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ABSTRACT
Because transcription is the first step in the regulation of gene expression, understanding
how transcription factors bind to their DNA binding motifs has become absolutely
necessary. It has been shown that the promoters of genes with similar expression
profiles share common structural patterns. This paper presents an extensive study of
the regulatory regions of genes expressed in 24 developmental stages of Drosophila
melanogaster. It proposes the use of a combination of structural features, such as
positioning of individual motifs relative to the transcription start site, orientation,
pairwise distance between motifs, and presence of motifs anywhere in the promoter
for predicting gene expression from structural features of promoter sequences. RNA-
sequencing data was utilized to create and validate the 24 models. When genes with
high-scoring promoters were compared to those identified by RNA-seq samples, 19
(79.2%) statistically significant models, a number that exceeds previous studies, were
obtained. Each model yielded a set of highly informative features, which were used to
search for genes with similar biological functions.

Subjects Bioinformatics, Computational Biology, Developmental Biology, Genomics
Keywords Promoter architecture, Co-expression, Genetic algorithm, Transcription factor
binding sites, Developmental stage, Genome-wide analysis

INTRODUCTION
The control of the transcription mechanism is an important step in the regulation of gene
expression (Coulon et al., 2013). Our understanding of how transcription factors act
coordinately to regulate downstream genes is still insufficient. An abundance of studies have
demonstrated the presence of common structural characteristics in the regulatory regions
of genes expressed in the same physiological condition, cell or tissue (López, Vandenbon
& Nakai, 2014; Terai & Takagi, 2004; Vandenbon et al., 2008; Vandenbon & Nakai, 2010;
Zhao, Schriefer & Stormo, 2007).

Many approaches have been proposed to study cis-regulatory regions. A genome-wide
prediction method was able to construct a cis-regulatory module and an epigenetic profile
database, which collected transcription factor binding site information and nine types of
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epigenetic data (Yang et al., 2014). A graph-theoretic algorithm predicted cis-regulatory
elements using chromatin immunoprecipitation (ChIP) datasets and effectively identified
overrepresented combinatorial motif patterns (Niu, Tabari & Su, 2014). A computational
approach was proposed for extracting and validating maps that relate regulatory sites to
genes. These maps were able to detect long-range regulatory interactions (O’Connor &
Bailey, 2014). Another study analyzed how cis-regulatory modules evolved in connection
to natural selection and showed that complex modules use less specific binding motifs than
smaller ones (Stewart & Plotkin, 2013). Although cis-regulatory regions typically contain
multiple regulatory sites, the aforementioned studies were unable to predict common struc-
tural features within promoter regions. In addition, available ChIP-sequencing data is still
limited to a few transcription factors under very specific conditions (Mundade et al., 2014;
Valouev et al., 2008). There is a need for methodologies which can analyze common
structural elements in promoters based on their sequence, and independently of other
experimental data.

The developmental mechanism of Drosophila melanogaster constitutes an essential
biological system, which allows us to better understand the transcription regulation of
genes. It consists of three larval (first, second and third instar larva) and pupal stages
before adult stage. The third instar larva molts into a pupa, which morphs into an adult
fly. Adult structures are formed anew from two sets of cells: imaginal discs and histoblasts.
Imaginal discs make the epidermal structures of the adult whereas histoblasts create the
abdominal epidermis and internal organs of the adult (Beira & Paro, 2016; Madhavan &
Schneiderman, 1977).

The regulatory regions of Drosophila have been widely analyzed. A previous study
integrated genome-wide information related to transcription factor recruitment with
cis-regulatory modules, histone modification and insulator binding from the whole
D. melanogaster embryo during development. Consequently, enhancer occupancy and
chromatin state were inferred to be able to predict spatio-temporal activity (Wilczynski et
al., 2012). A high-resolution map has shown that different regulatory motifs influence the
shape of transcription start site (TSS) distributions of those D. melanogaster promoters
active in embryonic and adult stages (Hoskins et al., 2011). However, detailed insights
about the regulatory mechanism of stage-specific genes are still insufficient.

Previously, we have modeled the promoters of several mouse and human tissues
(Vandenbon & Nakai, 2010). We also analyzed the regulatory regions of antenna-expressed
genes for common structural features, such as pairwise distance of motifs, orientation and
distance of motifs relative to the TSS (López, Vandenbon & Nakai, 2014). This method was
able to detect eight informative features, including characteristics related to positioning and
orientation of motifs relative to the TSS, in the regions of antenna-expressed genes. Here,
we have extended our former approach in order to shed light on the regulatory mechanism
of genes expressed in 24 D. melanogaster developmental stages. The new models included
additional features, such as presence of motifs without positional restriction and distance of
motif pairs relative to the TSS. Contrary to a recent study, which has questioned whether or
not the binding orientation of regulatory factors might be relevant (Lis & Walther, 2016),
the features commonly present in our high-performing models included the presence of
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Figure 1 Workflow of our computational approach.

motifs without positional restriction, the positioning of motifs relative to the TSS and the
order of motifs in specific orientations. We further used the highly informative features of
each model to search for co-expressed genes and considered RNA-seq data for validation
purposes. When RNA-seq data was applied, we were able to successfully obtain 19 (79.2%)
statistically significant models.

MATERIALS AND METHODS
The current method (Fig. 1) is an extension of our previous approach (López, Vandenbon
& Nakai, 2014). In this work, we predict specific promoter architectures for preferentially
expressed genes in 24 different D. melanogaster developmental stages. For each stage,
promoters more than 60% similar were removed and preferentially expressed genes were
randomly distributed into three subsets (1) motif-prediction, (2) feature-computation, and
(3) model-construction. The motif-prediction subset was used to predict de novo motifs.
In the motif discovery step, we run four algorithms: MEME (Bailey et al., 2006), Weeder
(Pavesi, Mauri & Pesole, 2001), BioProspector (Liu, Brutlag & Liu, 2001) andMotifSampler
(Thijs et al., 2002). Redundant motifs were compared with the algorithm Tomtom (Gupta
et al., 2007) and removed by retaining the motif with higher information content in each
pair of matched motifs. The overrepresentation index (ORI) (Bajic, Choudhary & Hock,
2003) of non-redundantmotifs was used to compute p-values and select the overrepresented
motifs. The feature-computation subset was employed to compute structural features such
as order, orientation, positioning of motifs relative to the TSS, pairwise positioning of
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motifs, distance of motif pairs relative to the TSS and presence of motifs without positional
restriction. Irrelevant characteristics were further removed with a correlation-based
filter (Yu & Liu, 2003). The model-construction subset, used to reach highly informative
features, was split into separate folds by fivefold cross-validation. A genetic algorithm,
which maximizes fitness through crossovers and mutations, was trained using four folds
and tested on the remaining one. Finally, we used the model of each stage to predict
co-expressed genes with similar promoter structures. Each of these steps is introduced in
more detail below.

Gene expression datasets
Gene expression data (RNA-seq) that covered 25 developmental stages of D. melanogaster
(Table S1) was obtained from the Model Organism Encyclopedia of DNA Elements
(modENCODE) database (http://www.modencode.org). Each biological replicate sample
was first visualized with the FastQC tool (Andrews, 2010) and quality thresholds were
manually determined based on the distribution of mean sequence qualities. The FASTQ
Quality Filter of FASTX-Toolkit (-v -p 80) (Hannon-Laboratory, 2009) was used to remove
low-quality reads. The remaining reads were separately mapped to the D. melanogaster
genome (r6.02) with the RNA-seq aligner STAR (Dobin et al., 2013). Cufflinks (supplied
with reference annotation r6.02 from the FlyBase repository; parameter -G) (Roberts
et al., 2011) was subsequently used to measure the expression level of each gene in
fragments per kilobase of transcript per million mapped reads (FPKM). Expressed
genes were identified as highly expressed in the corresponding stage relative to the
other stages. In addition, the alignment of each replicate sample was independently
used to assign sequence reads to genomic features (exons) with the featureCounts
program, which is part of the Rsubread package (Liao, Smyth & Shi, 2014). The read
counts were then input to the edgeR package (Robinson, McCarthy & Smyth, 2010) for
determining differentially expressed genes per stage. For each developmental stage, we
selected an initial set of expressed genes whose expression level was >1 FPKM, and were
differentially expressed at a false discovery rate of 5%. It is worth noting that there might
be overlapping of expressed genes among developmental stages. On the other hand, genes
with expression level of 0 or adjusted p-value of 1 were regarded as non-expressed genes
and grouped into a control set. Because small gene sets could heavily bias downstream
analyses in each model, we decided to retain all sets with at least 55 genes for further
analysis. As a result, 24 developmental stages were ultimately considered (Table S2).

The D. melanogaster genome (r6.02) was downloaded from the FlyBase repository
(Marygold et al., 2013) and the genomic stretch from 1.5 kbp upstream to 500 bp down-
stream of the TSS was retrieved as promoter region (Roy et al., 2010). Multiple promoters
with similar sequences tend to bias the motif prediction and feature extraction steps. To
avoid this, we removed the expressed genes whose regions were >60% similar with the pro-
gram cd-hit (clustering threshold= 0.6; word length= 3) (Fu et al., 2012). For each devel-
opmental stage, we then defined a set of preferentially expressed genes, and their promoter
regions. Below, we will use these promoters to predict common regulatory motifs.
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Final gene sets
Each set of stage-expressed genes was split into three independent sets: (1)motif-prediction,
(2) feature-computation, and (3) model-construction. To do this, we randomly distributed
each initial gene set so that 40% assigned to motif-prediction, 20% to feature-computation,
and 40% to model-construction. The motif-prediction set was used for predicting de novo
motifs, the feature-computation set was employed to compute structural features, and the
model-construction set was used for selecting highly informative features in the promoters
of expressed genes. Moreover, the aforementioned control set was evenly split into two
separate groups. One subset was employed as control for computing structural features,
whereas the other was utilized for constructing the models. To assess the performance of
our models we used a fivefold cross-validation scheme, whereby the model-construction
set was evenly split into five folds for running the genetic algorithm (explained below).

Prediction, selection and comparison of motifs
The motif discovery algorithms MEME (Bailey et al., 2006), Weeder (Pavesi, Mauri &
Pesole, 2001), BioProspector (Liu, Brutlag & Liu, 2001) and MotifSampler (Thijs et al.,
2002) were employed for predicting de novomotifs in themotif-prediction set of promoters.
We firstmasked the promoters of eachmotif-prediction set with the RepeatMasker program
(Smit, Hubley & Green, 2015) and separately predicted motifs for every developmental
stage. We usedMEME (Bailey et al., 2006) to predict 6- to 12-bpmotifs with any number of
sites per sequence on both strands, andWeeder (Pavesi, Mauri & Pesole, 2001) to search for
6-bp motifs with one mutation, 8-bp motifs with two and three mutations, 10-bp motifs
with three and four mutations, and 12-bp motifs with four mutations on both strands.
For BioProspector (Liu, Brutlag & Liu, 2001) and MotifSampler (Thijs et al., 2002), the top
five motifs with lengths of 6–12 bp were searched on both strands, and predictions with
BioProspector (Liu, Brutlag & Liu, 2001) were performed 100 times.

Each collection of de novomotifs wasmergedwith knownmotifs in TRANSFAC (Insecta)
(190 matrices) (Matys et al., 2006) and JASPAR Core Insecta (131 matrices) (Mathelier et
al., 2014) databases. The motif comparison algorithm Tomtom (minimal overlapping= 1;
distance function= euclidean) (Gupta et al., 2007) was employed for removing redundant
motifs. Per pair of similar motifs (p-value ≤ 0.001), the motif with higher information
content (Stormo & Fields, 1998) was retained. Also, motifs that did not show any similarity
were regarded for further analysis.

For remaining motifs, in addition to calculating the ORI (Bajic, Choudhary & Hock,
2003), one million random ORI values were computed. To do so, all the D. melanogaster
promoter regions (1.5 kbp upstream and 500 bp downstreamof the TSS) and non-promoter
regions (from2kbp to 4 kbpdownstreamof theTSS)were scanned formotifs. Subsequently,
one million sets of the same size as the motif-prediction set were randomly selected for
computing a reference ORI distribution. The ratio of random values greater than the
original ORI value was calculated as p-value. Finally, motifs with p-values <0.01 were
considered to be overrepresented, and used for the generation of features.
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Figure 2 Schematic representation of the computed features in promoter regions of stage-expressed
genes.Geometrical forms above/below the horizontal line represent the orientation of sequence motifs to-
wards plus/minus strands.

Computation and filtering of features
We used the feature-computation and the corresponding control sets to compute a feature
collection from the motifs predicted in the previous step. Six structural features, namely
orientation, positioning of motifs relative to the TSS, pairwise distance of motifs, presence
of motifs without positional restriction and distance of motif pairs relative to the TSS
(Fig. 2) are considered here. To compute these features, the regions of genes in the above-
mentioned sets were scanned with 100-bp windows in steps of 100 bp. In doing so, the order
ofmotifs was calculated independently of strand orientation, for regions both upstream and
downstream of the TSS. For the positioning of motifs relative to the TSS, we placed the
window at the TSS and scanned both upstream and downstream regions. For the pairwise
distance of motifs, one of the motifs was regarded as the starting point whereas the
presence feature considered any occurrence of the motif without positional restrictions.
For the distance of motif pairs relative to the TSS, we regarded the distance of the closest
motif to the TSS. These features computed in the promoters of genes in the feature-
computation and control sets were further binarized. Each region was represented as one
vector indicating presence (1) or absence (0) of the features. A binary matrix was thus built
for each stage. Because the feature set could be relatively large and contain a great deal
of redundancy, we utilized the above matrix to preprocess the feature collection with a
correlation-based filter (Yu & Liu, 2003). This filter uses a measure known as ‘‘symmetrical
uncertainty’’, which removes features with low correlation by using the promoter regions
in the feature-computation (positive class, 1) and the control (negative class, 0) sets. More
information on this section can be found in López, Vandenbon & Nakai (2014).
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Optimization of features
The previous step generates features which are likely to contain a certain degree of
redundancy. To remove redundant characteristics, the feature collection of each model
was further reduced to a smaller subset of highly informative features. To do this, we made
use of two different scores and a genetic algorithm. One score (Fscore) takes into account
the presence/absence of features and was introduced to assess the fitness of solutions in the
genetic algorithm. For each model, the genetic algorithm was run with the model-
construction and control sets as input. In the genetic algorithm, a population equal to the
number of training promoters in the model-construction and control sets was regarded. In
each individual, a ‘‘chromosome’’ was used to encode the subset of selected features. The
algorithm utilized a uniform crossover and a mutation probability of 0.05. The Fscore,
which considers both precision and recall, was defined as follows,

Fscore= 2 ∗
precision ∗ recall
precision + recall

(1)

precision=
TP

TP+ FP
(2)

recall=
TP

TP + FN
(3)

where TP, FP and FN stand for true positives, false positives and false negatives. True
positives and false negatives are the regulatory regions in the model-construction set,
which contain at least one feature, or no features, respectively. False positives are the
promoter regions, with at least one feature, in the corresponding control set. As stopping
criteria, we used the following conditions: the genetic algorithm was iterated at most 10,000
times, or stopped when a solution with Fscore≥0.8 was reached. In addition, we added an
extra stop criterion based on a second scoring function. Namely, if >50% of the positive
regions (model-construction set) were scored higher than 90% of the negative regions
(control set). For this, we scored the promoter regions using the following equation,

scoreregion=
∑
i

wi ∗ni (4)

where scoreregion takes into consideration the number of times the informative features
appear in the region. In other words, the number of occurrences (ni) and the weight (wi)
of each feature i in the feature set were multiplied and summed up. The weight wi was
computed as follows,

wi=

∑
j|iP

(
oij
)
∗DKL

(
C |oij

)
−
∑

j|iP
(
oij
)
∗ log

(
P
(
oij
)) (5)

where oij represents the promoter region with the j value (presence/absence) of feature
i, P(oij) is the frequency of promoter regions oij and DKL(C |oij) is the Kullback–Leibler
measure of class C (positive and negative classes) given the promoter regions oij . The
positive and negative classes comprise the promoters of genes in the feature-computation
and control sets, respectively. The Kullback–Leibler measure (Lee, Gutierrez & Dou, 2011),
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which assigns greater values to features often present in the promoter regions of stage-
expressed genes, was calculated by

DKL
(
C |oij

)
=

∑
c

P
(
c|oij

)
log

(
P
(
c|oij

)
P (c)

)
(6)

where P(c) is the probability of class c and P(c|oij) represents the probability of class c given
the promoter regions oij . To avoid meaningful features being assigned very low weights, we
omitted the normalization step of summing to unity as done in our previous study (López,
Vandenbon & Nakai, 2014).

Both the model-construction and the corresponding control sets were split into separate
folds by fivefold cross-validation. The genetic algorithm was trained using four folds and
tested on the remaining one. This process was repeated five times and the overall Fscore of
the model was the average of the highest-performing solution in each test fold. For
each model, we then regarded those characteristics present in at least four of the five
highest-scoring individuals as its highly informative features.

Validations
Validationswere separately conducted for assessing the accuracy of eachmodel in predicting
stage-expressed genes with similar promoter architectures. Each collection of informative
features was used to score (using Eq. (4)) the entire promoter set of D. melanogaster. We
excluded the promoters of genes (both stage-expressed and control ones) used for training
the models, and retrieved the top 100 genes with high-scoring promoter regions per
developmental stage. In addition, 24 independent RNA-seq samples (Table S3) that covered
the developmental stages were downloaded from the modENCODE database (http://www.
modencode.org). Each biological replicate was separately mapped to the D. melanogaster
genome (as explained in the section ‘‘Gene ExpressionDatasets’’), and genes with FPKM>1
were considered to be expressed. The number of overlapping genes (i.e., how many high-
scoring genes are also detected in the corresponding RNA-seq sample) was checked. Thus,
for each developmental stage we obtained an independent test set to evaluate the accuracy
of our promoter models. Furthermore, for each stage we corroborated whether overrep-
resented motifs associated with stage-expressed genes were located inside experimentally
characterized cis-regulatory elements in REDfly database (Gallo et al., 2011). For this, we
downloaded the entire collection of ‘‘Reporter Constructs’’ and ‘‘TFBS’’ from REDfly
repository (Gallo et al., 2011), and checked the genomic coordinates of predicted motifs
and annotated elements. In order to perform a quantitative assessment, we also downloaded
ChIP-seq data for two well-known transcription factors: dorsal (Gene Expression Omnibus
ID SRR2031908) and snail (Gene Expression Omnibus ID SRR2031905), which play
important roles during dorsal-ventral axis formation in the Drosophila embryo (Zeitlinger
et al., 2007). This data was separately mapped to the Drosophila genome with Bowtie2
(Langmead & Salzberg, 2012) and regarding two mismatches. Duplicates were removed
and potential binding sites were identified with the peak caller MACS2 (FDR cut-off =
0.01) (Yong et al., 2008). For each transcription factor, we then overlapped its detected
binding sites with sequence motifs predicted by the models of stages 0–2 h and 2–4 h. This
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step was carried out with the bedmap program (Neph et al., 2012), and strictly regarding
an overlapping when the entire sequence motif lay inside detected binding sites. Moreover,
Fscores were computed with one million sets in which labels were randomly shuffled. The
ratio of random Fscores greater than the original Fscore was calculated as a p-value. All the
resulting uncorrected p-values were further adjusted for multiple test comparisons with
the R function ‘‘p.adjust’’ (method = ‘‘fdr’’). Consequently, models showing corrected
p-values < 0.01 were considered to be statistically significant.

RESULTS AND DISCUSSION
In order to understand the promoter architecture of co-expressed genes, we analyzed
structural features in promoter sequences of genes expressed in D. melanogaster cell types
across different developmental stages. This work proposes an extended approach, which
combines a correlation-based filter and a genetic algorithm, for detecting highly informative
sets of common structural features.

Predicted stage-related motifs
We used a part of the training promoters (motif-prediction set) for de novo prediction of
enriched motifs in the region surrounding the TSS of stage-expressed genes. The predicted
motifs and the known ones in TRANSFAC (Matys et al., 2006) and JASPAR (Mathelier
et al., 2014) databases were processed for removing redundant motifs, and obtaining the
overrepresented ones per stage (Table S4).

The matrices of enriched motifs were compared to those of known motifs in the two
aforementioned databases (Mathelier et al., 2014; Matys et al., 2006) with the algorithm
Tomtom (Gupta et al., 2007). We found some enriched motifs, which resemble the binding
preferences of known factors of importance in D. melanogaster development (Table S5).
One example is a motif found in stages embryo 0–2 h and embryo 2–4 h, which resembles
the binding motif of regulator dl (dorsal). dl plays a key role in establishing dorsal-ventral
polarity at early stages of Drosophila development. Initially located in the cytoplasm, it is
transported to the nucleus approximately 90 min after fertilization where it functions as
a morphogen (Rushlow et al., 1989; Steward, 1989). Another instance is the detection of a
motif in stage embryo 0–2 h, which shows similarity to that recognized by transcription
factor sna (snail). This fits well with reports that the regulatory function of sna is initiated
around two hours after egg laying (Campos-Ortega & Hartenstein, 1997). A motif bearing
resemblance to regulator Cf2 (Chorion factor 2) was discovered in stage embryo 12–14 h.
Cf2 has been shown to regulate cell fate determination during oogenesis, and appears when
skeletal myoblast fusion is taking place (Bagni et al., 2002). Although transcripts encoding
the regulator Cf2 are subject to alternative splicing, and a single gene could encode sets of
genes in different developmental stages (Hsu et al., 1992), it was not found in other stages.
Furthermore, motifs recognized by the regulator croc (crocodile) were detected in three
stages: embryo 12–14 h, L3 stage larvae, and adult female eclosion+30 days. This regulatory
factor is expressed in the head anlagen of the blastoderm embryo. Besides it also establishes
a specific head skeletal structure from intercalary segments at later stages of embryogenesis
(Häcker et al., 1995). Additionally, we plotted the expression of transcription factor genes
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per stage in an attempt to check whether factors linked to knownmotifs could be regulating
stage-expressed genes. For each transcription factor, Fig. 3 illustrates the expression of its
gene in the stage it was detected. Expression levels in the remaining stages are not indicated
so that these cells are shown in grey. As Fig. 3 depicts, 10 out of 14 genes encoding regulatory
factors are highly expressed in the corresponding stage. Among the genes showing low
expression are: croc (crocodile) only in stages L3 stage larvae and adult female eclosion+30
days, lbe (ladybird early) in stages embryo 22–24 h, white prepupae, white prepupae +24
h and adult female eclosion +30 days, Pph13 (PvuII-PstI homology 13) in stage embryo
20–22 h, and ftz (fushi tarazu) in stage adult female eclosion +30 days. These findings
support the ability of our motif prediction tools to correctly detect stage-related factors,
which might actively regulate genes expressed in Drosophila developmental stages.

Performance of the models
The enriched motifs were used to create a collection of features per stage. These
characteristics were first filtered and then codified into a genetic algorithm for selecting
highly informative features. The resulting Fscores of the models ranged from 0.596 to 0.992
(Table 1). The models of embryo 12–14 h, white prepupae +24 h and pupae achieved
the highest average (fivefold cross-validation) performances with 0.905, 0.912 and 0.992,
respectively. For each stage, the best individuals (sets of features) of the five cross-validation
runs were retrieved, and features present in at least four individuals were regarded to be
highly informative features. Figure 4 depicts the informative features of the three models
with the highest performance. As it shows, features related to the positioning of motifs
relative to the TSS were detected by two models (Figs. 4B–4C), whereas the three models
yielded the order of motifs as a highly informative feature. As a result, 20 (83.3%) models
turned out to be statistically significant (adjusted p-value < 0.01) (Table 1; Fig. 5B). In
order to avoid any confusion, it is worth noting that this number of significant models
tended to slightly decrease when validated with RNA-seq data (refer to section ‘Validation
of the Models’).

The models comprised an average of 6.04 motifs, with a range of 2 (white prepupae) to
10 (embryo 0–2 h, embryo 22–24 h and adult female eclosion +1 day) motifs (Table S4).

Furthermore,we created severalmodels by gradually including different kinds of features.
We first built simple models only regarding the presence of motifs, and subsequently more
complex models comprising features such as orientation, positioning relative to the TSS,
pairwise distance and order of motifs (Figs. 5A and 5B; Table S6). Although the models that
comprised features such as presence (with or without orientation) of motifs performed very
poorly, there was a clear tendency for performance to increase when models were allowed
to contain more complex features (M-1 to M-4 in Fig. 5B). However, the addition of motif
order (M-5 in Fig. 5B) did not improve performance any further. Finally, we trained the
models by leaving out the orientation of motifs (M-7 in Fig. 5B), and though the overall
performance (62.5%) was reasonable it was not greater than that of M-4 and M-6 models.

In general, the models seem to best perform when features like presence, orientation,
positioning relative to the TSS and pairwise positioning ofmotifs, or all the six features, were
included. In both cases, we were able to obtain 20 (83.3%) significant models. However,
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Figure 3 Heatmap of the expression level of transcription factor genes in specific developmental
stages. dl (dorsal), sna (snail), Hsf (Heat shock factor), nub (nubbin), Cf2 (Chorion factor 2), croc
(crocodile), Pph13 (PvuII-PstI homology 13), lbe (ladybird early), al (aristaless), hkb (huckebein), Lim1
(LIM homeobox 1), Kr (Kruppel), zen (zerknullt), ftz (fushi tarazu).

when the order of motifs was considered, the overall performance slightly decreased.
Similarly, the presence and orientation of motifs sharply decreased the overall performance
of the models (Figs. 5A and 5B; Table S6).

Subsequently, we examined whether highly expressed genes in different developmental
stages could be under the control of similar regulatory elements. We therefore used the
model of each developmental stage to score genes expressed in the other stages (Fig. 6),
and evaluated the significance of the scores (Student’s t -test). Although the models of
white prepupae, pupae and adult female eclosion +30 days consistently assigned high
scores to genes expressed in many stages, apparently showing a lack of specificity or mostly
identifying housekeeping genes, other models such as embryo 10–12 h and L1 stage larvae
tended to highly score genes in nearby stages (Fig. 6).
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Table 1 Performance of the computational models regarding all the six features. For each model, de-
velopmental stage and measures such as Fscore, accuracy (Acc), sensitivity (Sn), specificity (Sp), P-Value
and False Discovery Rate (FDR) are shown.

Developmental stage Fscore Acc Sn Sp P-value FDR

Embryo 0–2 h 0.681 0.614 0.829 0.400 0.00E+00 0.00E+00*

Embryo 2–4 h 0.707 0.640 0.847 0.433 3.70E−03 5.22E−03*

Embryo 4–6 h 0.695 0.642 0.808 0.475 6.43E−03 7.88E−03*

Embryo 6–8 h 0.715 0.680 0.800 0.560 6.57E−03 7.88E−03*

Embryo 10–12 h 0.655 0.610 0.762 0.457 0.00E+00 0.00E+00*

Embryo 12–14 h 0.905 0.894 1.000 0.789 0.00E+00 0.00E+00*

Embryo 14–16 h 0.599 0.524 0.714 0.333 2.94E−01 2.94E−01
Embryo 16–18 h 0.723 0.675 0.850 0.500 1.27E−03 1.91E−03*

Embryo 18–20 h 0.596 0.544 0.667 0.422 2.10E−01 2.19E−01
Embryo 20–22 h 0.659 0.593 0.781 0.405 2.91E−02 3.33E−02
Embryo 22–24 h 0.669 0.562 0.889 0.235 0.00E+00 0.00E+00*

L1 stage larvae 0.605 0.600 0.611 0.589 0.00E+00 0.00E+00*

L2 stage larvae 0.696 0.647 0.808 0.485 7.95E−04 1.27E−03*

L3 stage larvae 0.868 0.844 1.000 0.688 0.00E+00 0.00E+00*

White prepupae 0.819 0.761 1.000 0.522 0.00E+00 0.00E+00*

White prepupae+12 h 0.780 0.791 0.739 0.844 0.00E+00 0.00E+00*

White prepupae+24 h 0.912 0.921 0.843 1.000 0.00E+00 0.00E+00*

Pupae 0.992 0.992 0.985 1.000 0.00E+00 0.00E+00*

Adult male eclosion+1 day 0.637 0.556 0.778 0.333 4.41E−02 4.81E−02
Adult male eclosion+5 days 0.763 0.748 0.810 0.686 0.00E+00 0.00E+00*

Adult male eclosion+30 days 0.681 0.552 0.956 0.148 0.00E+00 0.00E+00*

Adult female eclosion+1 day 0.692 0.646 0.795 0.498 5.38E−04 9.22E−04*

Adult female eclosion+5 days 0.694 0.613 0.880 0.347 5.02E−03 6.69E−03*

Adult female eclosion+30 days 0.739 0.642 1.000 0.284 0.00E+00 0.00E+00*

Notes.
*Statistically significant models are indicated by superscript asterisks.

Frequency of features
To assess the importance of features in describing each promoter set, we also analyzed
the frequency of features in the created models. To do so, we manually grouped all
the informative features into the six types of features regarded in this study (refer to
‘Materials and Methods’). These six feature collections are: presence of motifs regardless
of orientation (Presence), presence and orientation of motifs (Presence & Orientation),
position of motifs relative to the TSS, pairwise distance of motifs, order and distance of two
motifs relative to the TSS (Fig. 5C). For each feature, we checked its presence in promoters
of the model-construction set of the stage it was detected in. Consequently, the features that
describe presence and pairwise positioning of motifs towards a specific orientation were
most frequent, representing 28% and 25% of all the features. Both features were followed
by those related to positioning of motifs relative to the TSS (21% of the total) and distance
of two motifs to the TSS (15% of the total). On the other hand, order and orientation of
motifs accounted for only 11% and 0% of all the features, respectively (Fig. 5C).
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Figure 4 Structural features of three models with the highest performance, (A) embryo 12–14 h, (B)
white prepupae+24 h and (C) pupae. Squares above/below the horizontal line indicate the DNA strand
where the motif is located. Arrows represent features related to order of motifs.
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Figure 5 Performance of the models with different types of features. (A) Boxplots of Fscores. (B) Bar
plots of the number of significant models. (C) Frequency of informative features in all the models. The
M’s stand for simple to more complex models: M-1 (presence of motifs), M-2 (presence and orientation
of motifs), M-3 (presence, orientation and positioning of motifs relative to the TSS), M-4 (presence, ori-
entation, positioning of motifs relative to the TSS and pairwise distance of motifs), M-5 (presence, orien-
tation, positioning of motifs relative to the TSS, pairwise distance and order of motifs), M-6 (all the fea-
tures), and M-7 (presence, positioning of motifs relative to the TSS and pairwise distance of motifs). The
‘‘0%’’ means that no features related to presence of motifs regardless of orientation were obtained.

Validation of the models
Each set of informative features was subsequently used to score the whole promoter
set of D. melanogaster, and to search for stage-expressed genes with similar promoter
structures. We excluded the promoters of genes (both stage-expressed and control ones)
used to construct the models, and selected the top 100 genes with high-scoring regions per
developmental stage. Independent RNA-seq samples (Table S3) were mapped to the D.
melanogaster genome and expressed genes were retrieved. For each developmental stage,
the number of overlapping genes between high-scoring ones and genes confirmed by the
corresponding RNA-seq sample was analyzed. As Table 2 illustrates, for 17 models, ≥70
out of the top 100 high-scoring genes were stage-expressed. The threshold for choosing
between expressed and non-expressed genes was set to FPKM >1. This cut-off was also
changed to FPKM >2 and FPKM >3 in order to verify how different FPKMs would affect
the results. Although there was a decrease in the number of stage-expressed genes, >50%
of the models still showed statistical significance for FPKM >2 (Table S7). We further
downloaded experimentally validated cis-regulatory elements from the REDfly database
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Figure 6 Heatmap of p-values indicating the ability of one model to characterize the promoter regions
of genes expressed in the other stages. For each stage, all the genes were scored by the model of another
stage (the rows indicate the models and the columns are the score sets). The scoring of expressed and non-
expressed genes was evaluated with the Student’s t -test.

(Gallo et al., 2011), and checked whether predicted motifs associated with stage-expressed
genes were located inside validated regions. This analysis resulted in many of our predicted
sites lying within experimentally validated elements (Data S1). One of the best-understood
regulatory processes in the Drosophila embryo is the dorsal-ventral axis formation. It
occurs early in embryogenesis, and the role of enhancers in controlling patterning and
cell fate specification has been previously studied (Zeitlinger et al., 2007). Therefore, we
further downloaded ChIP-seq data of two transcription factors: dorsal and snail, in order to
conduct a more quantitative evaluation. For each transcription factor, we then overlapped
detected binding sites with sequence motifs predicted by the models of stages embryo 0–2 h
and 2–4 h. As a result, we were able to predict many sequence motifs located inside detected
sites. The factor snail contributes to the establishment of the mesoderm primordium in
the early Drosophila embryo in addition to regulating morphogenesis and differentiation
of the mesoderm. Our analysis detected snail occupancies inside the promoter regions of
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Table 2 Number of genes among the top 100 high-scoring genes, which were also confirmed by RNA-
seq data.Genes used for designing the models were not scored. The count of expressed and high-scoring
genes, the genome-wide fraction of expressed genes (FPKM > 1) and p-value from the hypergeometric test
are included.

Developmental stage Count Expression fraction P-value

Embryo 0–2 h 56 0.397 7.13E−04*

Embryo 2–4 h 45 0.437 4.33E−01
Embryo 4–6 h 61 0.468 2.92E−03*

Embryo 6–8 h 50 0.462 2.54E−01
Embryo 10–12 h 64 0.516 7.99E−03*

Embryo 12–14 h 70 0.527 3.15E−04*

Embryo 14–16 h 71 0.552 8.37E−04*

Embryo 16–18 h 76 0.592 3.07E−04*

Embryo 18–20 h 62 0.665 8.54E−01
Embryo 20–22 h 75 0.597 9.69E−04*

Embryo 22–24 h 79 0.597 3.18E−05*

L1 stage larvae 75 0.587 4.78E−04*

L2 stage larvae 73 0.599 4.13E−03*

L3 stage larvae 89 0.691 2.32E−06*

White prepupae 77 0.646 5.15E−03*

White prepupae+12 h 74 0.678 1.09E−01
White prepupae+24 h 78 0.626 7.21E−04*

Pupae 85 0.692 2.13E−04*

Adult male eclosion+1 day 84 0.702 1.09E−03*

Adult male eclosion+5 days 85 0.708 6.88E−04*

Adult male eclosion+30 days 91 0.722 3.33E−06*

Adult female eclosion+1 day 73 0.599 4.21E−03*

Adult female eclosion+5 days 57 0.542 3.20E−01
Adult female eclosion+30 days 71 0.533 2.15E−04*

Notes.
*Statistically significant models are indicated by superscript asterisks.

well-known genes in dorso-ventral pattern formation. One of these target genes was stumps
(FlyBase ID FBgn0020299) (Casal & Leptin, 1996). Another gene was Socs36E (FlyBase
ID FBgn0041184), which follows an expression pattern similar to that of the Drosophila
JAK/STAT pathway ligand unpaired. Socs36E is upregulated when the ectopic activation of
JAK/STAT pathway occurs during embryonic and imaginal development (Karsten, Häder
& Zeidler, 2002). Snail binding sites were also found in the regulatory region of tailup
(FlyBase ID FBgn0003896), whose early function in the development of imaginal wing disc
has been studied (Navascués & Modolell, 2007). The factor dorsal also plays key roles in the
regulation of specific genes. For instance, we identified dorsal occurrences in the promoters
of Cyp310a1 (FlyBase ID FBgn0032693) and wntD (FlyBase ID FBgn0038134). Cyp310a1
restricts Wingless expression to the dorso-ventral boundary (Mohit et al., 2006), whereas
wntD is activated by dorsal and inhibited in the ventral cells by snail. wntD is also known
to be regulated by dorsal/twist/snail and to inhibit dorsal nuclear localization and function
(Ganguly, Jiang & Ip, 2005). Additionally, we detected dorsal and snail binding sites in the
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promoter of Neu2 (FlyBase ID FBgn0037085), which has been described as a dorsal target
in the neuroectoderm (Stathopoulos et al., 2002). Other dorso-ventral target genes involved
in morphogenesis and reported to contain high dorsal occupancy were also found. For
example, dorsal sites were discovered in the promoter of scra (FlyBase ID FBgn0261385),
but snail sites were instead detected in the promoters of lbk (FlyBase ID FBgn0034083) and
Zasp52 (FlyBase ID FBgn0265991) (Koenecke et al., 2016). These results demonstrate that
at least for both transcription factors (dorsal and snail), our models were able to detect
sequence motifs that lay inside binding occupancies.

To further evaluate the biological significance of our informative features, we collected
genes whose promoters contained common structural features, and checked for shared
molecular functions or biological processes according to the FlyBase repository (Marygold
et al., 2013). Figure 7A shows the promoter regions of three genes expressed in adult
male eclosion +5 days, and involved in motor neuron axon guidance, signal peptide and
developmental protein. The promoters of genes Notch (FlyBase ID FBGN0004647) and
Wnt oncogene analog 4 (FlyBase ID FBGN0010453) shared the positioning of motif DM-6
from 500 to 600 bp relative to the TSS on minus strand, and the binding order of motifs
DM-6 (on minus strand) and DM-1 (on plus strand) upstream of the TSS. Moreover, the
promoters of Notch (FlyBase ID FBGN0004647) and Plexin B (FlyBase ID FBGN0025740)
contained themotif DM-1 on plus strand and downstream of the TSS. Figure 7B depicts the
promoters of three genes expressed in embryo 16–18 h, and involved in immunoglobulin-
like domain/fold, immunoglobulin subtype 2 and immunoglobulin subtype/domain. These
regulatory regions comprise the presence of motifs DM-9 and DM-10 on minus strand and
upstream of the TSS. Figure 7C illustrates the regions of three genes expressed in embryo
22–24 h and involved in neurogenesis. Their promoters contain the presence of motif
DM-8 on minus strand and upstream of the TSS, and the binding order of motifs DM-8
(on minus strand), DM-8 (on minus strand) and DM-11 (on plus strand) upstream of the
TSS. It is worth noting that the gene Notch is known to be involved in the Notch signaling
pathway as well as in promoting neural differentiation. We then checked how many genes
involved in the Notch signaling our model would be able to find in a genome-wide search.
Surprisingly, we could detect not only well-known genes such as Notch, mind bomb 1 and
extra macrochaetae, but also others recently reported in an interaction network for Notch
signaling (Mummery-Widmer et al., 2009) (Fig. S1). We further looked for enrichment
of other pathways supported by gene ontology terms. As a result, terms such as lateral
inhibition, developmental protein, imaginal disc-derived wing morphogenesis, R8 cell
fate commitment, peripheral nervous system development, phosphoprotein and protein
binding were statistically significant (Table S8). A collection of predicted motifs in the
promoters of high-scoring genes per developmental stage can be found in Data S2.

CONCLUSIONS
This study has introduced two new structural features to a previously developed model—
the presence of motifs and the relative distance of motif pairs to the TSS—for modeling
the promoter regions of co-expressed genes. From these two features, the presence of
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Figure 7 Schematic representation of the promoter regions of three genes involved in (A) motor neu-
ron axon guidance, signal peptide and developmental protein, (B) immunoglobulin-like domain/-
fold, immunoglobulin subtype 2 and immunoglobulin subtype/domain, and (C) neurogenesis. Squares
above/below the horizontal line indicate the DNA strand where the motif is located. For more detailed de-
scriptions of these promoter regions, please refer to Data S2.
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motifs without positional restriction, along with characteristics such as motif orientation,
positioning of motifs relative to the TSS and pairwise distance of motifs appear to provide
an accurate description of promoter regions.When the distance of twomotifs relative to the
TSS was included, there was not a significant improvement in performance. Features such
as orientation, positioning of individual motifs relative to the TSS and pairwise distance of
motifs were frequently included in the scoring scheme. The existence of common structural
patterns in promoters of co-expressed genes was also confirmed by independent RNA-seq
samples, resulting in 19 (79.2%) statistically significant models. Future studies should
focus on simpler features in order to avoid complex promoter structures, which might not
properly describe regulatory regions.
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