energy harvesting
and mechanical sensing. Most piezoelectric materials are generally not inherently flexible [14,15].
The common solution for bring flexibility to piezoelectric materials is to reduce its thickness through
chemical mechanical polishing (CMP) technology [16,17] and to prepare the thin films on rigid substrate
by the sol-gel method [1,18]. However, such a PENG cannot satisfy the demand of mechanical sensing
due to its poor performance under a large deformation. Another way is to prepare a piezoelectric
composite film by integrating rigid piezoelectric materials into a flexible polymer that can realize
both piezoelectricity and flexibility [19,20]. Though this strategy realizes the flexibility of piezoelectric
materials, the preparation process is still complicated. Due to the advantages of easy fabrication
and not needing pre-treatment, the triboelectric nanogenerator (TENG), which is coupled of the
triboelectrification and electrostatic induction, presents great potential in energy harvesting and
mechanical sensing [3]. Since Wang et al. [21] first invented the TENG in 2012, it has been used in
various power supply and wearable sensors in recent years. However, there are still some challenges
in developing TENG-based flexible electronics. Hou et al. [3] reported on a stretchable triboelectric
textile for harvesting multivariant human motion energy. Though this novel device presents great
electrical output performance and potential applications in monitoring human joint movement,
it shows poor conformal contact with human skin and wearable clothes. Chen et al. [22] demonstrated
a single-electrode triboelectric-nanogenerator for sensing instantaneous force, yet the single-electrode
mode was easily disturbed by the surrounding environment. Hence, combining flexible materials with
the contact-separation mode TENG to monitor human body movement and harvest human motion
energy is an urgent direction for developing self-powered tactile sensing devices.

Polydimethylsiloxane (PDMS) is considered to be an ideal material for flexible wearable electronics
due to its inherent elasticity and excellent biocompatibility [5]. PDMS can be discretionarily twisted,
compressed, deformed and stretched, and it has drawn increasing attention in materials science
and mechanical engineering. By introducing a micro-structure (leaf-based [9], spherical [23] and so
on) and integrating various sensitive materials (graphene [24], Carbon nanotube (CNT) [25], metal
nanowires [26] and so on) on the PDMS surface, the sensors with PDMS present excellent sensitivity,
good linearity and perfect flexibility. Moreover, the micro-structure of the PDMS membrane can
effectively reduce the problem of visco-elastic behavior and thus increase its friction performance.
What is more, the micro-electro-mechanical system (MEMS) manufacturing process is a promising
technology to fabricate an Si mold for preparing the PDMS membrane with a controllable and uniform
micro-structure [27]. Therefore, for the TENG, in order to combine excellent flexibility and high output
performance, it is urgent to use the PDMS elastomer as the main body and improve the specific surface
area of the friction layer by MEMS technology.

Here, we developed a self-powered flexible and wearable sensor based on the contact-separation
TENG, one which could fully contact human skin and be used for harvesting mechanical energy
and detecting human motion. Through the introduction of a spacer layer, the triboelectrification
and electrostatic induction could work simultaneously. The elastic PDMS material simultaneously
acted as the main body and the one triboelectric layer, endowing the sensor with great flexibility.
The controllable and uniform micro-structure was fabricated by the MEMS manufacturing technology.
By relying on the micro-structure on the friction layer surface, the sensor displays good sensitivity
(2.54 V/kPa), excellent linearity (R2 = 0.99522) and good stability (over 30,000 cycles). Due to its
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compact size, great electrical properties, and great mechanical properties, the developed sensor
can be conformally attached to human skin to monitor joint movements, presenting a promising
application in wearable tactile devices. Overall, the proposed flexible TENG-based sensor is favorable
for harvesting human mechanical energy and detecting human motion, which may broaden their
potential applications in energy harvesting and self-powered sensing.

2. Experimental Section

2.1. Material and Device

Materials: A buffered oxide etch solution (BOE, NH4F:HF = 6:1), acetone (AR), tetramethylammonium
hydroxide (TMAH, AR), PDMS elastomer (Sylgard 184 was purchased from Dow Corning Inc., Midland,
MI, USA), a 4 inch (100) Si wafer, the RZJ-304 photoresist, and the developing solution were purchased
from ALADDIN Inc., Shanghai, China.

Preparation of Micro-Pyramid-Structure PDMS Films: As shown in Figure 1a, the patterned Si
wafer was fabricated by lithography. Then, the exposed SiO2 patterns were etched by the BOE solution.
Next, the micro-pyramid-structure was fabricated by using the anisotropic etching at 90 ◦C for 50 min,
and, then, the remaining SiO2 layer was etched by the BOE solution to obtain the Si mold. The PDMS
base was mixed with the curing agent (10:1), and the mixture was degassed in vacuum for 30 min to
remove bubbles. Then, the mixture was spin-coated onto the Si mold and followed by solidifying at
90 ◦C for 30 min. Finally, the PDMS film was peeled off from the Si mold.
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Figure 1. (a) The fabrication process of the triboelectric nanogenerator (TENG)-based sensor. (b–d) The
SEM images at different scales. (e) Photograph of the TENG-based sensor, which shows its thickness
(~0.7 mm). (f,g) Photographs of the TENG-based sensor, which shows its excellent flexibility.
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Fabrication of TENG-Based Self-Powered Sensor: The 200 nm Al was sputtered on the front of
the micro-pyramid-structure PDMS film as both the friction layer and electrode, and the 200 nm Al
was sputtered on the back of another micro-pyramid-structure PDMS film as another electrode. Then,
a spacer layer (polyethylene terephthalate—PET) was placed between the two PDMS films. Next,
the conductive fabric was placed on the Al film to make an external contact. Finally, the device was
covered by the pure PDMS film, which acted as the protective layer.

2.2. Characterization and Measurement

The sample morphologies were characterized by a field emission scanning electron microscopy
(ZEISS EVO18, Carl Zeiss Jena, Germany). The optical images were captured using a Sony Camera.
The output voltage and current were measured with the Source Meter 2611B test system (Keithley
Instruments, Inc., Cleveland, OH, USA).

3. Results and Discussion

Figure 1a demonstrates the main fabrication process of the flexible TENG-based sensor. First,
the pattern of mask plate was transferred to the Si wafer (with SiO2 layer) by lithography. Then,
the wafer was wet etched by the BOE solution (buffered oxide etch, NH4F:HF = 6:1, v/v), and the
photoresist was removed by the acetone. Next, the wafer was wet etched using the TMAH solution at
90 ◦C for 60 min. Then, the remaining SiO2 layer was removed by the BOE solution to obtain the Si
wafer with the micro-pyramid-structure. Next, the PDMS elastomer and the curing agent were mixed
at a weight ratio of 10:1 and stirred for 20 min, and then they were spin-coated on the Si wafer (800 rpm
for 20 s). After curing at 90 ◦C for 30 min, the PDMS film was peeled off from the Si wafer. Then,
the Al film (200 nm) was sputtered on the back and front of two PDMS films. Finally, the spacer layer
(PET, 50 µm) was placed at the middle of two PDMS films, and the device was coated by the plane
PDMS film. In this work, as shown in Table S1, PDMS acted as the negative friction material due to its
great ability to gain electrons, and Al acted as the positive friction material due to its great ability to
lose electrons. Overall, the developed sensor consisted of two triboelectric layers with electrodes and
a spacer layer. Figure 1b–d show the scanning electron microscopy (SEM) images of the PDMS film
with the micro-pyramid-structure (70 × 70 × 42 µm at intervals of 27 µm) at different magnifications.
The uniform and high-density topography of the PDMS surface greatly affect the output of the sensor.
Digital photographs of this TENG-based sensor are shown in Figure 1e, and these indicate that it has a
thin thickness. Figure 1f,g show the sensor was wrapped around a glass rod and bent by hand, which
indicate that it has excellent flexibility. The small size and light weight of the sensor are shown in
Figure S1a–c.

The working mechanism of the developed TENG-based sensor is the same as that of other
contact-separation mode TENGs [28,29]. As shown in Figure S2, when the two friction layers contact
and rub with each other, the equal amount of charges with opposites polarities accumulate on the
surface of two friction layers. The positive charges will accumulate on the Cu surface, and negative
charges will accumulate on the PDMS surface due to the triboelectric effect. When the two friction
layers are separated from each other, the electrons flow from the PDMS film to the Cu film through
an external circuit to balance the static charges. The alternating signals are generated by way of the
continuous contact-separation of the two friction layers. If we define the relative dielectric constant of
the cavity as εc, the surface charge density is σ, and the distance of the two triboelectric layers is x(t).
Then, the open-circuit voltage VOC can be expressed as:

VOC =
σx(t)
εc

Hence, the output voltage is directly related to the surface charge density and the distance of the
two triboelectric layers. The introduction of a micro-pyramid-structure on the friction layer surface
is an effective way to increase the specific surface area and thus enhance the surface charge density
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during the contact of the two friction layers [30]. What is more, aluminum and PDMS were selected as
the triboelectric pair because they are located at the opposite ends of the triboelectric series. Hence,
they show an excellent capacity to lose or gain electrons when contacted with each other.

According to the above equation, the distance of two friction layers (spacer thickness) also affects
the sensor’s output performance. To characterize the output of the sensor under different spacer
thicknesses, a linear motor was used to provide quantitatively periodic external forces to apply to
the sensor. The measurement (2611B) was used to precisely obtain the output voltage and output
current. The sensor size was 2.0 × 1.8 cm2; the effective contact area was 1 × 1 cm2; and the applied
periodic force was 10 N during the electrical test. Figure 2a,b respectively, present the short-circuit
current (ISC) and the open-circuit voltage (VOC) performances of the sensor under different spacer
thicknesses. Both ISC or VOC showed the tendency of first increasing and then decreasing, and the
maximum output could be obtained under the 50 µm spacer thickness. However, according to the
above formula, the output was proportional to the spacer thickness. The test results did not match the
theory. This difference was due to the fact that sensor could not be equivalent to the parallel plate
capacitor with the increase of spacer thickness [31]. That is to say that the edge effect of capacitance
directly affected the sensor output performance. Hence, the thickness of spacer layer was selected as
50 µm to obtain the optimal output performance. Figure 2c,d present the ISC and VOC of the sensor
with different connection modes (forward connection and reserve connection), which demonstrate that
the output electric signals truly belonged to the device.
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different spacer thicknesses, respectively (10, 20, 30, 40, 50 and 60 µm). (c,d) The ISC and VOC of the
sensor with forward/reverse connection modes.
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Considering its practical application, the sensor is supposed to be operated under different
frequencies. Figure 3a presents the electrical output performances of the sensor at the operating
frequencies from 1 to 3 Hz. The results show that the peak-to-peak value of the VOC was independent
of the frequency. According to the previous research, the influencing factors of VOC are the amount
of transfer charges and the capacitance between two electrodes at different spacer thicknesses [3,32].
Therefore, the VOC is irrelevant to the frequency (time). In order to evaluate the output power,
the TENG usually connects with external loads from 1 KΩ to 1 GΩ in series as a power supply (the
effective contact area was 4 × 4 cm2 in the test; as shown in Figure S3, the two triboelectric layers were
separately fastened on the fixed end and active end; the schematic diagram of contact-separation mode
is shown in Figure 3b). The output power can be calculated from VOC

2/R, where R is the external load
resistance. As shown in Figure 3c, the tendency of output power first increased and then decreased;
the power could reach up to maximum when the external load resistance was about 30 MΩ. Capacitors
are a common energy storage unit which can store the power energy generated from the developed
TENG. The charging curves (Figure 3d) show the time required for the developed TENG to charge
different capacitors via a bridge rectifier circuit. The schematic diagram of the bridge rectifier circuit
is shown in Figure 3e. The alternating electricity could charge a 1 µF capacitor to ~20 V in seven
min with the continuous contact-separation process. The charging time increased as the value of the
capacitor increased. Then, the stored energy in capacitor could further support the power for the
commercial equipment (calculator, hygrothermograph, electronic watches and so on). Furthermore,
as a force–electricity conversion device, we utilized 110 green LEDs that connected in series as an
external load to validate the feasibility of the developed TENG as a power source. As shown in
Figure 3f and Video S1, the 110 LEDs could be directly lit up when the TENG performed the continuous
contact-separation process.

Sensitivity, linearity and stability are important indexes to evaluate sensor performance. As shown
in Figure 4a,b, we tested the electric performances of the TENG-based sensor under different pressures
(1–900 kPa). The relationship between pressure and peak-to-peak voltage/current is shown in Figure 4b,c.
After the data fitting process, it is clearly shown that the sensor had good linearity of 0.99522 in the
voltage and 0.98149 in the current in the low-pressure region (1–900 kPa). In the high-pressure region,
the linearity looked very high, but the fitting data were very low (0.7913 in the voltage and 0.89051
in the current). The reason for this is that there were not enough sufficient data points (samples).
Additionally, a stability test under the cycled pressure was conducted and displayed no obvious
decline until 30,000 cycles (the pressure: 100 kPa; Figure 4e). The inset of Figure 4e shows the enlarged
graphs of start and end cycles. The image of the sensor after the stability test is shown in Figure S4a,
and the weight of the sensor is shown in Figure S4b. Figure S4c shows the image of the micro-structure,
indicating that the surface micro-structure had no obvious change.

Due to its excellent electric performance (high output, high sensitivity and good linearity),
high flexibility and good stability, the developed TENG-based sensor can be easily attached to the
human joint or cloth, and it can used for various mechanical energy harvests and human body
movement detections. As shown in Figure 5a, the TENG-based sensor can be fixed to the finger by 3M
tape to monitor bending status in real time. The voltage can reach up to ±4V, and the positive voltage
and negative voltage correspond with the bending status and release status, respectively. Furthermore,
the sensor can not only monitor finger movement but also detect different motion states. For instance,
the developed sensor can be attached on the knee to detect different motion states. The bending of
knee brings the contact and separation of the two triboelectric layers; the different motion states lead
to the different peak-to-peak values and frequencies of the obtained signals. Hence, as shown in
Figure 5b and Videos S2 and S3, the peak-to-peak values of the obtained signals were as follows: Jump
< walk < run; the frequencies were follows: Walk < jump < run. Hence, we can obtain the detailed
movements information from the shapes and frequencies of the obtained signals. Consequently,
the above results demonstrate the promising application of the flexible and self-powered TENG-based
sensor in harvesting human mechanical energy and detecting human motion.
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Figure 3. (a) The open-circuit voltage of the developed TENG at different motion frequencies (1–3 Hz).
(b) The schematic diagram of the contact-separation mode under the charging curves test and the
lighting test. (c) The variation curve of the pear power and output voltage with the different external
loads (the effective contact area was 4 × 4 cm2). (d) The charging curves of capacitors charged by the
developed TENG (the effective contact area was 4 × 4 cm2). (e) The schematic of bridge rectifier circuit.
(f) The 110 LEDs were directly lit up by the developed TENG under the contact-separation process.
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Figure 4. (a) The open-circuit voltage of the sensor under different applied forces. (b) The short-circuit
current of the sensor under different applied forces. (c) The linear fitting analysis of peak-to-peak
open-circuit voltage. (d) The linear fitting analysis of peak-to-peak short-circuit current. (e) The stability
test under the cycled loading and unloading (insets show the enlarged first and last eight cycles).
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4. Conclusions

In summary, this paper demonstrated a novel triboelectric nanogenerator composed of two
micro-structured PDMS films and a spacer layer. The PDMS elastomer brings the highly skin-conformal
characteristics to the developed TENG device. The working principle of the triboelectric effect induced
by interaction between micro-structured PDMS and Cu films was fully analyzed. The introducing of
the micro-pyramid-structure on the PDMS surface allows for excellent electric output performances.
When cycled pressure is applied, the developed TENG can charge the 1 µf capacitor for seven min and
directly light up 110 green LEDs with a real contact area of 4 × 4 cm2. Further considering its excellent
output performance and high flexibility, the developed TENG can be easily attached to the human joints
to monitor posture changes in real-time. Due to its wearable and flexible nature, the well-designed
TENG provides a new way to achieve a power supply for wearable electronic devices and act as an
active sensor to monitor human gesture movements.
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