
materials

Article

Numerical Simulation of Dynamic Mechanical
Properties of Concrete under Uniaxial Compression

Yijiang Peng 1, Qing Wang 1 , Liping Ying 1,*, Mahmoud M. A. Kamel 1,2 and
Hongtao Peng 3

1 Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education,
Beijing University of Technology, Beijing 100124, China; pengyijiang@bjut.edu.cn (Y.P.);
wangq@emails.bjut.edu.cn (Q.W.); mahmoud.kamel@fayoum.edu.eg (M.M.A.K.)

2 Department of Civil Engineering, Faculty of Engineering, Fayoum University, 63514 Fayoum, Egypt
3 College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China;

pwb@cau.edu.cn
* Correspondence: qiaoliang@rcees.ac.cn; Tel.: +86-188-1142-3517

Received: 29 January 2019; Accepted: 15 February 2019; Published: 20 February 2019
����������
�������

Abstract: Based on the base force element method (BFEM), the dynamic mechanical behavior of
concrete under uniaxial compression loading at different strain rates is investigated. The concrete
can be considered as a three-phase composite material composed of aggregate, cement mortar, and
interfacial transition zone (ITZ) on the meso-level. A two-dimensional random aggregate model is
generated by the Monte Carlo method. A multi-linear two-dimensional damage model is applied
to describe the damage properties of each phase in the concrete. The strain-softening behavior,
strain-rate effect, and failure patterns of the concrete are studied. The numerical results find that the
peaks of compressive stress and compressive strain of concrete show the rate-sensitivity in various
degrees under different strain rates. The calculated results of the dynamic enhancement factors are in
a good agreement with the formula given by the Comité Euro-International du Béton (CEB) and other
experimental results. The failure diagram of the specimen clearly describes the compressive failure
process of the concrete specimen. This failure’s characteristics are similar to the experimental results.

Keywords: concrete; base force element method; strain-rate effect; meso-damage; dynamic behavior;
numerical simulation

1. Introduction

In practice, the concrete used in infrastructure is usually subjected to dynamic loading, including
impact loading and sustained loading. The previous obtained results show that the mechanical
properties and damage characteristics of concrete under dynamic loading are very different from those
under static loading [1,2]. Therefore, it is of interest to investigate the dynamic behavior of concrete
under dynamic loading at high strain rates.

Hitherto, much research based on the traditional experimental test has been conducted. Abram [3]
was the first to find out the compressive strength of concrete and show the strain rate sensitivity under
dynamic loading. Bischoff et al. [4] concluded that the strain rate plays a significant role in both the
dynamic ultimate strength and the dynamic deformation behavior of plain concrete at high strain
rates. Ross et al. [5] and John et al. [6] respectively carried out Split-Hopkinson pressure bar (SHPB)
tests to study the dynamic behavior of concrete under tensile stress. Malvar et al. [7] and Williams [8]
respectively conducted literature reviews to investigate the strain-rate effects on the dynamic increase
factor (DIF) of strength and elastic moduli; thus, the empirical equations were given correspondingly.
In addition, the mechanical properties of the interfacial transition zone (ITZ) and the effect of the ITZ
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on the properties of rock-concrete materials were investigated [9]. Erzar et al. [10] developed direct
tensile tests, spalling tests, and edge-on impact tests at high strain rates. The influence of the ITZ
between the aggregates and the cement mortar on the uniaxial dynamic tensile strength of concrete
was also studied. The SHPB apparatus was used to study the mechanical properties of cement-based
materials. Deformation and stress distribution in the specimens are non-uniform due to the composite
microstructure of the materials. The strength and failure patterns were also studied in both quasi-static
and dynamic loadings [11–17]. Li et al. [18] used both cylinder and cube concrete specimens to conduct
compressive tests and the effects of the specimen shape and size on concrete strength subjected to
different loading rates were investigated. Jurowski and Grzeszczyk [19] concluded that the stabilized
dynamic elastic modulus of concrete is proportional to the initial static elastic modulus, and the
coefficient of proportionality is affected by the type of aggregates. Using various inner diameters of
specimens, Zhang et al. [20] investigated the inertial effect on the tensile strength of concrete materials
under dynamic loading.

In recent years, numerical analysis with computer modeling has become an efficient method to
study the properties of concrete. On the basis of a damage parameter, Simo and Ju [21,22] proposed
a continuum isotropic model and an anisotropic elastoplastic-damage model, and the results are
consistent with the existing experimental data. The mechanical properties of small-eccentric loaded
reinforced concrete (RC) columns and the dynamic behavior of steel fiber-reinforced concrete (SFRC)
beams under impact loading were investigated using Abaqus software [23,24]. Furthermore, finite
element theory is one of the major methods used to analyze the mechanical properties of cement-based
composite material [25–28]. In the meso-scale, concrete can be deemed as a three-phase composite
which comprises aggregate and cement mortar, with an ITZ between both. Regarding concrete studies,
several scholars around the world have emphasized the relationship between microstructure and
macroscopic mechanical properties of concrete under dynamic loading with a numerical method.

Georgin et al. [29] exploited a viscous plastic model to simulate the SHPB test and studied the
influence of inertial force and strain rates on concrete dynamic behavior. Snozzi et al. [30,31] and
Gatuingt et al. [32,33] proposed a computational model to investigate the mechanical properties
of concrete, composed of aggregate and mortar paste matrix, under dynamic loading of tension
and compression. Also, Park et al. [34] analyzed the influence of impact loading at high strain
rates on concrete-like materials using a dynamic finite element simulation. Zhou et al. [35,36] and
Hao et al. [37,38] adopted numerical methods to analyze the influence of the ITZ on the dynamic failure
patterns of the concrete, which is considered as a three-phased composite consisting of aggregate,
mortar, and ITZ. Additionally, with the energy theory and the micro prestressed-solidification theory
applied, Cusatis [39] utilized the developed Confinement Shear Lattice (CSL) model to analyze
the effect of strain rates on the strength and failure behavior of concrete. However, Wu et al. [40]
established a new experimental method of numerical simulation to identify the rate sensitive to the
concrete dynamic tensile behavior. In this regard, in order to simulate the dynamic behavior of concrete
under tensile, Zhou et al. [41] presented a two-dimensional meso-scale finite element model, validated
by comparing with the experimental data from spall tests. Chen et al. [42] formulated a new dynamic
compressive constitutive model applied to investigations of strain-rate effects and damage effects
within the specimen.

To date, the relationship between the failure mechanism of concrete and the stress distribution at
high strain rate is not clear; however, the mesoscopic components remarkably affect the macroscopic
mechanical properties of plain concrete. Therefore, on the meso-level, it is important to know the
dynamic behavior of the concrete.

In this paper, according to the investigations of concrete-like materials, under static loading with
the base force element method (BFEM) proposed by Peng et al. [43–45], a dynamic base force element
model is developed. In addition, the failure process of concrete under uniaxial dynamic loading at high
strain rates is simulated. Strain-softening behavior and the failure process of modeled concrete under
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uniaxial compressive loading is also investigated. Finally, the effects of different loading velocities on
compressive strength and the stress distribution in the specimens are studied.

2. Establishment of the Dynamic Base Force Element Equilibrium Equation

Generally, the behavior of real physical structures subjected to loadings or displacements is
almost dynamic. According to the D’Alembert’s principle, considering the actions of inertial force and
damping force, the balance equation of a single-degree-of-freedom system can be obtained as follows:

[M]
{ ..

u(t)
}
+ [C]

{ .
u(t)

}
+ [Kd]{u(t)} = {P(t)} (1)

in which
{ ..

u(t)
}

,
{ .

u(t)
}

, and {u(t)} respectively indicate the acceleration vector quantity, the velocity
vector quantity, and the displacement vector quantity of each node in structure; [M] means global
mass matrix; [C] means the damping matrix; [Kd] is the global stiffness matrix based on the base force
as proposed in the paper; and {P(t)} is the dynamic load array of the structure.

Furthermore, the full variable form of the Newmark-β method is adopted to solve the dynamic
equilibrium equation in the study.

2.1. Base Force Element Stiffness Matrix

According to the BFEM, which is based on the potential energy principle, a plane triangular
element matrix KI J [46], expressed by base force, can be obtained as follows (shown in Figure 1):

KI J =
E

2A(1 + ν)

[
2ν

1− 2ν
mI ⊗mJ + mI JU + mJ ⊗mI

]
(2)

where E, ν, and A mean the Young’s modulus, the Poisson’s ratio, and the area of an element,
respectively; U is the unit tensor; uI , uJ , uK represent the displacements of the triangular element vertex.
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For plane strain problems, x and y represent Cartesian coordinate system, and the element matrix
KI J can be expressed as follows:

[
KI J
]e

=
E

2A(1 + ν)

[ 2−2ν
1−2ν mI

xmJ
x + mI

ymJ
y

2ν
1−2ν mI

xmJ
y + mI

ymJ
x

2ν
1−2ν mI

ymJ
x + mI

xmJ
y

2−2ν
1−2ν mI

ymJ
y + mI

xmJ
x

]
(3)

where mI J = mI ·mJ , mI and mJ can be described as follows and are shown in Figure 2:

mI = mI
i ei =

1
2
(LI JnI J + LKInKI) =

1
2
(LI Jn

I J
i ei + LKInKI

i ei) =
1
2
(LI Jn

I J
i + LKInKI

i )ei, (4)

mJ = mJ
i ei =

1
2
(LJKnJK + LI JnI J) =

1
2
(LJKnJK

i ei + LI Jn
I J
i ei) =

1
2
(LJKnJK

i + LI Jn
I J
i )ei, (5){

mI
x

mI
y

}
=

1
2
(LI J

{
nI J

x

nI J
y

}
+ LLI

{
nKI

x
nKI

y

}
), (6)
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{
mJ

x

mJ
y

}
=

1
2
(LJK

{
nJK

x

nJK
y

}
+ LI J

{
nI J

x

nI J
y

}
). (7)

in which I, J, K represent the vertexes of the triangular element; LI J , LKI , LJK are the lengths of the
element boundary lines; nI J , nKI , nJK are the normal vectors of the element boundary lines. Average
strain components, which could take the place of the real strain in the case of small deformation,
are given as follows:

εx =
1
A

n

∑
I=1

(uIxmI
x), (8)

εy =
1
A

n

∑
I=1

(uIymI
y), (9)

γxy =
1
A

n

∑
I=1

(uIxmI
y + uIymI

x). (10)
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2.2. Damping Matrix and Mass Matrix

In the finite element dynamic analysis, lumped mass matrix, one of the most common forms of the
element mass matrix, is applied to simplify the calculation and reduce the storage space. According to
the equivalent static principle, the mass of the element can be evenly distributed among three vertexes
of a triangular element, according to the hypothesis that there is no interaction between the inertial
forces of each vertex.

In dynamic response problems it is generally assumed that the viscous damping force is
proportional to the velocity of particle motion.

Therefore, the effect of damping in the dynamic structural analysis at a high loading rate cannot be
ignored. As a widely used orthogonal damping model, the Rayleigh damping model can be expressed
as follows:

[C] = α[M] + β[Kd], (11)

α =
2ζω1ω2

ω1 + ω2
, (12)

β =
2ζ

ω1 + ω2
, (13)

[M]e =
ρbTA

3g



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (14)
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in which α and β are the mean coefficients of proportionality, which can be calculated from
Equations (6) and (7); ζ means the damping ratio; ω1 and ω2 are the first and the second order angular
frequencies of the specimen.

It should be noted that, in the process of the meso-mechanical failure of concrete, there are few
research works on damping models. The damping theory is a methodology which aims to describe
the microscopic mechanism of damping in a macroscopic way. For the general structural analysis,
Rayleigh damping is usually used to approximately describe the damping characteristics. Normally,
the damping ratio of the engineering structure ranges from 0.01 to 0.1. The average value 0.05 is
applied in this paper.

In this paper, to simplify the model, the influence of damage development on damping matrices
is not considered. Consequently, the initial stiffness matrix of the specimen is adopted in the present
dynamic analysis and the damping ratio is regarded as a constant. It is assumed that the mass matrix
is independent from the damage state due to the conservation of mass.

3. Meso-Structure of Concrete

It is well known that concrete is a multi-phase heterogeneous brittle material. The mechanical
properties of concrete are determined by components in its mixture. In this paper, concrete is described
as a three-phase composite material at the meso-level, composed of coarse aggregates, cement mortar,
and an ITZ between both phases. With the spherical aggregate applied, the microstructure in concrete
can be depicted as in Figure 3. In the model only coarse aggregates with a particle size greater
than 5 mm are represented clearly, while the other smaller aggregates are mixed up in the cement
paste matrix.
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3.1. Random Aggregate Model

In this paper, in order to simulate the real distribution of aggregate as possible, the Monte
Carlo method is used to establish the two-dimensional random aggregate model. Based on the
Fuller three-dimensional aggregate gradation curve, Walraven [47] developed the two-dimensional
cross-section aggregate gradation curve. The cumulative probability of aggregate particles satisfied
the condition of D < D0 (herein D means the diameter of the aggregate) is calculated using the
following formula:

Pc(D− D0) =Pk

[
1.065

(
D0

Dmax

)1/2
− 0.053

(
D0

Dmax

)4
− 0.012

(
D0

Dmax

)6

−0.0045
(

D0

Dmax

)8
+ 0.0025

(
D0

Dmax

)10
] (15)
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in which Pk represents the percentage of the volume of aggregate in the whole concrete specimen; Pc

represents the cumulative probability of aggregate particles with a size smaller than D0; Dmax is the
maximum diameter of the aggregate particles.

The number of aggregate particles meeting the requirement of D1 < D < D2 can be calculated by
the following equation:

n = [Pc(D < D2)− Pc(D < D1)]× A/Ai (16)

where A is the cross-section area of the concrete specimen and Ai is the area of the representative
particle diameter of the aggregate.

According to the theory of Fuller’s maximum density curve, three representative diameters
(10 mm, 20 mm, and 32.5 mm) of aggregates are selected to calculate number of aggregate particles.
The numbers are, respectively, 66, 11, and 3, as obtained from Equation (20). The aggregates calculated
are put into the two-dimensional region, the same size as concrete specimen, by using the Monte
Carlo method with three sets of different random numbers. Each aggregate should be in line with
the boundary conditions and not overlap with the other aggregates before it is put on. The modeled
aggregates are shown in Figure 4.
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3.2. Mesh Generation Method and Element Attributes

In the finite element analysis, two common methods are adopted to deal with the thickness of ITZ
in order to simplify the calculation. One considers the thickness of the ITZ from 0.5 mm to 2 mm [48,49],
and the other does not consider the thickness of the ITZ [50–53]. In this paper, the dynamic behavior
of concrete is studied by using the former method and the size of the mesh element is deemed as the
ITZ thickness to simplify the mesoscopic model.

The finite element mesh is shadowed on the random aggregate model. The different mechanical
properties are assigned to the corresponding elements. A linear elastic triangular finite element grid is
applied in the paper, shown in Figure 5. The type of element is determined by the position of element
nodes. The element could be deemed as an aggregate (or cement mortar) element when the three
nodes of the element are all located at the aggregate (or cement mortar) region; otherwise, the element
is the ITZ when the element is located in the both the aggregate and cement mortar.
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4. Dynamic Behavior for Concrete Meso-Components

4.1. Concrete Dynamic Damaged Model

As known, the mechanical properties of microscopic components have a great influence on the
fracture damage behavior of concrete. Therefore, the heterogeneity of concrete should be taken into
account in this numerical simulation. In this paper, concrete can be treated as a three-phase composite
material composed of coarse aggregate, cement mortar, and the ITZ. Each phase material in concrete
is assumed to be homogeneous and isotropic. The constitutive relation is presented in Figure 6.
The maximum principal stress criterion is applied as the failure criteria in the study. The reduction of
the elastic modulus E of the material in the damage processes can be expressed as follows:

E = E0(1− D) (17)

in which E0 is the initial modulus of elasticity and D is the damage factor, defined as follows:

Dt =


0 εmax ≤ εt0

1− εt0
εmax

+ εmax−εt0
ηtεt0−εt0

εt0
εmax

(1− α) εt0 < εmax ≤ ηtεt0

1− α
ξt−ηt

εmax−ηtεt0
εmax

+ αεt0
εmax

ηtεt0 < εmax ≤ ξtεt0

1 εmax > ξtεt0

(18)

Dc =



1− β
γ εmax ≤ λεc0

1− 1−β
1−λ

εmax−λεco
εmax

− β εco
εmax

λεc0 < εmax ≤ εc0

1− 1−γ
1−ηc

εmax−εco
εmax

− εco
εmax

εc0 < εmax ≤ ηcεc0

1− γεc0
εmax

ηcεc0 < εmax ≤ ξcεc0

1 εmax > ξcεc0

(19)

in which ε0 means the principle strain; η denotes the residual strain coefficient; ξ represents the
ultimate strain coefficient.

In Figure 6, fc and ft stand for compressive and tensile strength; furthermore, the subscripts t
and c respectively symbolize tensile and compressive features. The material parameters are given in
Table 1, which is obtained after calculations.
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Table 1. Mechanical parameters of materials.

Mechanical Parameters Cement Mortar Interfacial Transition
Zone (ITZ) Aggregate

Density ρ (kg/m3) 2100 1700 2700
Poisson’s ratio ν 0.22 0.2 0.16

Strength (tensile/compressive) σ (MPa) 3.2/32 2.5/25 7/70
λ 0.25 0.25 0.80
β 0.85 0.65 0.90
γ 0.35 0.35 0.35
α 0.3 0.3 0.3

ηt/ηc 4/4 3/3 5/5
ξt/ξc 10/10 10/10 10/10

4.2. Dynamic Increase Factor (DIF) for Concrete

In practice, damage patterns and mechanical properties of concrete under dynamic loading
present different forms, which is called the strain-rate effect and is characterized by the dynamic
increase factor (DIF). The dynamic increase factor for the compressive strength is recommended by
Comité Euro-International du Béton [54] as the following:

DIFc = fcd/ fc
′ =


( .

ε.
εs

)1.026α .
ε ≤ 30s−1

γ
( .

ε.
εs

)1/3 .
ε > 30s−1

(20)

in which fcd is the dynamic uniaxial compressive strength and fc
′ is the quasi-static uniaxial

compressive strength;
.
ε is the quasi-dynamic strain rate and

.
εs is the quasi-static strain rate;

fcs is the quasi-static uniaxial compression strength and fc0= 10 MPa. It should be noted that
α = 1/(5 + 9 fcs/ fc0) and lgγ = 6.156α − 2. As known from the empirical formula, the value of
DIFc is 1 when the strain rate

.
ε is 30× 10−6s−1, which is called the quasi-static load modal. In this

paper, the minimum strain rate 10−3s−1 is deemed as the quasi-static strain rate for comparison.
According to the previous study, the strain-rate sensitivity of concrete characteristics, such as the
Poisson’s ratio, elasticity modulus, energy dissipation capacity, and so forth, are much lower than the
tensile and compressive strength of concrete [55].

5. Numerical Examples and Results

5.1. Boundary Conditions and Loading Model

In this section, the dynamic test of concrete subjected to uniaxial compressive loads is simulated
with the BFEM. A standard concrete specimen, with the dimensions 150 mm × 150 mm, is chosen
to conduct the test. The particle diameter of the coarse aggregates ranges from 5 mm to 40 mm.
The boundary conditions are shown in Figure 7. The bottom and top surfaces of the specimen are
restricted only in the y-direction; other surfaces of the specimen are free in all directions. The influence
of friction between the specimen and the loaded end on the compressive strength of concrete is ignored.

Continuous and uniform vertical displacement loading is used on the specimens. The direction of
vertical displacement loading is parallel to the y-axis. Dynamic displacement step-load is applied in
this study and the velocity of displacement loading is well controlled by the duration of each load-step.
Vertical strain rate

.
εm under different loading velocity can be calculated as the following:

.
εm =

2v
h

(21)

where v is the constant loading velocity and h is the height of the specimen. The loading curves of
concrete specimens are shown in Figure 8.
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5.2. Dynamic Failure Behavior of Concrete under Uniaxial Compressive Stress

Based on the meso-mechanical numerical simulation proposed in the present study, the specimen
can be subdivided into triangular finite element meshes where the mesh size is 1 mm. With eight
groups with different loading rates applied, dynamic uniaxial compression tests are carried out on the
concrete specimens. The corresponding macroscopic nominal strain rates are 10−3/s, 10−2/s, 10−1/s,
1/s, 10/s, 30/s, 80/s, and 100/s.

The stress–strain curves of concrete specimens are shown in Figure 9. The peak values of strain and
stress are shown in Figure 10 at the different strain-rates. The damage process of concrete specimens
under different strain-rate compression levels is shown in Figure 11. The failure patterns at different
rates are illustrated in Figure 12. The distribution of the maximum principal stress in the damaged
concrete is shown in Figure 13. It is to be noted that

.
ε means the strain rate, ε is the strain, and σ is the

compressive stress. In Figure 13, the positive numbers represent the elements under tensile stress and
the negative numbers represent the elements are under compressive stress.
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Figure 13. The distribution of maximum principal stress at different strain rates of specimen 1.

The stress–strain curves are similar to the static at low strain rates from 0.01/s to 0.1/s and the
compressive strengths present a small enhancement. However, at the high strain rates from 1/s to
100/s, the curves slow down gradually as the strain rate increases and the stress peak and strain peak
increase significantly, and especially the ratio of dynamic compressive strength at the rate of 100/s to
the static compressive strength is about 2.67. It is also found that the increasing trend of the strain is
more prominent than that of the stress from Figure 10.

The meso-cracks first occur and spread in the ITZ, or the weak link, in cement mortar. Finally, a
region is formed, filled with a concentrative zonal crack, which results in the destruction of concrete.
At the high strain rates from 10/s to 100/s, the number of cracks greatly increases and the cracks are
diffused through the whole concrete specimen—a few cracks even pass through the aggregate area.
Coalescent cracks as a diffusion state can be seen in Figure 12. In addition, from Figures 9 and 12,
there is also a minor effect of the distribution of aggregates on the compressive stress. However, the
distribution of aggregates can significantly affect the initiation and propagation of cracks.

In Figure 14, it can be observed that the curve of the present result goes up precipitously at the
strain rate of 0.1/s. The results obtained show good agreement with the Comité Euro-International du
Béton (CEB) standard and other experimental data at the strain rates from 10/s to 100/s. At the strain
rates from 0.01/s to 10/s, the DIF is lower than the CEB standard.
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6. Discussion

The BFEM for dynamic analysis of concrete introduced in the present study verifies an efficient
numerical simulation method to investigate the damage mechanism of concrete. The strain-rate effect
and the failure characteristics are explored using two-dimensional models. Several conclusions can be
obtained as follows:
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(1) The present results prove that the failure process of concrete under dynamic compression is
simulated well. With the increase of stress, the material enters the nonlinear stage and the stress–strain
curves show a nonlinear increase relationship, simultaneously.

(2) The variation tendency of the DIF of concrete at different strain rates is consistent with the
available experimental test data and the CEB empirical formula.

(3) At high strain rates, cracks increase and, in a diffusion state, some of the elements present
fracture damage and more energy is released, which could enhance the dynamic strength of
the concrete.

(4) The strain peaks of concrete present rate-sensitivity under different strain rates similar to
stress peaks.

For future work, a three-dimensional model of dynamic problems could be addressed by the
BFEM and other conditions could be considered; for instance, considering the shape of aggregates,
complicated boundary constraints, and so on, so as to simulate real concrete as much as possible.
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