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Abstract

Feed efficiency (FE) is an important trait in the broiler industry due to its direct correlation to

efficient muscle growth instead of fat deposition. The present study characterized and com-

pared gene expression profiles in abdominal fat from broiler chickens of different FE levels

to enhance the understanding of FE biology. Specifically, traditional whole-transcript RNA-

sequencing (RNA-seq) and 3’ UTR-sequencing (3’ UTR-seq) were applied to 22 and 61

samples, respectively. Overall, these two sequencing techniques shared a high correlation

(0.76) between normalized counts, although 3’ UTR-seq showed a higher variance in

sequencing and mapping performance statistics across samples and a lower rate of

uniquely mapped reads. A higher percentage of 3’ UTR-seq reads mapped to introns sug-

gested the frequent presence of cleavage sites in introns, thus warranting future research to

study its regulatory function. Differential expression analysis identified 1198 differentially

expressed genes (DEGs) between high FE (HFE) and intermediate FE (IFE) chickens with

False Discovery Rate < 0.05 and fold change > 1.2. The processes that were significantly

enriched by the DEGs included extracellular matrix remodeling and mechanisms impacting

gene expression at the transcriptional and translational levels. Gene ontology enrichment

analysis suggested that the divergence in fat deposition and FE in broiler chickens could be

associated with peroxisome and lipid metabolism possibly regulated by G0/G1 switch gene

2 (G0S2).

Introduction

Modern commercial broiler chickens are genetically selected to be fast growing and have high

muscle yield to meet increasing global demand for poultry meat [1]. In broiler chickens, feed

efficiency (FE) is described as the ability to convert feed into body weight gain, and thus is an

essential trait to the broiler industry. FE is affected by environmental, genetic, and nutritional

factors, for example, dietary supplementation of a plant-extract antibiotic substitute was found

to significantly improve breast muscle yield [2], which is a trait correlated with FE. FE also cor-

relates with fatness in chickens. Not only does excessive fat accumulation diminish economic
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profits due to the decrease in FE and carcass yield, chickens of higher abdominal fat content

also exhibit paler breast muscle with higher drip loss during cooking, rendering a harder meat

texture [3]. Accordingly, improving FE and reducing adiposity in commercial broilers could

generate economic benefits and improve sustainability of the broiler industry.

Furthermore, the chicken has been used extensively as a biomedical model to study adipos-

ity, as the chicken shares key metabolic characteristics with humans. One commonality is that

lipids in both chickens and humans are synthesized in the liver and then transported to the

adipose tissue for storage and release [4,5]. This hepatic lipogenesis, in both chickens and

mammals, is subjected to analogous hormonal and nutritional controls [6,7]. Akin to obese

and type II diabetic patients, chickens are naturally hyperglycemic and possess innate insensi-

tivity to insulin [6]. Therefore, a deeper understanding of adipose biology in chickens may also

help to advance our knowledge of obesity and insulin resistance.

Global gene expression of chicken adipose tissue has been previously studied using micro-

array or RNA-seq technologies. The visceral fat of high-body-weight chickens showed higher

expression of lipogenic genes and recruited more transcription factors to stimulate biosynthe-

sis of fatty acids (FA) [8]. Resnyk et al. identified numerous up-regulated hemostatic and lipo-

lytic genes as well as enhanced expression of gluconeogenesis or glycolysis genes in genetically

lean chickens. In fat chickens, lipogenic, angiogenic and adipogenic genes were overexpressed

[9]. Similarly, Zhuo et al. [10] revealed up-regulation of lipid synthesis and adipogenesis genes

and down-regulation of genes related to lipid hydrolysis and adipose derived hormone synthe-

sis in chickens with low FE.

3’ UTR sequencing (3’ UTR-seq) is a powerful and simple method to measure mRNA quan-

titatively through sequencing a small fragment (e.g., 100 bases) at the 3’ end of polyadenylated

RNAs. This method has been proposed as a lower-cost alternative to RNA-seq to profile gene

expression for differential expression (DE) analysis [11], as the number of reads generated by

3’ UTR-seq is expected to be proportional to the sample’s transcripts. Additionally, 3’ UTR-seq

can bypass the biased estimation of expression levels in RNA-seq resulting from over-repre-

sentation of long transcripts and save more sequencing space to increase the degree of multi-

plexing [11]. Various studies have established a comparable performance between 3’ UTR-seq

and RNA-seq in DE analysis. In a study on human cardiomyocytes, Xiong et al. reported

strong correlations of read counts and fold changes at the level of individual genes, as well as

consistent results in biological interpretations, overlap in ranking of differentially expressed

genes (DEGs) and gene signatures between the two techniques [12]. Moreover, for a non-

model species that requires de novo transcriptome assembly, 3’ UTR-seq revealed more DE

contigs than RNA-seq [13].

The purpose of this paper is to characterize the gene expression profile in broiler abdominal

fat using 3’ UTR-seq to gain insights into biological and molecular pathways involved in adi-

posity as an associated trait with FE. DE and enrichment analysis showed that the divergence

in fat deposition of broilers of distinct FE levels were associated with DEGs relevant to extra-

cellular matrix (ECM) remodeling, peroxisome, fatty acid (FA) oxidation and triacylglycerol

synthesis. This study also provides a comparison between RNA-seq and 3’ UTR-seq in a real-

case scenario. To the best of our knowledge, there’s no published work using 3’ UTR-seq to

profile gene expression in chicken adipose tissue at this time.

Method and materials

Experiment and tissue collection

The experiment involved 2400 randomly sampled commercial broiler chickens from 6 local

farms in Delmarva region each from a different hatch of the same broiler cross [10]. In each
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hatch, 400 29-day-old chickens were sampled from one farm and transferred to an experimen-

tal station, where they were individually fed ad libitum as described previously [10].

At the beginning of the experiment (29 days of age), chicken body weight and individual

feeder weight were measured. Sick and dead chickens were removed during the experiment.

At 46 days of age, body weight and feeder weight measurements were collected a second time,

and, at 47 days of age, the chickens were euthanized via manual cervical dislocation. Immedi-

ately following euthanasia, tissue sampling and weighing of body composition traits was per-

formed. The ultimate pH (pHu) of pectoralis major muscle and the mass of abdominal fat

were measured after keeping the carcasses at 4˚C for 24 hours. About 1 gram of abdominal fat,

defined as fat dissected from the abdominal cavity and around gizzard, was sampled and

immediately frozen in liquid nitrogen and preserved at -80˚C until RNA isolation could be

performed. The experimental condition was in accordance with optimal industry growing

standards and the protocols were approved by the University of Delaware Agricultural Animal

Care and Use Committee.

Estimation of feed efficiency

FE was measured by estimating residual feed consumption RFC, defined as the difference

between actual and expected feed consumption, and was calculated using same formula imple-

mented by Zhuo et al. 2015 [10]. After the first calculation, chickens with RFC outside of the

mean ± 3 SDs were considered as outliers and excluded, after which the RFC was recalculated

in the same way for the rest of the birds. Then the chickens were ranked by RFC within each

hatch. For 3’UTR-seq, 61 chickens were selected from 6 hatches from the ends and middle of

the distribution for RFC values and classified as low FE (LFE), high FE (HFE) and intermediate

FE (IFE), respectively (S1 Table).

Sample preparation and sequencing

Total RNA was extracted from approximately 70 mg of abdominal fat tissue using mirVana™
PARIS™ Kit (Life Technologies) through chemical extraction [14]. RNA concentration and

integrity for each sample were checked by NanoDrop 1000 (Thermo Scientific) and Agilent

Bioanalyzer 2100 (Agilent Technologies), respectively. cDNA libraries were constructed

using QuantSeq 3’ mRNA-Seq Library Prep Kit for Illumina (reverse) sequencing, also

known as the 3’ T-fill method [15,16]. First, the poly-A tails of the mRNAs from about 500

ng of total RNA were bound by primers containing poly-T oligonucleotides as well as Illu-

mina-compatible sequences to initiate reverse transcription of the first strand cDNA. After

degrading the RNA template, second-strand synthesis was initiated by random primers

with Illumina-linker sequences at the 5’ end. The next step involved purification of the gen-

erated double-stranded cDNAs from reaction components through magnetic beads. Finally,

during PCR amplification, the libraries were ligated to the complete adapter sequences nec-

essary for cluster generation. The concentration and quality of the cDNA libraries were vali-

dated using NanoDrop 1000 and Agilent Bioanalyzer 2100. The cDNA libraries from 61

samples were normalized to the same concentration and pooled. The pooled sample was

loaded into the cluster station (cBot, Illumina), where instead of the primer mix, the T-fill

solutions (provided in the T-fill Add-on Kit for QuantSeq 3’ mRNA- Seq Libraries) were

used for filling the poly-A stretch with unlabeled dTTPs. One lane of a flow cell was used for

single-end sequencing for 100 cycles on the Illumina HiSeq 2000 System (Illumina, Inc.,

San Diego, CA) at the Delaware Biotechnology Institute, University of Delaware (Newark,

DE).
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RNA-seq samples

Raw RNA-seq data was obtained from a previous study by Zhuo et al., 2015, available at NCBI

Sequence Read Archive (Accession SRP058295). [10]. It consisted of adipose tissue samples

from abdominal fat of 22 broiler chickens, 21 of which were in overlap with 3’ UTR-seq sam-

ples. They were sequenced using the Illumina Hiseq 2000 system on four lanes of a flow cell

with a paired-end 2 x 75-cycle sequencing protocol [10]. One sample (39663) was deemed out-

lier in that study by hierarchical clustering and correlation analysis [10], it was thus omitted

from the analysis. The resulting 20 RNA-seq samples were then compared against the corre-

sponding 3’ UTR-seq samples on data quality and mapping performance as well as gene struc-

ture coverage by reads.

Quality check and reads alignment

For downstream analysis, first raw sequence reads of both RNA-seq and 3’ UTR-seq under-

went quality check using FastQC v0.11.9 [17]. And MultiQC v1.11 was used to analyze FastQC

results [18]. Then they were mapped to the chicken reference genome Gallus_gallus-6a

(Ensembl, database version 99). Hisat2 v2.2.0 [19], a splice-aware aligner, was used for map-

ping RNA-Seq reads to improve mapping accuracy in case of reads spanning across two exons.

Specifically, it was set to report only concordant mappings for both successfully mapped

paired-reads and used the “RNA-strandness RF” parameter to indicate the orientation of

paired-end reads, with upstream reads being from the reverse strand. Conversely, a non-

splice-aware aligner Bowtie2 v2.3.5.1 [20] was used for mapping 3’ UTR-seq reads, because

these 100-nucleotide-reads were primarily generated from the very end of 3’UTR, and hence,

they were not expected to span across exons. To improve efficiency and accuracy of read align-

ment, Bowtie2 was used in “very sensitive local alignment” mode and by suppressing the

unaligned records using the “no-unal” option. Next, HTSeq v0.11.2 [21] was utilized to further

categorize the mapped reads using default parameters except that for 3’ UTR-seq, count data

was obtained both using feature type “exon” (default) and “gene”. Additionally, RSeQC v3.0.1

[22] was used with the default settings to examine read distribution and gene structure cover-

age differences between RNA-seq and 3’ UTR-seq. All these steps mentioned above were per-

formed in Biomix server [23] provided by Delaware Biotechnology Institute, University of

Delaware.

Statistical analysis

Normalized counts of 3’UTR-seq and RNA-seq samples were obtained using DESeq2 by the

median of ratios method accounting for sequencing depth and biological variability in tran-

scriptome composition [24] and Pearson correlation was calculated using the R stats package

(v3.5.2). For 3’ UTR-seq samples, phenotypic traits of different FE groups were compared per-

forming Tukey’s HSD test [25] using R stats package (v3.5.2) with default parameters. For DE

analysis, the samples were filtered to exclude low count genes based on group size and then

normalized using edgeR v3.24.3 [26], followed by linear modeling and empirical Bayes moder-

ation for DE analysis using Limma v3.38.3 [27]. Considering the 6 hatches in this experiment,

the edgeR-Limma pipeline was applied as it allowed modeling of the hatch as a random effect

via estimating the mean-variance relationship as a function of average log-counts and generat-

ing precision weights for each observation [28]. We also applied edgeR and DESeq2 for DE

analysis with hatch as a fixed effect to adjust for the hatch effect, similar to a randomized block

design. All DE analyses were conducted on the count data obtained using “exon” or “gene” fea-

ture types in HTSeq. A Venn Diagram was drawn also using the package Limma. All the corre-

lation and statistical analyses were performed in R v3.5.2 [29]. Functional analysis of DEGs
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was conducted using ToppFun of ToppGene Suite, with a false discovery rate threshold of 0.05

[30].

Results

Comparison of 3’ UTR-seq and RNA-seq

FastQC results of both techniques showed very good quality, with the Phred score higher than

28. On average, the number of reads per sample of 3’ UTR-seq was 12.8 times lower than that

of RNA-seq (Table 1). The average percentage of duplicated reads was higher for 3’ UTR-seq

reads, while the average GC content was lower. As for mapping performance, the average

unique alignment rate was 10% higher for RNA-seq samples, with 3’ UTR-seq samples having

more multi-mapping reads, which were discarded by HTseq when obtaining feature counts.

The difference in duplicated reads, GC content and multi-mapping rate could be explained by

the presence of consensus sequences [31] and the U-rich upstream sequence elements of the

polyadenylation signals [32]. Moreover, 3’UTR-seq had a higher variance for both sample and

mapping statistics, as shown by their higher standard deviations in Table 1. Contrarily, RNA-

seq delivered a more stable and even performance across the 20 samples.

Another peculiar difference pertinent to the GC content was a second unusual peak in 3’

UTR-seq samples (Fig 1). To determine which genes these high GC percentage reads belonged

to, reads with a GC content between 62% and 66%, representing the edges around the second

peak, were extracted using BBMap [33] and a subset of randomly selected 350 reads from these

high GC reads were extracted for BLAST by FastqBLAST [34]. As a result, 98% of the extracted

reads were mapped to 18S ribosomal RNA genes, suggesting that they were in fact rRNA

instead of mRNA. Notwithstanding, these reads accounted for, on average, only 3% of the total

Table 1. Comparison of Sample and Mapping statistics of 3’UTR-seq and RNA-seq.

Sample Statistics Mapping Statistics (%)

M seqs % Dups % GC >1 time Exactly 1 time 0 time

Technique M SD M SD M SD M SD M SD M SD
3’UTR-Seq 2.5 1.2 61.9 0.07 40.1 0.02 17.7 4.4 77.0 5.1 5.3 1.2

RNA-Seq 32.0 1.0 31.6 0.03 49.0 0.01 1.5 0.8 87.3 1.3 11.2 0.9

M seqs: Number of million sequence reads; % Dups: Percentage of duplicated reads; % GC: Percentage of GC content; SD: Standard deviation. Means (M) of each

statistic between the two techniques differ significantly (p< .05).

https://doi.org/10.1371/journal.pone.0269534.t001

Fig 1. Percentage of reads against GC content. a) 3’ UTR-seq; b) RNA-seq.

https://doi.org/10.1371/journal.pone.0269534.g001
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reads—only a small portion of the total information. Similarly, it was found in humans that

the 18S and 28S rRNAs have non-abundant polyadenylated transcripts, possibly resulting

from degradation [35]. Therefore, this implies that the chicken 18S rRNA may also undergo a

degradation process that adds short poly(A) tails to degradation intermediates, similar to

humans and prokaryotes.

Gene structure coverage of RNA-seq reads displayed a uniform pattern with low coverage

at both 5’ and 3’ untranslated regions, while 3’ UTR-seq reads possessed high coverage at the 3’

end, as expected (Fig 2). As can be seen in Fig 2, both RNA-seq and 3’ UTR-seq techniques

exhibited high consistency for gene structure coverage across all samples. Some 3’ UTR-seq

reads were mapped to inner regions of the gene body, which may be attributed to limitations

of the reference genome, alternative splicing and polyadenylation occurred in internal exons

or introns [36].

Read distribution results confirmed that on average 46% of 3’ UTR-seq reads are actually

mapped to 3’ UTR, except one sample (40679) with only 25% (Fig 3A). The percentage reads

mapped to 3’ UTR was on average 16% and 46% for RNA-seq and 3’ UTR-seq reads respec-

tively, with a smaller variance among RNA-seq samples. Moreover, RNA-seq notably had

most of its reads, with an average close to 80%, mapped to exons (Fig 3B). Surprisingly, 3’

UTR-seq had on average 26% of reads mapped to introns, 18% higher than RNA-seq, which

reflected intron usage and its regulatory function as the 3’ UTR. Average Pearson correlation

of normalized count between 3’ UTR-seq and RNA-seq samples was 0.76 (p< .001).

Samples with possible muscle contamination

Hierarchical clustering of the 61 3’ UTR-seq samples confirmed that the inconsistency of the

one sample (39663), separated from others on an isolated branch, was not due to technical

problems but rather to the sampled tissue. Having excluded it, the remaining 60 samples were

Fig 2. Gene body coverage. a) 3’ UTR-seq; b) RNA-seq.

https://doi.org/10.1371/journal.pone.0269534.g002
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divided into three groups based on a histogram of RFC values. Specifically, birds with RFC

smaller than -0.15 and larger than 0.19 were classified as HFE and LFE, respectively, and the

ones in between as IFE.

DE analysis revealed some muscle related top DEGs when the HFE group was compared

with the IFE group. For example, Myosin heavy chain 1E (MYH1E), actin alpha 1 (ACTA1),

and Troponin T Type 3 (TNNT3) are genes related to contractile function and mainly

expressed in skeletal muscle. Although not shown as outliers by clustering, examination of

normalized counts disclosed 5 samples with much higher expression of these muscle related

genes than others (S2 Table). Therefore, these 5 samples with possible muscle contamination

were removed from this study for the sake of accuracy.

Phenotypic traits

Correlation analysis between important production traits was conducted using all 2400 birds

from the experiment (S1 Fig). Production traits like breast muscle and abdominal fat percent-

age were calculated as their weight divided by body weight. Weight at 46 days, the final weight

at the end of the FE experiment (BW46), was highly correlated with feed consumption (FC)

(r = 0.78) and weight gain (WG) (r = 0.81), while moderately correlated with breast muscle

percentage (BMW%) (0.27). However, there was no correlation between final weight and

abdominal fat percentage (FAT%). RFC had a moderate correlation with FAT% (r = 0.4) and

BMW% (r = -0.3), indicating that chickens with lower FE are inclined to yield more abdominal

fat and less breast muscle. This negative relationship between abdominal fat and breast muscle

growth was further confirmed by their correlation coefficient (r = -0.26). Since RFC was

accounted for initial and final body weight, its correlation with WG and bird final weight was

zero. Feed conversion ratio (FCR), calculated as FC divided by weight gain, had a similar cor-

relation with FAT% (r = 0.3) and BMW% (r = -0.31) as RFC. However, RFC may be a better

indicator for FE in terms of abdominal fat content.

Between the sampled 55 birds, the difference in RFC across the three groups was found sig-

nificant by Tukey’s HSD test (Table 2). In addition, other phenotypic traits including BMW%,

FAT%, WG and bird final weight were also compared across the three FE groups. LFE chick-

ens were found to have significant differences from IFE chickens in all traits, and from HFE

chickens in all but the final body weight. Interestingly, FAT% is the only phenotype where the

difference is significant across the three groups besides RFC, further indicating its association

Fig 3. Read distribution results of RSeQC. a) 3’ UTR percentage (3UTR_PCT) of each sample; b) read distribution of gene structure shown in

average percentage.

https://doi.org/10.1371/journal.pone.0269534.g003
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with FE. IFE and HFE birds were not found different in any other phenotypic traits except for

RFC and FAT%, suggesting a comparable performance for the IFE group in production out-

put, and probable disparity in feed cost.

Identification and functional analysis of DEGs

Given that the IFE group was composed of chickens only from 2 out of 6 hatches (S1 Table),

comparisons involving IFE were restricted to chickens from the two hatches, while compari-

son between HFE and LFE used chickens from all 6 hatches. Limma identified no DEGs com-

paring LFE vs. IFE as well as HFE vs. LFE groups, and 1198 DEGs between HFE and IFE, with

a fold change greater than 1.2 and false discovery rate threshold smaller than 0.05. Among the

DEGs, 709 were up-regulated and 489 were down-regulated in HFE birds compared to IFE

ones. Table 3 listed the top 10 up- and down-regulated genes in the HFE group.

To our surprise, DE analysis identified zero DEGs between LFE and HFE chickens, which

exhibited the biggest divergence in abdominal fat content (Table 2). Since FE is a very complex

and multifactorial trait, it’s possible that the divergence in the expression profile of abdominal

fat between HFE and LFE chickens happened in earlier developmental stages. A newly devel-

oped approach also suggests that FE in dairy cattle can be more accurately estimated dynami-

cally, incorporating multiple phenotypic traits throughout various time points [37]. It is likely

that future studies could improve the comparison between LFE and HFE chickens through the

application of time-series data.

Considering that more than 25% of the 3’ UTR-seq reads were mapped to the intron

regions, a separate analysis was conducted by changing the feature type from default “exon” to

“gene” in HTSeq, to include both exon- and intron-mapped reads in DE analysis. DE analysis

using counts obtained from the gene feature type revealed 679 DEGs in total, most of which

were in overlap with the results obtained using the feature type “exon” in HTSeq (Fig 4). The

additional 49 genes from this analysis (S3 Table) were then added to the whole gene list for

functional analysis.

Table 2. Results of Tukey HSD test for phenotypic traits between feed efficiency (FE) groups.

Variable Group p 95% confidence interval for mean

Lower bound Upper bound

RFC IFE HFE ��� 0.18 0.29

LFE HFE ��� 0.54 0.65

LFE IFE ��� 0.31 0.41

BMW% IFE HFE - -0.01 0.02

LFE HFE �� -0.04 -0.007

LFE IFE ��� -0.04 -0.01

FAT% IFE HFE � 0.009 0.68

LFE HFE ��� 0.45 1.1

LFE IFE �� 0.13 0.78

WG (kg) IFE HFE - -0.1 0.16

LFE HFE � -0.28 -0.01

LFE IFE �� -0.3 -0.05

Final weight (kg) IFE HFE - -0.06 0.29

LFE HFE - -0.29 0.07

LFE IFE �� -0.39 -0.05

LFE: Low FE; HFE: High FE; IFE: Intermediate FE. Significance level: p-value < .05 �, < .01 ��, < .001 ���, > .05.

https://doi.org/10.1371/journal.pone.0269534.t002
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The top 10 ranked pathways identified by ToppFun were shown in Table 4. It seemed that

in abdominal adipose tissue, the most prominent difference between HFE and IFE birds

occurred in protein anabolism and metabolism. These included pre-mRNA processing (pro-

cessing of capped intron-containing pre-mRNA), translation initiation (cap-dependent and

eukaryotic translation initiation), assembly of ribosome (formation of a pool of free 40S sub-

units, GTP hydrolysis and joining of the 60S ribosomal subunit) and metabolism of proteins.

Although these top ranked pathways were not directly related to lipid accumulation and

metabolism, one dissimilarity between the two groups may be the variation in endocrine

Table 3. Top 10 up- and down-regulated genes in HFE group.

Ensembl ID Gene Symbol Gene Full Name Log2FC

UP-regulated genes

ENSGALG00000014467 COPS7A COP9 signalosome subunit 7A "2.6

ENSGALG00000023407 ZBTB34 Zinc finger and BTB domain containing 34 "2.1

ENSGALG00000029540 MMRN2 Multimerin 2 "2.0

ENSGALG00000032618 DUSP5 Dual specificity phosphatase 5 "1.9

ENSGALG00000038599 PMM1 Phosphomannomutase 1 "1.9

ENSGALG00000002486 RNF123 Ring finger protein 123 "1.7

ENSGALG00000014616 MT3 Metallothionein 3 "1.5

ENSGALG00000037995 STRIP1 Striatin interacting protein 1 "1.5

ENSGALG00000002138 HYAL2 Hyaluronoglucosaminidase 2 "1.5

ENSGALG00000038721 MAP1LC3A Microtubule-associated protein 1 light chain 3 alpha "1.5

Down-regulated genes

ENSGALG00000027707 ESM1 Endothelial cell specific molecule 1 #2.0

ENSGALG00000030164 ECH1 Enoyl-CoA hydratase 1, peroxisomal #1.2

ENSGALG00000011019 ROR1 Receptor tyrosine kinase-like orphan receptor 1 #1.2

ENSGALG00000035461 CHORDC1 Cysteine and histidine-rich domain (CHORD) containing 1 #1.2

ENSGALG00000036044 ALDH3B2 Aldehyde dehydrogenase 3 family member B2 #1.2

ENSGALG00000032922 GSTM2 Glutathione S-transferase mu 2 #1.2

ENSGALG00000043088 ROBO4 Roundabout guidance receptor 4 #1.1

ENSGALG00000011715 HSPA2 Heat shock 70kDa protein 2 #1.1

ENSGALG00000017122 SGCG Sarcoglycan, gamma #1.1

ENSGALG00000011220 SLC25A29 Solute carrier family 25 member 29 #1.1

https://doi.org/10.1371/journal.pone.0269534.t003

Fig 4. Venn Diagram of DEGs using exon and gene as feature type in categorizing reads by HTseq.

https://doi.org/10.1371/journal.pone.0269534.g004
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function of their abdominal fat, as indicated by the pathway L13a-mediated translational

silencing of Ceruloplasmin expression, an adipokine recently found over-expressed in adipose

tissue of obese subjects [38].

Consistent results among Limma, edgeR and Deseq2

The results of DE analysis using Limma corroborated the results from edgeR and Deseq2.

Combining results obtained using both “exon” and “gene” feature types, there were 1545 and

1501 DEGs determined by edgeR and Deseq2 respectively for the HFE and IFE comparisons.

The overlap between the three statistical models was 1159 (Fig 5), manifesting a high level of

consistency across these methods. Additionally, for the LFE vs IFE and HFE vs LFE compari-

sons, edgeR and Deseq2 had comparable performance to Limma as well, with an insignificant

number of DEGs detected.

Discussion

Intron retention

In general, intron-containing mRNA isoforms are channeled to degradation such as non-

sense-mediated decay (NMD) pathway due to the disruption of the main open reading frame

(ORF) and following induction of premature termination codons [39]. However, a growing

body of research has associated IR with the regulatory role of gene expression, translation, and

RNA stability [39]. For example, IR in cytoplasmic mRNA was more frequent across cancer

cell lines than normal tissue [40], linking IR to transcriptional diversity in different cancer

types and disease states. In addition, Green et al. [41] reported a positive association between

decreased IR in nuclear-detained mRNA and enhanced expression of regulators of immuno-

cyte transcription and inflammatory response. IR was even proposed as a biomarker for aging

and pre-obese state [42,43].

Table 4. Top 10 biological pathways identified by ToppFun.

Biological pathways # Genes in query # Genes in Pathway FDR�

Translation 41 165 2.97E-

11

Gene Expression 186 1844 4.33E-

09

Cap-dependent Translation Initiation 32 127 4.33E-

09

Eukaryotic Translation Initiation 32 127 4.33E-

09

Metabolism of proteins 168 1631 5.68E-

09

GTP hydrolysis and joining of the 60S ribosomal subunit 30 119 1.12E-

08

L13a-mediated translational silencing of Ceruloplasmin

expression

30 119 1.12E-

08

Disease 104 867 1.56E-

08

Processing of Capped Intron-Containing Pre-mRNA 45 248 2.26E-

08

Formation of a pool of free 40S subunits 27 107 7.55E-

08

�FDR: Benjamini–Hochberg false discovery rate calculated by ToppFun.

https://doi.org/10.1371/journal.pone.0269534.t004
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For a long time, 3’ UTR introns are viewed as marks for nonfunctional transcripts resulting

from genomic noise, mutation, and incorrect splicing [44–46]. Nevertheless, more and more

studies have noted the possible participation of 3’ UTR intron in regulatory pathways of gene

expression. It has been hypothesized that the regulatory function of the 3’ UTR intron was via

its interaction with miRNAs, transcriptional and translational factors [47]. Sun et al. deter-

mined that IR in 3’ UTR actually increases overall mRNA stability, as NMD was introduced

upon splicing of introns in 3’ UTR [48]. A retained intron in 3’ UTR of Calmodulin 3

(Calm3L) mRNA was proved to be a critical binding site to recruit a neuronal double-stranded

RNA-binding protein Staufen2 (Stau2), which mediates the dendritic localization of Calm3L

mRNA without affecting its stability [49]. Moreover, for activity regulated cytoskeletal associ-

ated proteins (Arc), the cis-acting sequences resided primarily in its mRNA 3’ UTR, contain-

ing two conserved introns which distinctively modulate stability of Arc mRNA by targeting it

for NMD destruction [50]. Upon synaptic signaling, splicing of Arc 3’ UTR introns plays an

important role in translational upregulation [50].

Interestingly, a splicing regulator polypyrimidine tract binding protein 1 (PTBP1) was

upregulated in IFE chickens by an FC of 1.4. PTBP1 functions in regulating splicing sites of

PTBP2, producing PTBP2 transcripts with intron inserted in 3’ UTR [39,44]. During neuron

development, PTBP1 was downregulated and the amount of PTBP2 mRNA without intron

was thus increased, leading to changes in alternative splicing of proteins involved in neuronal

differentiation regulated by PTBP2 [44]. Down-regulation of PTBP1 was also associated with

suppressed inflammatory secretome in tumor cells via modulation of intracellular trafficking

genes [51], but its effect in adipose tissue remains elusive.

In our study, around 26% of 3’ UTR-seq reads were mapped to introns, indicating that IR

events in 3’ UTR were rather frequent in chickens. Up-regulation of alternative splicing regula-

tor PTBP1 in IFE broilers may indicate its involvement in retaining intron in 3’ UTR of

Fig 5. Venn Diagram of DEGs between HFE and IFE chickens obtained from Limma, edgeR and Deseq2.

https://doi.org/10.1371/journal.pone.0269534.g005

PLOS ONE 3’UTR-Seq analysis of chicken abdominal adipose tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0269534 July 1, 2022 11 / 19

https://doi.org/10.1371/journal.pone.0269534.g005
https://doi.org/10.1371/journal.pone.0269534


mRNAs in avian adipocytes. Therefore, it’s of great interest to further examine the relationship

between 3’ UTR IR events and metabolism in chicken adipose tissue in the future.

Extracellular Matrix (ECM) remodeling

Our DE analysis suggested differences in ECM remodeling in abdominal fat of broilers with

different FE levels. ECM dynamics plays an important role in lipid metabolism and protecting

adipocytes. First, ECM participates in metabolism and immune responses cell migration, stor-

age of cytokines and binding sites for cellular receptors [52]. Second, adipocytes are embedded

in a thick layer of ECM called basal lamina [53], which alleviates mechanical stress to prevent

cellular rupture by dispersing the force through this external skeleton [54]. The maintenance

of ECM is achieved through its constant turnover and collagen replacement, sustained by a

fair investment of metabolic energy [54]. Modification of both amount and makeup of ECM

proteins provokes rigidity and adipocyte dysfunction [52,53].

ECM deposition

Several DEGs identified denoted higher levels of ECM deposition in abdominal adipose tissue

of IFE chickens to affect lipid accumulation, including hyaluronidase 2 (HYAL2), hypoxia

inducible factor 1 subunit alpha (HIF1α), collagen type III alpha 1 chain (COL3A1), lysyl

hydroxylases 2 (PLOD2), and serpin H1 (SERPINH1). One of the top 10 up-regulated genes in

HFE group, HYAL2 hydrolyzes hyaluronic acid (HA) of high molecular mass to intermediate

HA fragments, which possesses a distinct binding affinity and may be associated with angio-

genesis and macrophage infiltration [55]. It has been observed in mice that adipogenesis was

accompanied with a net increase in overall HA content [56]. However, a large dose of medium

sized HA fibrils was found to hinder lipid accumulation in cultured cells [57]. Consequently,

the up-regulation of HYAL2 in the HFE group, with a fold change (FC) close to 3, indicated a

restrained lipid accumulation due to higher quantity of intermediate-sized HA molecules.

Additionally, compared with HFE chickens, IFE chickens exhibited a higher expression of

HIF1α, PLOD2 and COL3A1 by an average FC of 1.3, further indicating an augmented ECM

deposition in their abdominal adipose tissue at 47 days post hatch. Upon expansion, adipose

tissue tends to become hypoxic and inflammatory, leading to higher expression of a transcrip-

tional activator HIF1α. In obese mice, transcription level of HIF1α was significantly elevated

in adipose tissue [58], as well as other 51 ECM genes stimulated by HIF1α, including COL3A1

and lumican (LUM). This activator also up-regulates PLOD2 under hypoxia, which catalyzes

the lysine residue hydroxylation of collagen to hydroxylysine [59]. This hydroxylated residue

then binds to lysyl oxidase (LOX) to promote covalent cross-link and collagen glycosylation

[59], which stabilize newly formed collagen fibers and increase ECM stiffness [60].

The up-regulation of SERPINH1 in IFE broilers by an FC of 1.6 also indicated the metabolic

difference in abdominal fat between IFE and HFE chickens. SERPINH1 possesses collagen-

binding properties and participates in production and maturation of ECM collagens [61].

Down-regulation of SERPINH1 in human adipocytes in vitro subjected to glucose restriction

followed by refeeding suggested its responsiveness to metabolic change caused by weight

regain [61].

Proteoglycans

Several proteoglycans were found differentially expressed in the current study, including endo-

thelial cell-specific molecule 1 (ESM1), agrin (AGRN), platelet derived growth factor subunit B

(PDGFB), LUM and syndecans (SDC1, SDC2, SDC4). Besides integrins, proteoglycans are

also major ECM receptors in cellular junction and signaling events that regulate metabolic
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homeostasis and cell fate. It was suggested that ECM receptor interaction may regulate intra-

muscular fat accumulation in chicken through tissue integrity and signaling transduction [62].

Moreover, composition of ECM and its receptors was found associated with fat depot specific

adipogenesis [63].

Out of the three differentially expressed syndecans, of particular interests are SDC1 and

SDC4, both up-regulated in IFE chickens with an FC of 2 and 2.2 respectively. SDC1 serves as

a lipoprotein uptake receptor and activates PPARγ signaling pathway to initiate adipocyte dif-

ferentiation [64]. Knock-down of SDC1 in mice can result in depleted lipid deposition in adi-

pose tissue probably via impaired lipid transport and metabolism [64,65]. SDC4 is a typical

transmembrane glycoprotein which transmits signals between its core cytoplasmic domain

and external chains bound to ECM ligands [66]. The over-expression of SDC4 increases for-

mation of focal adhesion, even without interaction with ECM ligands [66]. Along with several

other DEGs including signal transducer and activator of transcription 5A (STAT5A), phos-

phatase and tensin homolog (PTEN), PDGFB and phosphatidylinositol-4-phosphate 5-kinase

type 1 gamma (PIP5K1C), there seemed to be alterations in cell junctions within adipose tissue

of HFE and IFE chickens [66–68]. As a result, discrepancies could emerge in cell behavior and

tissue integrity which could further affect abdominal fat accumulation [69].

LUM is also up-regulated in the IFE group, involved in collagen repair and innate immune

response by facilitating the presentation of bacterial lipopolysaccharide to CD14 [70]. Henegar

et.al found evidence of co-expression of LUM and syndecan binding proteins in subcutaneous

fat of obese patients [71], as well as metalloproteinases domain 17 (ADAM17) and cytochrome

c oxidase assembly homolog (COX17). COX17 is relevant to the functioning of cytochrome c

oxidase in electron transfer within the mitochondrial membrane [71]. As expected, ADAM17

and COX17 were down-regulated in the IFE group, with an FC of around 1.6 times lower than

the HFE group. Along with 15 differentially expressed mitochondrial ribosomal proteins, out

of which 10 were down-regulated in IFE chickens, these DEGs suggested an alteration or even

suppression in mitochondrial oxidative activity [72].

Lipid metabolism

Gene ontology (GO) identified 104 DE genes involved in lipid metabolism, among which 46

were up-regulated and 58 were down-regulated in HFE group. Enriched KEGG pathways

included metabolic pathways, peroxisome, FA, and glycerolipid metabolism, among others.

Particularly, the suppression of G0/G1 switch gene 2 (G0S2) in HFE chickens could be a criti-

cal factor contributing to the variation of the above pathways. Our results complied with a pre-

vious study in G0S2 knockout chickens, in which abdominal fat deposition was greatly

reduced, along with altered peroxisomal oxidation and triacylglycerol (TAG) synthesis [73].

Peroxisomes are membrane-bound organelles that oxidizes cellular molecules such as FA

and thus play an important role in metabolism [74]. 11 DE genes were enriched in peroxi-

somal pathways, such as peroxisomal biogenesis factor (PEX5, PEX7, PEX16), hydroxysteroid

17-beta dehydrogenase 4 (HSD17B4), sterol carrier protein 2 (SCP2). HSD17B4 catalyzes the

oxidation of many lipid intermediates in peroxisomal β-oxidation and SCP2 the subsequent

formation of propionyl-CoA [75]. The down-regulation of HSD17B4 and the overexpression

of SCP2 in IFE chickens, both by a FC of 1.5, indicate an modified even impaired peroxisomal

β-oxidation and possible build-up of toxic lipid intermediates and very long chain FA [76,77].

Moreover, the up-regulation of PEX5, PEX7, PEX16 in IFE chickens suggests an increased bio-

genesis of peroxisomes [74,78], which could be a remedy attempt for the reduced lipid catabo-

lism. In adipose tissue of low-growth chickens, HSD17B4 was also found down-regulated

compared to that of high-growth chickens [8]. These results support the significance of
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peroxisome in lipid metabolism and HSD17B4 may potentially serve as a biomarker for fat

deposition and FE in chicken.

Furthermore, IFE chickens showed signs of disorderly TAG synthesis and lipid metabolism.

The rate-limiting enzyme for de novo glycerophospholipid synthesis glycerol-3-phosphate

acyltransferase 3 (GPAT3) was down-regulated in IFE chickens by a FC of 1.7. This enzyme

catalyzes the first step of TAG synthesis where lysophosphatidic acid (LPA) was synthesized

from glycerol-3-phosphate and acyl-CoA [79]. LPA is then converted to phosphatidic acid by

1-acylglycerol-3-phosphate acyltransferases (AGPATs) before the formation of TAG [79].

Unlike GPAT3, AGPAT2 was up-regulated in IFE chickens by a FC of 1.5, marking an imbal-

ance of lipid intermediates in TAG synthesis. On the other hand, differential expression of

3-hydroxyacyl-CoA dehydratase (HACD2, HACD3) and carnitine palmitoyltransferase 2

(CPT2) between HFE and IFE broilers further points to specific differences in lipid metabo-

lism. In addition to impaired peroxisomal FA oxidation, the down-regulation of CPT2 by a FC

of 1.6 denotes a decreased obligate step of FA β-oxidation in mitochondria and probably hin-

dered energy expenditure [80]. The up-regulation of the major 3-hydroxyacyl-CoA dehydra-

tase HACD2 by a FC of 1.55, however, implied enhanced FA elongation activity in

endoplasmic reticulum [81]. That said, the fat accumulation in IFE chickens may be traced

back to disrupted long-chain FA oxidation and production.

Conclusion

Our results showed a higher variance in sequencing and mapping performance measurements

across 3’ UTR-seq samples when compared with RNA-seq, as well as a high correlation

between their normalized counts. Moreover, a higher percentage of 3’ UTR-seq reads mapped

to introns warrants further research to study intron usage and its regulatory function at the 3’

UTR. Most notably, DE and functional analyses revealed DEGs in the abdominal adipose tis-

sue between HFE and IFE chickens, especially in ECM remodeling, peroxisome, as well as

TAG synthesis and lipid metabolism possibly regulated by G0S2. Considering the analogy

between chickens and humans in physiological attributes of adipose tissue, the present study

could also be applied in the study of adiposity and obesity in humans.
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3. Baéza E, Le Bihan-Duval E. Chicken lines divergent for low or high abdominal fat deposition: a relevant

model to study the regulation of energy metabolism. Animal. 2013; 7(6):965–73. https://doi.org/10.

1017/S1751731113000153 PMID: 23433003
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