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Abstract: Antimicrobial and multidrug-resistant bacteria are a major problem worldwide and, conse-
quently, the surveillance of antibiotic-resistant bacteria and assessment of the dissemination routes
are essential. We hypothesized that migratory birds, coming from various environments, would carry
more numerous Vibrio strains than sedentary species, with increased risk to be passed to their contacts
or environment in habitats they transit or nest in. Similarly, we presumed that strains from migratory
birds will show multidrug resistance. A total of 170 oral and rectal swabs were collected from wild
birds captured in different locations of the Danube Delta (Malic, Sfantu-Gheorghe, Letea Forest)
and processed using standardized selective media. V. cholerae strains were confirmed by serology
and molecular methods and, subsequently, their susceptibility was evaluated. The prevalence of
Vibrio species by host species, habitat type, and location was interpreted. The isolated Vibrio species
were identified as Vibrio cholerae 14.33%, V. fluvialis 13.33%, V. alginolyticus 12%, V. mimicus 17.33%,
V. vulnificus 10.88%, with V. parahaemolyticus and V. metschnikovii (16%) also being prevalent. Of
the 76 Vibrio spp. isolates, 18.42% were resistant towards at least three antimicrobials, and 81.57%
demonstrated a multidrug resistance phenotype, including mainly penicillins, aminoglycosides, and
macrolides. The results of the present study indicate higher numbers of Vibrio strains in migratory
(74.66%) than in sedentary birds (25.33%), confirming our hypothesis. Furthermore, the increased
pathogenicity of Vibrio spp. strains, isolated from wild migratory and sedentary birds, was confirmed
by their increased multiple antibiotic resistance (MAR) index (0.09–0.81).

Keywords: Vibrio spp.; bacteria; wild birds; multidrug resistance; Danube Delta

1. Introduction

The Danube is the second largest river in Europe, after the Volga, and also one of
the most important rivers in Romania [1,2]. The Danube flows into the Black Sea through
three branches: Chilia, Sulina, and Sfîntul Gheorghe, thus forming the Danube Delta. The
Danube Delta is located in the northwestern part of the Black Sea basin and it is delineated

Antibiotics 2021, 10, 333. https://doi.org/10.3390/antibiotics10030333 https://www.mdpi.com/journal/antibiotics

https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com
https://orcid.org/0000-0002-7919-7381
https://orcid.org/0000-0002-4181-0259
https://orcid.org/0000-0001-7210-7470
https://orcid.org/0000-0002-4603-0956
https://orcid.org/0000-0002-7749-8543
https://orcid.org/0000-0003-4306-0575
https://doi.org/10.3390/antibiotics10030333
https://doi.org/10.3390/antibiotics10030333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antibiotics10030333
https://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/article/10.3390/antibiotics10030333?type=check_update&version=1


Antibiotics 2021, 10, 333 2 of 14

by Sasik Lake, Midia Cape, and Ceatal Ismail (south) and by Chilia in the east [3]. In the
Delta region, the Danube River splits into three main arms: Chilia (Kilia), Sulina, and Sf.
Gheorghe (St. George) [4].

Letea Forest is the oldest natural reservation and protected area in the Danube Delta
Biosphere Reserve. It is located between Sulina and Chilia branches of the Danube. It
covers an area of approximately 2825 ha (6980 acres). On the other hand, the Sf. Gheorghe
area represents a highly touristic region, with thousands of visitors coming in every year to
enjoy the wonders of this peculiar location [5].

The Danube Delta is considered a paradise for birds, being visited annually by more
than 330 species of wild migratory birds [6]. The Sfântu Gheorghe arm mouth [7] is
an important starting point for the migration of Palearctic birds. Since the carriage of
bacterial pathogens has been demonstrated in the case of several wild bird species, they
may contribute to environmental contamination and transfer to humans [8,9], thus playing
an important role in the epidemiology of human-associated zoonoses [10–12].

Vibrio species are natural residents of aquatic environments [13,14], characterized
by high salinity and temperatures varying from 10 to 30 ◦C [15–17]. Numerous species
(V. cholerae, V. harveyi, V. parahaemolyticus, V. alginolyticus, V. anguillarum, V. splendidus,
V. mimicus, V. vulnificus, V. hollisae, and V. fluvialis, etc.) are responsible for severe in-
fections in humans and animals [17–19]. Among these, Vibrio cholerae is the etiological
agent for cholera, while V. parahaemolyticus, V. mimicus, V. vulnificus, V. hollisae, V. furnissii,
V. metschnikovii, and V. fluvialis can cause acute gastroenteritis in humans following con-
sumption of contaminated seafood [20–23], as well as V. alginolytius and V. damsel, which
may be involved in wound and eye infection after exposure to sea water [18]. Another mem-
ber of the genus, V. harveyi, may provoke mass mortality in marine invertebrates [24,25].

In addition to the many facets of their virulence, different species are character-
ized by antibiotic resistance. Drug-resistant strains of V. cholerae occur with increasing
frequency [26–28]. Resistance genes to several antibiotics are located on large conjuga-
tive SXT elements that are integrated into prfC on the V. cholerae chromosome [27–32].
V. cholerae becomes drug-resistant by exporting drugs through efflux pumps, by chromoso-
mal mutations, or by developing genetic resistance [33,34]. Streptomycin B resistance gene
strB [27,33,35], sulfonamide resistance gene sul2, and trimethoprim resistance genes dfrA1
and dfr18 [27,36,37] also play a role in the acquisition of antibiotic resistance.

Such aspects are described for Vibrio species isolated from aquatic environments
(surface water, sediment) and habitats from several regions [27,38–40] but no report char-
acterizes the presence of Vibrio spp. strains isolated from wild birds captured in different
locations of the Danube Delta, Romania. Therefore, we hypothesized that migratory birds,
coming from various environments, would carry more numerous Vibrio strains than seden-
tary species, with increased risk to be passed to their contacts or environment in habitats
they transit or nest in. Similarly, we presumed that strains from migratory birds will show
multidrug resistance (MDR). The research carried out aimed at verifying these hypotheses.

2. Materials and Methods

A total of 170 samples from wild birds were collected over a two-week period, during
both spring and autumn, in Sfantu Gheorghe and Letea Forest of the Danube Delta (Figure 1).

The samples were collected from 44 migratory birds and 41 sedentary birds, such as
the Eurasian sparrowhawk (Accipiter nisus), common chaffinch (Fringilla coelebs), great tit
(Parus major), reed bunting (Emberiza schoeniclus), common snipe (Gallinago gallinago), wood
sandpiper (Tringa glareola), black-crowned night heron (Nycticorax nycticorax), squacco
heron (Ardeola ralloides), Eurasian hobby (Falco subbuteo), hooded crow (Corvus corone
cornix), Eurasian teal (Anas crecca), common greenshank (Tringa nebularia), Eurasian tree
sparrow (Passer montanus), lesser whitethroat (Sylvia curucca), red-backed shrike (Lanius
collurio), icterine warbler (Hippolais icterina), red-footed falcon (Falco vespertinus), garden
warbler (Sylvia borin), common whitethroat (Sylvia communis), common kingfisher (Alcedo
atthis), Eurasian blackcap (Sylvia atricapilla), barred warbler (Sylvia nisoria), black-and-white
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magpie (Pica pica), western jackdaw (Corvus monedula), Eurasian blue tit (Parus caeruleus),
long tailed tit (Aegithalos caudatus), bearded reedling (Panurus biarmicus), hawfinch (Coc-
cothraustes coccothraustes), and song thrush (Turdus philomelos), were sampled from both
indicated areas. Both oral and cloacal swabs were collected individually from apparently
healthy birds (n = 85) captured using mist nets according to standard practices. The birds
were captured for scientific purposes (banding) by the Romanian Ornithological Centre
(Institute of Biology, Romanian Academy of Sciences), were evaluated morphologically
and physiologically, and were released upon the completion of the operation.
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Figure 1. Sampling sites in the Danube Delta (Letea and Sfantu Georghe marked in purple, a total of
199 samples were collected from wild sedentary and migratory birds).

For initial bacterial isolation, the samples were inoculated in sterile alkaline peptone
water (pre-enrichment) (APW, Oxoid) and incubated for 24 h at 30 ◦C. A total volume
of 150 µL of enriched samples was added to thiosulphate–citrate–bile salts–sucrose agar
(TCBS, Oxoid) and incubated for another 24 h for isolation of sucrose- and non-sucrose-
fermenting Vibrio spp. detected based on the assessment of the cultural characteristics
(green, yellow, bluish, and colorless colonies).

The strains presenting typical aspect (large yellow colonies, 2–3 mm diameter, colonies
with blue to green centers, 3 mm diameter, large yellow mucoidal colonies, green colonies,
2–3 mm) were selected and cultured at 37 ◦C on trypticase soy agar (TSA, Oxoid) sup-
plemented with 2% NaCl. All isolates were subjected to an oxidase test (Microbact) and
species identification was carried out using the Rapid One NF Plus (ThermoFischer Scien-
tific, Remel) system. Oxidase-positive isolates were further confirmed serologically by a
slide agglutination test using Vibrio cholerae polyvalent agglutinating sera (Oxoid).

Vibrio spp. strains were subjected to PCR analysis using bacterial cell lysate as the
source of template DNA. PCR primers for outer membrane protein (ompW) and regulatory
protein (toxR) were used as described previously [41]. The ompW gene is involved in
increasing the adaptability of virulent strains to different environmental conditions. The
toxR gene is responsible for virulence through the production of specific proteins [42].

Bacterial DNA amplification was performed in a 25 µL reaction mixture containing
3 µL of template DNA (lysate) and 1 µL of each primer. The reaction mixture was subjected
to amplification for 30 cycles, each of which consisted of three steps in the following order:
denaturation of template DNA at 94 ◦C for 30 s, annealing of the template DNA at 64 ◦C
for 30 s, and extension of the primers at 72 ◦C for 30 s. The amplified DNA fragments
were separated on 1.5% agarose gel (Lonza) and visualized by staining with 5 µL RedSafe
(Intron). One 100 bp DNA ladder (Bioline) was used as a DNA molecular weight standard.
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The sensitivity patterns of the isolated Vibrio spp. strains were evaluated using the
Kirby–Bauer disk diffusion technique on Mueller–Hinton agar (Oxoid) towards eleven
antimicrobials: penicillin (P), 10 UI (Oxoid), erythromycin (E), 15 µg (Oxoid), ampicillin
(AMP), 10 µg (Oxoid), chloramphenicol (C), 30 µg (Oxoid), amikacin (AK), 30 µg (Oxoid),
kanamycin (K), 30 µg (Oxoid), oxytetracycline (OT), 30 µg (Oxoid), tetracycline (T), 25 mcg
(Oxoid), enrofloxacin (ENF), 5 µg (KRKA), marbofloxacin (MAR), 5 µg (KRKA), and
ciprofloxacin (CIP), 5 µg (Oxoid), belonging to six antimicrobial drug classes (tetracyclin,
cloramphenicol, macrolides, penicillins, floroquinolones, aminoglycosides). The results
were interpreted in accordance with CLSI 2020 guidelines. The multiple antibiotic resistance
index was assessed based on the procedure described by Krumperman [43], calculating the
MAR index as the number of antibiotics to which the isolate was resistant/total number of
antibiotics against which the isolate was tested. Values lower than 0.2 were considered to
represent low risk while those higher than 0.2 indicated a high risk [43]. Similarly, the MAR
index for each antibiotic was calculated as the number of isolates resistant to the selected
antibiotics, divided by the sum of the number of used antibiotics multiplied by the number
of isolates [44]. Multidrug resistance (MDR) and extensive drug resistance (XDR) were
considered as resistance to at least one agent in three or more antimicrobial categories or a
lack of susceptibility to at least one agent in all but two or fewer antimicrobial categories,
respectively, as according to Magiorakos and coworkers [45]. The results were analyzed
with GraphPad Prism 5.00 software (GraphPad Software Inc., La Jolla, CA, USA) and
Microsoft Excel. Average values were used to simplify the interpretation of the grouped
data (GraphPad), while the graphical construal was supported by Excel.

3. Results

The present studies were conducted to assess the avian wildlife reservoir of Vibrio spp.
in the Danube Delta and also evaluate their resistance to antibiotics.

The results of the microbiological assessment of the oral and cloacal samples are
presented in Table 1.

Table 1. Vibrio spp. isolated from cloacal and oral specimens collected (n = 170) from wild birds in Danube Delta Biosphere,
Romania (samples harvested from migratory and sedentary birds, isolated and characterized bacterial strains isolated by
microbiology and molecular biology techniques).

Species Habitat
Type

No. Captured
Birds

Positive Samples
for Vibrio spp. Bacterial Isolate

PCR

ompW toxR

Squacco heron
(Ardeola ralloides)

Migratory 2 2

V. cholerae + +

V. alginolyticus - +

V. parahaemolyticus - -

Common greenshank
(Tringa nebularia)

Migratory 2 2
V. fluvialis - +

V. alginolyticus - -

Reed bunting
(Emberiza schoeniclus)

Migratory 2 1

V. metschnikovii - -

V. fluvialis - -

V. parahaemolyticus - -

Song thrush
(Turdus philomelos)

Migratory 2 1

V. cholerae + -

V. alginolyticus - -

V. mimicus - -

Eurasian hobby
(Falco subbuteo)

Migratory 2 2

V. cholerae + +

V. fluvialis - -

V. alginolyticus - -

V. mimicus - -
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Table 1. Cont.

Species Habitat
Type

No. Captured
Birds

Positive Samples
for Vibrio spp. Bacterial Isolate

PCR

ompW toxR

Wood sandpiper
(Tringa glareola)

Migratory 2 2
V. mimicus - -

V. vulnificus - -

Black-crowned night heron
(Nycticorax nycticorax)

Migratory 2 2
V. vulnificus - -

V. parahaemolyticus - -

Common snipe
(Gallinago gallinago)

Migratory 3 2
V. cholerae + +

V. mimicus - -

Eurasian sparrowhawk
(Accipiter nisus)

Migratory 2 1
V. cholerae + -

V. parahaemolyticus - -

Common chaffinch
(Fringilla coelebs) Migratory 2 2 V. mimicus - -

Eurasian teal
(Anas crecca)

Migratory 2 1

V. mimicus - -

V. vulnificus - -

- -

Eurasian tree sparrow
(Passer montanus)

Sedentary 2 2
V. cholerae + -

V. fluvialis - -

Lesser whitethroat
(Sylvia curucca)

Migratory 1 1

V. metschnikovii - -

V. mimicus - -

V. vulnificus - -

Red-backed shrike
(Lanius collurio)

Migratory 1 1

V. fluvialis - -

V. alginolyticus - -

V. metschnikovii - -

V. parahaemolyticus - -

Icterine warbler
(Hippolais icterina) Migratory 3 2 V. parahaemolyticus - -

Red-footed falcon
(Falco vespertinus)

Migratory 2 2

V. cholerae + -

V. fluvialis - -

V. alginolyticus - -

V. metschnikovii - -

Garden warbler
(Sylvia borin)

Migratory 4 3
V. vulnificus - -

V. parahaemolyticus - -

Common whitethroat
(Sylvia communis)

Migratory 5 4
V. alginolyticus - -

V. metschnikovii - -

Common kingfisher
(Alcedo atthis)

Migratory 1 1

V. cholerae - -

V. fluvialis - -

V. metschnikovii - -

V. mimicus - -

Eurasian blackcap
(Sylvia atricapilla) Migratory 1 1 V. parahaemolyticus - -

Barred warbler
(Sylvia nisoria)

Migratory 3 1
V. metschnikovii - -

V. vulnificus - -
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Table 1. Cont.

Species Habitat
Type

No. Captured
Birds

Positive Samples
for Vibrio spp. Bacterial Isolate

PCR

ompW toxR

Black-and-white magpie
(Pica pica)

Sedentary 5 2

V. cholerae + +

V. metschnikovii -

V. parahaemolyticus - -

Western jackdaw
(Corvus monedula)

Sedentary 4 2
V. cholerae - -

V. fluvialis - -

Hooded crow
(Corvus corone cornix)

Sedentary 7 3

V. metschnikovii - -

V. mimicus - -

V. vulnificus - -

V. parahaemolyticus - -

Eurasian tree sparrow
(Passer montanus)

Sedentary 4 2
V. cholerae + -

V. fluvialis - -

Eurasian blue tit
(Parus caeruleus)

Sedentary 2 2

V. metschnikovii - -

V. mimicus - -

V. vulnificus - -

V. parahaemolyticus - -

Long tailed tit
(Aegithalos caudatus) Sedentary 2 0 - - -

Bearded reedling
(Panurus biarmicus)

Sedentary 2 1

V. alginolyticus - -

V. metschnikovii - -

V. mimicus - -

Common chaffinch
(Fringilla coelebs)

Sedentary 3 2
V. cholerae - -

V. mimicus - -

Hawfinch
(Coccothraustes coccothraustes)

Sedentary 8 5

V. alginolyticus - -

V. metschnikovii - -

V. mimicus - -

Great tit
(Parus major) Sedentary 2 2

V. fluvialis - -

V. mimicus - -

Based on the cultural characteristics and the results of the biochemical properties
testing using the Rapid One NF plus system, seven species belonging to the genus Vibrio
were detected and confirmed: Vibrio vulnificus 10.66% (n = 8), Vibrio cholerae 14.66% (n = 12),
Vibrio fluvialis 13.33% (n = 10), Vibrio parahaemolyticus 16% (n = 12), Vibrio mimicus 17.33%
(n = 13), Vibrio metschnikovii 16% (n = 12), and Vibrio alginolyticus 12% (n = 9) (Figure 2).

Most of these strains were isolated from samples collected from Eurasian hobby (Falco
subbuteo), lesser whitethroat (Sylvia curucca), red-backed shrike (Lanius collurio), red-footed
falcon (Falco vespertinus), common kingfisher (Alcedo atthis), hooded crow (Corvus corone
cornix), and Eurasian blue tit (Parus caeruleus).

The majority (59.64%) of Vibrio spp. strains were isolated from migratory birds. Out
of 75 samples, eleven (14.67%) isolates were positive in the PCR employing ompW and toxR
primers. Nine of the DNA samples yielded a single amplicon of 588 bp in an ompW-based
PCR assay and six samples yielded a 336 bp PCR product for toxR. About one third (36.36%)
of the samples were positive for both toxR and ompW (Table 1).
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Figure 2. Vibrio spp. strains isolated from wild birds captured in Danube Delta Biosphere, Romania.

The isolated Vibrio spp. strains were evaluated for their level of antibiotic resistance.
Based on the values of the inhibition diameters as compared against the CLSI guidelines
2020 in the Kirby–Bauer method, the bacterial strains were classified into resistant (R),
intermediate (I), and susceptible (S) categories. The numbers of resistant strains in mi-
gratory and sedentary birds are indicated in Table 2. The percentage of total bacterial
isolates demonstrating resistance or sensitivity to the 11 tested antibiotics is presented in
Figure 3. In the present study, the resistance to erythromycin was the highest (88.16%),
followed by penicillin (86.84%), amikacin (81.57%), and ampicillin (71.05%) and statistically
significantly (p < 0.05) lower percentages were found for kanamycin (23.68%), quinolone
class (enrofloxacine, marbofloxacine, and ciprofloxacine with 19.74%), and tetracycline
class (tetracycline and oxitetracycline, both with 13.15%).

Table 2. Multiple antibiotic resistance (MAR) index of antibiotics against isolated Vibrio spp.

Antimicrobial Class Drug

Total Number of Resistant
Strains Isolated from
Migratory Birds, by

Antimicrobial

Total Number of Resistant
Strains Isolated from
Sedentary Birds, by

Antimicrobial

MAR Index for the
Tested Antibiotics

Penicillins
Penicillin 48 18 0.8

Ampicillin 37 17 0.6

Macrolides Erythromycin 47 20 0.8

Cloramphenicol Chloramphenicol 12 1 0.1

Aminoglycosides
Amikacin 45 17 0.7

Kanamycin 11 7 0.2

Tetracyclines
Oxytetracycline 10 0 0.1

Tetracycline 8 2 0.1

Quinolones

Enrofloxacin 11 4 0.1

Marbofloxacin 10 5 0.1

Ciprofloxacin 9 6 0.1
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Figure 3. Incidence of antimicrobial resistance (represented by classes of antibiotics) in Vibrio spp.
isolates from wild birds.

A MAR index value ≥0.2 was observed in 89.33% of the resistant pathogens. The
MAR index calculated for isolated strains was 0.8 in 4 strains (all V.cholerae strains isolated
from migratory birds Ardeola ralloides, Turdus philomelos, Accipiter nisus), 0.72 in 2 strains
(V. cholerae strains isolated from Falco subbuteo and Accipiter nisus), 0.63 in 2 strains (V.
cholerae strains isolated from Falco subbuteo and Fringilla coelebs), 0.54 in 4 strains, (V. cholerae
isolated from Gallinago gallinago, V. fluvialis isolated from Falco vespertinus, V. mimicus from
Parus major, and Vibrio parahaemolyticus isolated from Sylvia borin), 0.45 in 16 strains, 0.36 in
30 strains, 0.27 in 8 strains, 0.18 in 5 stains, and 0.09 in one strain (V. fluvialis associated
with Alcedo atthis).

The isolates showed a high frequency of resistance to commonly used antibiotics, such
as for each penicillin, erythromycin, and amikacin, between 90.66% and 92.00%, ampicillin
(72%), and enrofloxacin (18.66%). Oxytetracycline, tetracycline, and ciprofloxacin were the
most effective, with 86.66% of the strains being sensitive to oxytetracycline and tetracycline
while 80% were sensitive to ciprofloxacin. The MAR indexes for antibiotics showed values
ranging from 0.1 to 0.8 (Table 2) and the encountered resistance types are presented in
Table 3. The result indicated the presence of MAR, MDR, and also XDR in the isolated
Vibrio spp.

Table 3. Resistance types observed in the isolated Vibrio spp.

Number of Antibiotic Classes to Which
Isolated Strains Showed Resistance

Number/% of Resistant
Strains Resistance Type

1 1 (1.32) -

2 5 (6.58) MAR

3 35 (46.05) MDR

4 21 (27.63) XDR

5 10 (13.16) XDR

6 4 (5.26) XDR
MAR-multiple antibiotic resistance, MDR-multidrug resistance, XDR-extensively drug resistance.

4. Discussion

In our study, we investigated the incidence of clinically important Vibrio spp. in
wild birds captured in the Danube Delta Biosphere Reserve, Romania. Vibrio species
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are described as natural residents of aquatic environments [16,26], with species such
as Vibrio parahaemolyticus and Vibrio vulnificus detected in the natural flora of estuarine
and coastal marine environments worldwide [46,47], and also from the sea and brackish
water and sediments of both tropical and temperate regions, as well as from a variety
of seafood [17,46]. Seven clinically important Vibrio spp. were isolated, predominantly,
V. mimicus, V. parahaemolyticus, and V. metschnikovii, followed by V. cholerae, V. vulnificus,
V. alginolyticus, and V. fluvialis. Our results indicated a high frequency of all these Vibrio
species in both wild migratory and sedentary birds.

The presence of these bacteria has medical relevance, as V. parahaemolyticus, V. cholerae,
and V. vulnificus are the main species associated with seafood-borne infections, while V.
alginolyticus, V. mimicus, and Grimontia hollisae (previously known as V. hollisae) have been
sporadically isolated in disease outbreaks [48]. Vibrio vulnificus is one of the emerging food-
and waterborne zoonotic bacteria, indigenous to estuarine waters and shellfish worldwide;
it is involved in gastroenteritis and primary septicemia after consumption of contaminated
oysters [49–52].

Toxigenic Vibrio cholerae (O1, O139) represent a major public health problem in many
areas of the developing world [53–55]. The importance of wild birds as potential vec-
tors of disease has received recent renewed empirical interest, especially regarding hu-
man health [9,23]. Besides other Vibrio spp., our results indicated the presence of V.
cholerae in both sedentary and migratory birds, but with a higher frequency in migratory
birds. Wild birds possess an important role in the epidemiology of Vibrio spp.-associated
outbreaks [56,57] due to the particularities of their habitat and the interrelations with hu-
man activities (boat fishing, fish processing areas, and shellfish beds). Prolonged survival
and persistence of Vibrio spp. in wild birds facilitate the possible contamination of the
environment, especially in the case of migratory birds regarded as carriers for several
bacterial pathogens, including several Vibrio species. Wild aquatic birds are a vehicle of
V. vulnificus and V. parahaemolyticus in winter [58], so these bacteria can be potentially
transported long distances [59]. Carrier status of V. cholerae in birds has a major implication
for public health. The infection in birds occurs during their feeding in areas polluted by
human or animal V. cholerae O1 carriers. Migratory birds may transport this pathogenic
organism to different areas. Additionally, the transformation of non-O1 V. cholerae to an O1
serovar was demonstrated at the intestinal level of the birds [60].

The results of Nandi et al. (2000) [41] indicate that the toxR gene is involved in the
regulation and expression of several genes of V. cholerae. The ToxR regulon (regulatory
protein) is required in Vibrio cholerae for transcriptional activation of the toxT gene, which,
in turn, activates numerous genes involved in the virulence of the bacterium [61–63]. Nev-
ertheless, a low prevalence (7.9%) of this gene was found in the present study, indicating
a potentially reduced overall virulence of the isolated strains, but not necessarily their
decreased pathogenicity. Several studies indicate different degrees of resistance to an-
tibiotics of isolated Vibrio spp. strains. The results of Li and coworkers [64] indicated
a sensitivity of Vibrio species against streptomycin, rifampicin, kanamycin, tetracycline,
and polymyxin B. These results could not be correlated with the studies of Okoh and
Igbinosa (2010) [24] which reported percentages of resistance of 100, 90, 70, and 80 to
trimethoprim, penicillin, cotrimoxazole, and streptomycin, respectively, in Vibrio fluvialis;
92, 82 90, and 100, respectively, to cephalothin in V. vulnificus, V. parahaemolyticus, V fluvialis,
and V. metschnikovii, as well as resistance to ampicillin in all isolated Vibrio strains. Our
findings were similar to those of Okoh and Igbinosa [24], especially in terms of strains
resistant to penicillin and ampicillin. The authors isolated strains which exhibited various
degrees of resistance toward tested drugs: tetracycline, marfloxin, and chloramphenicol
(50%), penicillin, amikacin, and erythromycin 100%, ciprofloxacin (41.66%), oxytetracycline
(58.33%), and ampicillin (83.33%), with six different resistance patterns being observed. You
and coworkers (2016) [65] also isolated antibiotic-resistant and multidrug-resistant Vibrio
spp. from aquatic environments, with high frequencies of resistance against erythromycin
(81.8–95.7%), ampicillin (42–82%), and mecillinam (42–55%).
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Similarly, the percentage of resistant strains was dependent on the antibiotic rather
than on the class, and high resistance percentages indicated the differences in antimicrobial
potency between the antibiotics in current human and veterinary use. Furthermore, the
MAR values in the present study, as high as 0.2 to 0.8, supported the assumption that
the isolated strains originated from a high-risk source of contamination and presented
increased risk to public health. This hypothesis is further sustained by the presence of MDR
and XDR in a large proportion (Table 3). Deng et al. (2020) [66] isolated Vibrio species, with a
high prevalence of resistance to vancomycin, amoxicillin, midecamycin, and furazolidone,
moderate prevalence of resistance to tobramycin, rifampicin, gentamicin, and tetracy-
cline, and low prevalence of resistance to erythromycin, trimethoprim–sulfamethoxazole,
doxycycline, and chloramphenicol. We found similar results for penicillins, but not for
tetracyclines and erythromycin, were the results showed the opposite, with low and high
prevalence of resistance, respectively.

Matyar et al. (2008) [67] showed multidrug resistance in Gram-negative bacteria
isolated from aquatic environments and shrimp samples. Okoh and Igbinosa (2010) [24]
identified multidrug-resistant non-cholera Vibrio spp. isolates showing resistance to all
the antibiotics traditionally used to treat cholera. The study of Shivakumaraswamy et al.
(2019) [68] revealed a high occurrence of antibiotic resistance in bacteria from animals and
other natural environments.

Miyasaka and coworkers [59] evaluated the spatial and temporal distribution of Vibrio
spp. in wild birds from Japan. The most important species of Vibrio were Vibrio para-
haemolyticus and Vibrio vulnificus. The isolation of these species from feces demonstrated
that the investigated avian species represent a vehicle for V. parahaemolyticus and V. vulnifi-
cus and also a habitat to survive during winter [59]. In this study, we isolated 12 strains
of V. parahaemolyticus and eight strains of V. vulnificus, these strains mainly coming from
migratory birds (Tringa glareola, Nycticorax nycticorax, Sylvia curucca, Sylvia borin, Sylvia
nisoria, Ardeola ralloides, Emberiza schoeniclus, Accipiter nisus, Anas crecca, Hippolais icterina).

The emergence and spread of multidrug-resistant bacteria in natural environments
represent a serious impact on animal and human health [69–71].

Wild birds have been not only postulated, but also demonstrated, as sentinels, reser-
voirs, and potential spreaders of antibiotic resistance [72–76]. Based on the results recorded
by these authors, solid scientific evidence indicates the significant epidemiological role of
wild birds in the dissemination of multidrug-resistant bacteria through migration.

Isolation of resistant bacterial strains from wilds birds highlights the potential haz-
ard to both humans and animals given the transmission to humans and animals and vice
versa [74,75,77]. The fecal shedding of the resistant strains allows environmental contamination.

However, most of these published studies are focused on Escherichia coli and/or
Enterococcus spp. [73,78]. There is little information regarding the antimicrobial resistance
level of Vibrio species isolated from wild birds, therefore, we believe that our study brings
important additional information on the prevalence of Vibrio spp. in wild birds.

Antimicrobial resistance was determined for the Vibrio cholerae strains isolated from
the Danube River in Slovakia [36]. All strains were susceptible only to three antimicrobials:
chloramphenicol, rifampicin, and tetracycline, while resistance was displayed towards
kanamycin and streptomycin [36]. Complementarily, our study evaluates antibiotic re-
sistance to all isolated strains. Antimicrobial resistance is a growing problem worldwide
and represents a major medical and public health problem [24,28,70]; a high prevalence of
multidrug resistance indicates a serious need for antibiotic surveillance programs [79].

5. Conclusions

Our study confirmed the presence of MDR Vibrio spp. in migratory and sedentary
wild birds captured from two different locations in the Danube Delta. Both migratory
and sedentary birds from sampling sites were positive for a broad spectrum of potentially
pathogenic Vibrio spp., indicating a great risk to public health. The present results indicate
that wild-living birds may be a latent source for further microbial pollution of various
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habitats, including nesting places, and thus transfer it to offspring in the Danube Delta
region. Further studies are intended to assess the antibiotic resistance determinants to
underline the role of wild birds as a reservoir of multidrug-resistant Vibrio spp., including V.
cholerae. Additional samples should be taken for a better assessment of carriage frequency.
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