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In the post-genomic era, a pressing challenge to biological scientists is to understand the organization of gene functions, the

interaction between gene and nutrient environment, and the genesis of phenotypes. Metabolomics, the quantitation of low

molecular weight compounds, has been used to provide a phenotypic description of a cell or tissue by a set of metabolites. Gene

function is hypothesized from its correlation with the corresponding set of macromolecules by transcriptomics or proteomics.

Another approach to genotype–phenotype correlation is by the reconstruction of genome-scale metabolic maps. The utilization of

specific pathways as predicted by reaction network analysis provides the phenotypic characterization of a cell, which can be plotted

on a phenotypic phase plane. Tracer based metabolomics is the experimental approach to reaction network analysis using stable

isotope tracers. The redistribution of the isotope tracer among metabolic intermediates is used to identify a finite number of

pathways, the utilization of which is characteristic of the phenotypic behavior of cells. In this paper, we review tracer based

metabolomic methods for the construction of phenotypic phase plane plots, and discuss the functional implications of phenotypic

phase plane analysis. Examples of phenotypic changes in response to differentiation, inhibition of signaling pathways and

perturbation in nutrient environment are provided.
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1. Introduction

Since the completion of the Human Genome Project,
it is increasingly recognized that the phenotypes of many
inherited disorders are often not predictable from gen-
ome sequence-based analysis, and the pathogenesis of
disease is often the result of complex interaction between
gene and environment. A fundamental challenge to
biologists is to develop an experimental approach to
establish the phenotypic properties of a cell that allows
the understanding of the organization of gene functions,
the effect of nutrient environment, and the role of cell to
cell interaction in a multicellular organism. In this effort,
metabolomics (metabonomics), the quantitation of low
molecular weight compounds, plays an important role in
providing a set of metabolites in a cell or tissue (Harrigan
and Goodacre, 2003; Goodacre et al., 2004) which is
complementary to the set of macromolecules determined
by transcriptomics or proteomics. It is anticipated from
the theory of metabolic control analysis (MCA) that
changes in levels of metabolic intermediates of a
sequential series of reactions are often more pronounced
than the changes in enzyme kinetics or individual fluxes
(Kell and Westerholf, 1986; Fell, 1996). For this reason,
metabolomics is considered to be a sensitive tool for
detecting genetic mutations and genotype–phenotype
correlation. Many successful applications of metabo-
nomics have been reported in the area of toxicology

research from the Consortium on Metabonomics in
Toxicology (COMET) (Nicholson et al., 2002, Lindon
et al., 2005). Metabolomics has also been applied to
characterize phenotype of organisms with genetic
mutations (Raamsdonk et al., 2001; Allen et al., 2003).
However, despite such successes we are still far from fully
understanding the inner workings (functional pheno-
type) of an organism (Voit and Almeida, 2004).

2. Limitation of analyses substrates and fluxes

Quantitation of metabolic intermediates and deter-
mination of reaction kinetics are the basic tools of
classical biochemistry. The availability of high
throughput analytical methodologies of NMR or mass
spectrometry has greatly expanded the number of
compounds that can be detected and quantitated by
orders of magnitude. Metabolomics, the quantitation
of low molecular weight compounds, and fluxomics
(Sanford et al., 2002), the determination of fluxes, are
natural extension of classical biochemistry except at
much larger scales. To understand the limitation of
classical biochemistry as a tool for the investigation of
system properties of a cell, let us consider the example
of a metabolic network shown in figure 1 (top).

The example is a system of four variables and eight
parameters indicated as four substrate pools (1 to 4) and
the respective eight kinetic constants kij. The functional
properties of the system is represented by a set of flux
equations:
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dS1=dt ¼ k01 � k12S1 ð1Þ

dS2=dt ¼ k12S1 þ k32S3 � ðk24 þ k23ÞS2 ð2Þ

dS3=dt ¼ k23S2 � ðk32 þ k30 þ k34ÞS3 ð3Þ

dS4=dt ¼ k24S2 þ k34S3 � k40S4 ð4Þ

Solving the system requires four metabolite measure-
ments and eight flux measurements, not all of which can
be determined at any one time. Thus, even with a
complete analysis of metabolic intermediates (meta-
bolomics) or a complete analysis of individual fluxes
(fluxomics), the set of equations still remain inherently
underdetermined, and the behavior of the system in
response to changes of substrate or kinetic parameter
cannot be accurately predicted. Metabolomics and
fluxomics have the same limitation of classical bio-
chemistry in addition to the burden of the computa-
tional challenges of large data set (bioinformatics) such
as principal component analysis (PCA), partial least
squares analysis (PLS) and other clustering analyses
(Brown et al., 2005; Harrigan et al., 2005).

2.1. Reaction network analysis

In order to handle the problem of finding the solution
to a large underdetermined set of differential equations,

biologists have turned to the well developed engineering
model of reaction network analysis (Schilling et al, 1999,
2000). The engineering approach to reaction network
analysis is fundamentally different from that of classical
biochemistry. It begins with a definition of the system’s
boundary (figure 1, bottom). The system’s boundary
separates two sets of kinetic parameters of substrate
fluxes (bi’s and vj’s). The vj’s are internal fluxes subject to
stoichiometric constraints and the bi’s are the individual
system input and output of the various substrates
(Palsson et al., 2003). The arrangement of these equa-
tions in terms of bi’s and vj’s permits the application of
linear programming algorithm to solve for values satis-
fying the optimization (maximization or minimization)
of an objective function. The solution of this underde-
termined set of equations, subject to non-zero con-
straints of substrates and products, gives a convex
conical solution space (Famili and Palsson, 2003)
representing all potential phenotypes of the reaction
network (cell). Essentially the problem of describing the
phenotypic behavior of a cell (its metabolic network) is
converted to an input–output analysis of the system.
The use of reaction network analysis in the studies
of cellular metabolism has been extensively reviewed
(Papin et al., 2003; Price et al., 2003; Reed and Palsson,
2003). The phenotypic behavior of a whole cell system
can be understood in terms of its response to substrate
environment changes (b’s) or to transcriptional regula-
tion of the reaction rates of metabolic pathways (v’s).
This is illustrated by the example in figure 2. In this
arbitrary example, there are three principal pathways
(P1, P2 and P3) in the reaction network. The table
accompanying figure 2 provides four different scenarios
where some of the individual fluxes v’s are set to zero,
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Figure 1. Metabolic (reaction) network from two different perspec-

tives. A system of biochemical reactions can be analyzed using classical

distribution analysis (top) with emphasis on the determination of

individual flux (kij’s) and pool sizes (Si’s)(concentrations). The meta-

bolic network can also be studied from a bioengineering point of view

(bottom), i.e., the response characteristics of the system of fluxes (v’s)

enclosed within the boundary.
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Figure 2. The identification of the paths (sequence of reactions (v’s))

within the reaction network by which inputs of precursors are con-

verted to specific products (b’s). The input and output characteristics

of four scenarios of specific changes in the kinetic parameters are

provided in the inset.
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and their respective effect on the system’s output in P’s.
The first column contains values of P1, P2 and P3 and the
total input at the basal condition. Input is maintained at
12 units for conditions in column 2 (v2=0) and 4
(v5=0). The input is changed 6 units in column 3 with v4
set to zero.

3. Metabolic phenotypic phase plane analysis

The solution of reaction network analysis is a high
dimension convex flux cone (Schilling and Palsson,
1998). The phenotype of a cell is represented by a point
in the flux cone and is a highly abstract concept. In order
to fully understand the significance of reaction network
analysis, the conical solution space is resolved into a
number of phenotypic phase planes where the line of
optimality for the observed basal condition in the par-
ticular plane can be drawn. It should be noted that this
plane is not infinite and is bounded by the maximum
possible input and output of the network. The metabolic
network properties of different areas on the plane can be
predicted when the network is fully reconstructed from
genomic database using a constrained-based model
(Edwards et al., 2002; Schilling et al., 2000).

Phenotypic phase plane analysis is an important
aspect of reaction network analysis. It generally falls
into three categories: input–output analysis, output–
output analysis and input–input analysis. Such analysis
provides insightful information regarding the metabolic
properties of the network and their relations to pheno-
typic changes. To illustrate, the examples given in fig-
ure 2 are plotted onto an input-output phase plane
(figure 3) and an output–output phase plane (figure 4).
The example in figure 2 has only one input and there is
no input–input phase plane. In reality, the inputs into a
cellular system are always multiple, and the input–input
phase plane analysis is very useful to demonstrate the
complementarities of substrates.

3.1. Input–output analysis

In figure 3, values for P1+P2 are plotted against total
inputs. The line of optimality is arbitrarily defined as the
line drawn through the point for the basal state (�)
corresponding to conditions satisfying the objective
function. The slope of the line describes the optimal level
of product formation of P1 and P2 for a given level of
input. In bacteria and yeasts systems, the increase in cell
mass is often used as the objective function. In mam-
malian cell systems such as in liver cells, the objective
functions can be the production of substrates or elimi-
nation of toxins. The line of optimality bisects the
phenotypic phase plane. The area above the line repre-
sents substrate deficient and the area below the line,
substrate excess condition. It is clear that changes in
internal fluxes (v’s) affect the cell’s phenotype as indi-
cated by the position on the phenotypic phase plane.
When v5 (indicated by D) and v2 (indicated by �) are set
to zero, the input is excessive for the amount of P1+P2

produced. Under such a condition, it is expected that the
substrate input have to be dissipated through other
metabolic processes, in this example the production of
P3. The converse is true for phenotype located above the
line of optimality when v4=0 (indicated by }). In the
situation where v4 is set to zero, the survival of this
phenotype depends on the external supply of P3. An
interesting application of this phase plane analysis is in
the prediction of cell-to-cell competition in co-culture
systems. For example, cells with defects in v2, v4 or v5 are
expected not to compete well with the wild-type (basal)
when they are co-cultured because they are metaboli-
cally less efficient. However, cells with defect in v4 can
thrive in co-culture with cells having defect in v2 or v5.
This is due to the metabolic complementarities among
cells with defect in v4 and those with defect in v2 or v5.
The excess production of P3 by cells with defect in v2 or
v5 can be used to support the growth of cells with defect
in v4. Cooperation among cells with defect in v2 and
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Figure 3. The plot of output (P1+P2) against input as phenotype in

phase plane analysis. The basal phenotype is indicated by �. The

condition v5=0 is indicated by D, v2=0 indicated by �, and v4=0

indicated by }. The slope of the line indicates the amount of input

required for a certain amount of output.
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Figure 4. The plot of output (P1+P2) against P3 as phenotype in

phase plane analysis. The basal phenotype is indicated by �. The

condition v5=0 is indicated by D, v2=0 indicated by � and v4=0

indicated by }. The slope of the line indicates the relative proportion

of each product under optimal condition. Such a proportion is the

result of optimal function of the network. The lines drawn in parallel

to each of the axis intersect with the line of optimality reflecting

restrictions on optimal phenotype.
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those with defect in v5 is not possible since they both
produce excess P3.

3.2. Output–output analysis

The values of P1+P2 are plotted against those of P3

in figure 4. The slope of the line of optimality represents
the optimal ratio of the products (P1+P2) to P3. This
phase plane analysis provides information on the rela-
tive importance of the two products to the phenotype of
the cell. The information in figure 4 complements that
presented in figure 3. The relative excess and deficiency
of P3 is readily apparent. When a line is drawn from a
phenotype in parallel to the major axis, the intersection
between the line of optimality and the parallel line
indicates the degree of optimality relative to the basal
state. In this example, the condition where v4 ¼ 0ð}Þ is
shown as a non-viable condition.

4. Tracer-based metabolomics1

Reaction network analysis has its experimental
counterpart in tracer-based metabolomics (Boros et al.,
2002a, b). When a 13C labeled substrate is introduced
into a biological system, 13C is incorporated into a wide
range of metabolites of the metabolome either through
exchange or by direct synthesis. The incorporation of a
labeled carbon molecule into a metabolic product gen-
erates a ‘‘mass’’ signature (a difference in molecular
weight from the naturally existing compound), which
permits detection by mass spectrometry or by NMR.
The intracellular reaction network that a labeled carbon
traverses, determines the distribution of the isotope in its
metabolic products. Therefore, the metabolic phenotype
determines tracer distribution within individual com-
pounds and distribution among compounds. Such a
distribution represents the metabolic functions of the
cell and defines its metabolic phenotype as would be
predicted by reaction network analysis.

Figure 5 shows an example of a tracer-based meta-
bolomic study of the tricarboxylic acid (TCA) cycle
(Lee, 1993). In this TCA cycle subsystem, pyruvate is the
input and glutamate is the output. Pyruvate is first
converted to oxaloacetate by pyruvate carboxylase (PC)
or acetyl-CoA pyruvate dehydrogenase (PDH). These
two products ultimately contribute the necessary 3-car-
bon or 2-carbon units in the synthesis of glutamate. In
addition, a-ketoglutarate, an intermediate in the gluta-

mate synthesis, may be recycled through the TCA cycle.
In fact, there are three major paths that pyruvate can
contribute to glutamate synthesis. These are indicated as
P1 (blue line), P2 (red line) and P3 (dotted line) in
figure 5. If the carbon atoms in position 2 and 3 of
pyruvate are substituted with 13C, the three paths result
in distinct isotopomer products (Boros et al., 2002b). [4,
5)13C2]glutamate is the product of P1, [2, 3)

13C2]glu-
tamate, the product of P2, and [1)13C]-, [2)13C] and
[3)13C]-glutamate, the products of P3. The relative
abundance of these products can be determined using
gas chromatography/mass spectrometry. The mass iso-
topomer analysis of glutamate for products of P1, P2

and P3 is shown in figure 6. The trifluoroacetamide-
butyl-ester derivative of glutamate gives two major
fragments. The fragment at m/z 198 contains carbons
C2–C5, and the fragment at m/z 152, the carbons of C2-
C4 (Lee et al., 1996). By simple arithmetic manoeuvre,
the relative contribution of P1, P2 and P3 are deter-
mined.

In the past decade, many labeling approaches have
been used in whole cell systems including 13C labeled
glucose (Marin et al., 2004), lactate (Xu et al., 2002,
2003), acetate (Lee et al., 1996; Garg et al., 2005), buty-
rate (Boren et al., 2003), propionate (Jones et al., 1997)
and fatty acids (Lee et al., 1995; Lee et al., 1998a; Wong
et al., 2004). Mass isotopomer analyses of products from
these labeled substrates have been reviewed (Boros et al.,
2002b). In addition to providing information regarding
specific pathways, the results from each labeled precursor
can be used in metabolic phenotypic phase plan analysis,
and inference on the metabolic efficiency can be made of
the cellular system. Themethodology ofmass isotopomer
analysis is the experimental tool for phenotypic charac-
terization with tracer based metabolomics and network
analysis is the theoretical foundation for the interpreta-
tion of metabolic phenotypes (figure 7). Tracer-based
metabolomics has been applied to characterize pheno-
typic changes in response to differentiation (Boros et al.,
2002c), activation (Boros et al., 2000) and inhibition
(Boren et al., 2001) of signaling pathways and pertur-
bation in nutrient environment. An example of each is
presented below.

Tracer-based metabolomics has been applied to
characterize phenotypic changes in cell differentiation of
immature lung fibroblasts (Boros et al., 2002c). Imma-
ture rat lung fibroblasts are characterized by the pres-
ence of an adipogenic biomarker (adipose differentiation
related protein ADRP) and the capacity for lipogenesis.
When these cells are exposed to high oxygen tension,
they lose the adipogenic biomarker and trans-differen-
tiate into a myofibroblast like phenotype. This trans-
differentiation is illustrated by the change in location in
the ribose synthesis phase plane in figure 8. There are
two major branches of the pentose phosphate pathways:
the oxidative by glucose-6-phosphate dehydrogenase
pathway and the non-oxidative by the transketolase/

1 The concept of tracer has its origin from the early application of

radioactive isotope where the amount of labeled material is small

relative to the unlabeled trace. Since the application of stable isotopes,

the term tracer is used to designate a labeled compound. When the

amount of the labeled compound used is in the ‘‘physiological’’ range,

the concept of tracer is preserved. However, in experiments where the

concentration of the labeled substrate is non-physiological, such

qualification should be indicated.
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transaldolase pathways. The oxidation of [1, 2)13C2]-
glucose results in M+1 species of ribose while the non-
oxidative synthesis of ribose results in mostly M+2
species of ribose (Lee et al., 1998b).2 The relative con-
tribution of oxidative and non-oxidative branch of the
pentose cycle to ribose synthesis can be estimated from
the ratio of these molecular species. When immature
lung fibroblasts were incubated with [1, 2)13C2]-glucose,
the transdifferentiated phenotype was shown to utilize
the non-oxidative pathway of pentose synthesis more

145 150 155 160 165 170 175 180 185 190 195 200 205 210
0

5000
10000
15000
20000
25000
30000
35000
40000
45000
50000
55000
60000
65000
70000
75000
80000 198

152

A
b

u
n

d
an

ce

C1
C2

C3

C4

C5

C1
C2

C3

C4

C5

M+1 M+2

M+2

P2

P2 + P1
P3 + P1

M+1

P3

C1

C2

C3

C4

C5

C1

C2

C3

C4

C5

Figure 6. Mass spectrum of trifluoroacetamide butyl-ester of gluta-

mate showing the two fragments corresponding to C2–C4 and C2–C5

of glutamate with specific mass shift corresponding to P1, P2 and P3

due to the presence of 13C carbons.

Tracer-Based 
Metabolomics

Pathway
Network 
Analysis

Constraint-based 
Modeling

Isotopomer 
Distribution 
Analysis

Flux A 
Flux C

F
lu

x 
B

Figure 7. The relationship between pathway network analysis and

isotopomer distribution analysis. Pathway network is fully recon-

structed from genomic database using a constrained-based model.

Linear programming is then used to solve for all possible solutions, the

result of which is a metabolic phenotype space in the form of a convex

cone. Tracer based metabolomics is the experimental approach by

which a specific metabolic phenotype can be defined.

0

20

40

60

80

100

20 60 80 100
non-oxidative ribose synthesis

o
xi

d
at

iv
e 

ri
b

o
se

 s
yn

th
es

is
ii

Line of optimality  
of lipofibroblasts

Line of optimality of
transdifferentiated
fibroblasts

0 40

Figure 8. Non-oxidative and oxidative ribose synthesis phase plane

(output–output analysis). Under high oxygen exposure, lipofibroblasts

(d) from immature lung differentiate into myofibroblasts (j). The

metabolic phenotype change is indicated by the increased use of

the non-oxidative pathways for ribose synthesis and its restriction on

the production of reducing equivalents from the oxidative pathway.

Data are adapted from article of Boros et al. (2002c).

α-ketoglutarate

13
2]-pyruvate

P1 P2 P3

13
2]-

pyruvate

oxaloacetate

Acetyl-CoA

citrate glutamate

fumaratemalate

P1

[2, 3-13C2]-

P2

P3

Figure 5. The tricarboxylic acid cycle (TCA) subsystem for the production of glutamate from pyruvate. Three major paths relating output to

input are shown. P1 (in blue) is series of reaction that convert pyruvate to glutamate through the pyruvate dehydrogenase (PDH) pathway. The

product from each path has a specific ‘‘mass’’ signature when specific labeled precursor is used.

2 Ribose molecules having one or two 13C substitutions are designated

as M+1 and M+2 ribose.

W.N.P. Lee/Characterizing phenotype with tracer based metabolomics 35



than the oxidative pathway (figure 8). Consequently, for
the same glucose uptake, less reducing equivalents are
generated from the oxidative pathway resulting in less
de novo lipogenesis. The reduced lipogenesis from glu-
cose also makes available glucose for the non-oxidative
pathway of pentose synthesis suggesting a proliferative
phenotype.

Metabolic changes during the activation or inhibition
of signaling pathways can also be studied using tracer-
based metabolomics. An example of such application is
provided by the study of a tyrosine kinase inhibitor
(Gleevac) on myeloid leukemic cells (Boren et al., 2001).
A significant effect of Gleevac on the metabolism of
myeloid leukemic cells is the reduction in glucose utili-
zation and new palmitate synthesis per cell (figure 9).
When these parameters are analyzed by phenotypic
phase plane analysis, it is apparent that MIA cells and
the myeloid leukemic cells have distinct metabolic phe-
notype characterized by the differences in glucose utili-
zation and palmitate synthesis.3 Under Gleevac
treatment, the utilization of glucose and palmitate syn-
thesis progressively diminishes. The new phenotypes are
located below the line of optimality meaning that there
is relatively more reduction in palmitate synthesis than
glucose utilization. The reduction in glucose utilization
was supported by the reduction in hexose kinase activity
and the diminished fatty acid synthesis by the impressive
decrease in G6PDH activity (Boren et al., 2001). The
phenotypic phase plane analysis demonstrates that
changes in the activity of these enzymes are probably the
primary effects of the inhibition of tyrosine kinase sig-
naling pathway by Gleevac.

The influence of substrate environment on the phe-
notypic behavior of cells can be seen from the example
of colon cancer cells (HT29 cells) in response to butyrate
treatment (Boren et al., 2003). Colonic epithelial cells
are highly adapted to and dependent on butyrate of the
colonic environment as a nutrient substrate. Colonic
epithelium is often noted to be atrophic in the colon
stumps of colostomy subjects when butyrate is absent.
In malignant transformation, HT29 cells acquired the
capability of using glucose for cell proliferation.
Therefore, the utilization of glucose and butyrate by
HT29 cells is different from that of normal colon cells.
This is shown in the phenotypic phase plane analysis of
butyrate/glucose utilization for acetyl-CoA (figure 10).
HT29 cells possess the metabolic machinery for the
utilization of glucose as a substrate. Thus at low buty-
rate environment, these cells (marked by x) convert
glucose to acetyl-CoA. Under high butyrate environ-
ment, despite the same availability of glucose, HT29
cells (marked by �) preferentially utilize butyrate as a
nutrient source for acetyl-CoA production. On the other

hand, pancreatic cancer (MIA) cells have the same
metabolic characteristics as HT29 cells when cultured
with low (j) or high (circled j) butyrate. In a high
butyrate environment, HT29 and MIA cells are capable
of using butyrate, and less glucose is used. Since HT29
cells treated with high dose of butyrate expressed the
biomarker for differentiation (Boren et al., 2003), one
can imagine a line in this phenotypic phase plane below
which HT29 cells would undergo differentiation to
assume a less proliferative phenotype of normal colon
cells.
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Phenotypic phase plane analysis is an important
application of tracer-based metabolomics and reaction
network analysis. The metabolic phenotype of a cell is
resolved into a finite number of phase planes whose axes
are pair-wise inputs and outputs4 of metabolites from a
cell through particular series of reaction pathways. The
phenotype of cells under a given nutrient environment is
represented by a point in a phenotypic phase plane.
Under basal conditions, the line through the point of the
phenotype from the origin represents the line of opti-
mality. The line of optimality has important implica-
tions on the function of the metabolic reaction network.
Under the same culture conditions, cells from different
tissue types often have different lines of optimality
suggesting different efficiencies in specific substrate uti-
lization (figure 10). As demonstrated in figures 9 and 10,
the phenotype of cells deviates from the line of opti-
mality in response to changes in nutrient environment,
or to the activation or inhibition of signaling pathways.

5. Concluding remarks

Metabolomics has its origin in the profiling of small
molecules and has been shown to be useful for pheno-
typic characterization by the metabolite composition of
samples obtained from subjects. The main purpose of
this approach is to distinguish one population from
another by such characteristics, and it has been recog-
nized as an important field in systems biology comple-
mentary to those of transcriptomics and proteomics.
Tracer based metabolomics is the confluence of reaction
network analysis and metabolite profiling. It takes
advantage of the analytical methods of metabolite pro-
filing and the dynamic information of flux analysis. A
major distinction between tracer-based metabolomics
and NMR analysis in metabonomics, is the use of a
conceptual or cellular boundary in tracer based meta-
bolomics; and the results of tracer based metabolomics
are analyzed as inputs and outputs from the cell
according to metabolic network analysis from a systems
biology perspective. Instead of characterizing phenotype
as a collection of reactions and metabolites, tracer-based
metabolomics characterizes phenotype as the input–
output characteristics of the whole metabolic network
(cell). Phenotypic behavior of a cell is the consequence
of the function of the reaction network within the cell.
The phenotypic behavior of a cell is the response of
the cell to substrate inputs and environmental
changes, and is constrained by the genetic makeup of
the cell including the transcriptional regulation by cell
signals and environmental cues. The combined use of
multiple tracers in separate experiments provides a more

comprehensive view of the metabolic phenotype in the
form of an array (SIDMAParray�) (Boros et al., 2004;
Harrigan et al., 2005) and the impact of gene and
nutrient changes on the performance of the metabolic
network can be gleaned from such a data set.

A prevailing assumption in biology is that there is a
one-to-one correspondence between genotype and phe-
notype. Phenotypic variations such as susceptibility to
diseases are often attributed to genetic polymorphism.
Genetic manipulations by over-expression or knockout
of genes are considered to be the primary tools for the
investigation of phenotypes. However, by inspection of
the set of differential equations for the reaction network
(figure 1), it is clear that without taking into account of
its intracellular substrate concentrations, the dynamic
behavior of a whole cell system cannot be predicted by
the kinetic parameters as determined by its genotype
alone. One-to-one correspondence between genotype
and phenotype is often the exception rather than the
rule. The functional behavior of a cell is a function of
both its genetic and nutrient/environmental constraints.
Thus, for a given genotype, there can be potentially
many phenotypes. The observed phenotype of a cell is
dependent on its nutrient/environment context. Just as
existing species of living things are the products of
natural selection, the observed phenotypes of cells are
the products of metabolic selection (Ibarra et al., 2002;
Lee and Go, 2005)5. There are potentially four impor-
tant phenotypes that a cell can assume, namely, prolif-
eration, differentiation, cell cycle arrest and apoptosis.
Each of these phenotypes is associated with a typical
metabolic profile. We have previously shown that met-
abolic constraints are major determinant of phenotypes
(Boros et al., 2002a). The interaction of cells and their
nutrient environment according to the rules of metabolic
selection results in the observed histological changes of
hyperplasia, dysplasia and hypoplasia in human dis-
eases. In conclusion, tracer based metabolomics is a
unique experimental tool for the studies of phenotype of
cells as the collective function of genes and their inter-
action with nutrient environment in a multicellular
organism.
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Included with the output is the increase in biomass from cell prolif-
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evolution can be predicted by constraint based modeling of pathways

(Ibarra et al., 2002).
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