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A large body of work supports the proposal that transplantation of olfactory ensheathing cells (OECs) into nerve or spinal cord
injuries can promote axonal regeneration and remyelination. Yet, some investigators have questioned whether the transplanted
OECs associate with axons and form peripheral myelin, or if they recruit endogenous Schwann cells that form myelin. Olfactory
bulbs from transgenic mice expressing the enhanced green fluorescent protein (eGFP) under the control of the 2-3-cyclic
nucleotide 3-phosphodiesterase (CNPase) promoter were studied. CNPase is expressed in myelin-forming cells throughout their
lineage. We examined CNPase expression in both in situ in the olfactory bulb and in vitro to determine if OECs express CNPase
commensurate with their myelination potential. eGFP was observed in the outer nerve layer of the olfactory bulb. Dissociated OECs
maintained in culture had both intense eGFP expression and CNPase immunostaining. Transplantation of OECs into transected
peripheral nerve longitudinally associated with the regenerated axons. These data indicate that OECs in the outer nerve layer of
the olfactory bulb of CNPase transgenic mice express CNPase. Thus, while OECs do not normally form myelin on olfactory nerve
axons, their expression of CNPase is commensurate with their potential to form myelin when transplanted into injured peripheral
nerve.

1. Introduction

The only example of successful regeneration from peripheral
neurons into the central nervous system (CNS) is within
the olfactory system, where axons regenerate throughout life
from the nasal mucosa into the olfactory bulbs of the brain.
A specialized glia cell, the olfactory ensheathing cell (OEC),
spans the CNS-peripheral nervous system (PNS) junction
and is thought to bridge the gap to allow peripheral axons
to penetrate the brain. Indeed, transplantation of cultured
OECs leads to enhanced regeneration and remyelination of
injured peripheral nerve [1, 2].

A large body of work supports the proposal that trans-
plantation of OECs into various spinal cord injury and
demyelination models can promote axonal regeneration,
remyelination, and functional recovery [2–12]. Yet, some

investigators have questioned whether the transplanted
OECs form peripheral myelin, or if they recruit endogenous
SCs that form myelin [13, 14]. These events are not mutually
exclusive in that transplanted OECs could both facilitate SC
invasion into the spinal cord and as well as myelinate axons.
It is important to note that Franklin et al. [11] demonstrated
myelination in the spinal cord by an OEC cell line, strongly
suggesting that OECs can indeed remyelinate axons [9].

Although OECs do not form myelin on fine caliber olfac-
tory nerve fibers during normal development, numerous
studies have shown that OECs can remyelinate both CNS
[15–18] and PNS [1, 2] axons in a variety of lesion models.
This discrepancy between the normal developmental fate
OECs in vivo and their differentiation when transplanted
into demyelinated regions has raised the question of whether
the myelination observed in OEC transplanted lesions is due
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to contamination of OEC preparations with Schwann cells,
oligodendrocyte precursor cells (OPCs), or even neural stem
cells [13, 19, 20].

The enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase
or CNPase is expressed in both oligodendrocytes and SCs and
is considered a marker for myelin-forming cells, although
it is also found in other cells, including lymphocytes and
photoreceptors as well as some neurons in long-term culture
[21]. CNPase is both membrane bound and linked to
microtubules and is the third most abundant myelin protein
in the CNS, representing 4% of CNS myelin proteins. The
role of this enzyme is not yet clear, although over expression
mutations suggest that CNPase plays a role in myelin com-
paction [22, 23]. CNPase is the earliest myelination-specific
protein expressed by oligodendrocytes and is expressed in
both myelinating and nonmyelinating oligodendrocytes and
SCs. CNPase is therefore considered to be marker for the
potential of cells to produce myelin, rather than an indication
of actual myelination and evidence of CNPase expression by
OECs would therefore provide strong support for the idea
that OECs are capable of forming myelin.

Studies using immunostaining with antiCNPase antibod-
ies yielded ambiguous and conflicting results for CNPase
expression by OECs from the olfactory bulb and olfactory
neuroepithelium. CNPase staining was observed on some,
but not all presumptive OECs in explant cultures from the
olfactory bulb [24], but not on presumptive OECs in dissoci-
ated cultures from the nasal epithelium cultured on astrocyte
feeder layers [25]. Immunostaining of developing olfactory
bulb focused on CNPase staining of oligodendrocytes and
did not report CNPase staining of OECs [26]. It is not clear
therefore whether CNPase is expressed by OECs only in
specific environments, or whether levels of CNPase may be
too low to reliably detect with standard antibody staining
protocols.

The recent development of a transgenic mouse in which
an enhanced green fluorescent protein (eGFP) is linked to
expression of CNPase [21] has provided an opportunity
to evaluate CNPase expression by OECs in a variety of
environments. Since the use of a reporter gene eliminates
problems with both false positive and false negative antibody
staining, GFP transgenic mice would allow detection of
CNPase expression without the need to optimize staining
protocols to specific tissue or culture conditions. In this
study we have examined CNPase-linked eGFP expression by
OECs in the olfactory bulb and in dissociated cell culture.
The results indicate that OECs express CNPase in the outer
nerve layer of the olfactory bulb as well as in culture,
thus indicating that OECs express an important enzyme
required for myelination. This provides further evidence of
the intrinsic capability of OECs to myelinate axons upon
transplantation.

2. Methods

2.1. Isolation and Characterization of OECs from CNP-
EGFP Mouse. The CNP-EGFP mouse has been described
previously [15, 27]. Freshly isolated OECs were obtained
as reported previously [16, 28, 29]. Olfactory bulbs were

removed from 4- to 8-week-old transgenic mice expressing
GFP-CNPase and dissected free of meninges. The caudal
one-third of the bulb was removed and discarded along
with as much white matter as possible to isolate the outer
nerve layer. Tissue was minced finely with a pair of scalpel
blades (#10) on plastic culture dishes, and nonadherent
tissue was washed from culture dishes and incubated for
25 min in collagenase A (0.75 mg/mL; Roche, Indianapolis,
I, USA), collagenase D (0.75 mg/mL; Roche), and papain
(12 U/mL; Worthington, Lakewood, NJ, USA) in calcium-
free complete saline solution with trace cysteine for 25 min
at 37◦C on a rotary shaker in a CO2 incubator. The tissue
suspension was then centrifuged for 7 min at 300×g, and,
the supernatant was discarded. The pellet was resuspended in
2 mL of Dulbecco’s modified medium (DMEM, Invitrogen,
Carlsbad, Calif, USA) with 10% fetal calf serum (FCS)
using gentle mechanical trituration; first with a 5 mL culture
pipette and then with two fire-polished silicone-coated
pasture pipettes with successively reduced diameters. The
volume of media was immediately increased to 20 mL, and
undissociated pieces of tissue were allowed to settle for 2 min
before transferring the cell suspension to another culture
tube and centrifuging as before. Cells were washed twice,
resuspended, and preplated for 1 h in a culture flask at
37◦C in a CO2 incubator. Nonadherent cells were gently
washed off with DMEM, and the cells were centrifuged
and resuspended three times in DMEM. Then cells were
counted and concentrated to 3.0 × 104 cells/µL just prior
to transplantation. P75NGFR- and S100-positive cells were
counted in short-term cultures made from cell suspensions
used for transplantation to assess purity of the cells. Over
95% of the cells were positive for p75NGFR and S100.

2.2. Immunostaining. To identify OECs, immunostaining for
p75NGFR, a characteristic marker for OECs, was performed
on cultured OECs. The cells were preincubated in normal
goat blocking serum prior to incubation with the pri-
mary rabbit anti-p75NGFR monoclonal antibody (1 : 1000;
Chemicon, Temecula, Calif, USA) followed by incubation
with a fluorescein isothiocyanate- (FITC-) conjugated IgG
(1 : 2000, Molecular Probes, Leiden, The Netherlands) sec-
ondary antibody for p75NGFR. Photographs were taken on
a Spot RT Color CCD.

2.3. Immuno-EM. CNPase transgenic mice were deeply
anesthetized (50 mg/kg sodium pentobarbital, i.p.) and per-
fused transcardially with PBS followed by 4% paraformal-
dehyde/0.02% glutaraldehyde in phosphate-buffered saline
(PBS). Olfactory bulbs were excised, postfixed overnight
in 4% paraformaldehyde, and embedded in 3% agar
for vibratome sectioning. Free-floating sections (thickness
150 µm) were incubated in 2% normal goat serum for
30 min and then in rabbit anti-GFP antibody (1 : 2000;
Chemicon) overnight at 4◦C. The sections were incubated
overnight with an anti-rabbit biotinylated secondary anti-
body (Sigma, St. Louis, Mo, USA) and then incubated for
1 h using a Vectastain Elite ABC kit (Vector Laboratories,
Burlingame, Calif, USA). The sections were postfixed with
1% osmium tetroxide for 4 h, dehydrated in graded ethanol,
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Figure 1: CNPase expression is characteristic of myelinating cells. (a) In the transgenic mouse where GFP is under the control of CNPase,
GFP expression can be observed in cortical white matter (a) and sciatic nerve (b). The GFP is present in oligodendrocytes in white matter of
the CNS and Schwann cells in the peripheral nerve. (c) Cross-section of the olfactory bulb from the CNPase mouse showing GFP expression
in the olfactory nerve (arrow) and the outer nerve layer of the olfactory bulb (OB) where OECs are present as the only glia cell type. (f)
Higher power image of the olfactory nerve from (c) showing GFP expression in the nuclei and cytoplasm of OECs in the outer nerve layer.
(d) and (e) Immunohistochemistry for CNPase in a wild type mouse OB showing CNPase expression in deep white matter and outer margins
of the bulb. Note that the round glomeruli are devoid of CNPase. Nuclei have been counterstained with DAPI (blue) in (c), (e), and (f). Scale
bars: (a) = 8 µm, (b) = 12 µm, (c) = 500 µm, (d) = 150 µm and pertains to (d) and (e), (f) = 3 µm.

and embedded in Epox-812 (Ernest Fullam, Latham, NY,
USA). Ultrathin sections were cut as described above but
were not counterstained.

2.4. Induction of Nerve Crush Lesion and eGFP-OECs Trans-
plantation Procedure. The Veterans Affairs Connecticut
Healthcare System Institutional Animal Care and Use Com-
mittee approved all animal protocols. Experiments were
performed in accordance with National Institutes of Health
guidelines for the care and use of laboratory animals.
Adult Sprague Dawley rats (200–225 g) were used for these
experiments (n = 12). The rats were anesthetized with
ketamine (75 mg/kg i.p.) and xylazine (10 mg/kg i.p.). The
sciatic nerve was surgically exposed in anesthetized rats and
injured by nerve crush lesion with fine microforceps for
40 seconds. This procedure completely transects all axons
within the nerve and the animals showed signs of complete
nerve transection [30]. The lesion site was standardized at the
level of the piriformis tendon in the thigh. Cultured eGFP-
expressing OECs from rat were detached from the culture
flasks and resuspended in culture medium and adjusted to
a concentration of 30,000 cells/µL. 2 µL of the cell suspension
or vehicle alone (sham control) was injected 5.0 mm by
using a Hamilton microsyringe caudally and distally into
the crush lesion site. The animals survived for 5 weeks

at which time they were intracardially perfused with 4%
paraformaldehyde in phosphate buffer followed by removal
of nerves for histological analysis.

3. Results

GFP expression in the cortex of the CNPase-eGFP transgenic
mouse is strong in oligodendrocytes of cortical white matter
(Figure 1(a)). Expression is also observed in Schwann cells of
peripheral nerve (Figure 1(b)). Sections through the olfac-
tory bulb in the CNPase-eGFP transgenic mouse indicate
intense CNPase expression in the outer nerve layer of the
olfactory bulb, the site where OECs are localized and interior
regions of the bulb which are rich in oligodendrocytes
(Figure 1(c)). Additionally, CNPase was strongly expressed in
the olfactory nerve as it enters the olfactory bulb (Figure 1(c);
arrow). A higher power image of the olfactory nerve from
Figure 1(c) shows GFP expression in the nuclei and cyto-
plasm of the OECs (Figure 1(e)). Immunohistochemistry for
CNPase of the olfactory bulb shows staining in deep white
matter as well as in the outer nerve layer (Figure 1(d)).

3.1. Colocalization of p75NGFR with CNPase in OECs in the
Olfactory Bulb. The low affinity NGF receptor, p75NGFR, is
expressed by OECs and Schwann cells. Cells in the olfactory



4 Journal of Biomedicine and Biotechnology

GFP-CNPase

(a)

p75NGFR

(b)

CNPase/p75

(c)

e

(d) (e)

Figure 2: Colocalization of p75NGFR/CNPase and Immuno-EM. (a) GFP expression in the CNPase mouse in the olfactory nerve as it enters
the OB and in scattered cells in the deep OB white matter. Immunostaining for p75 colocalizes with GFP in the olfactory nerve, but not in
deep white matter (a–c). Immunoperoxidase staining for GFP in toluidine blue plastic sections (1 um) shows that the GFP was present in
OECs in the outer nerve layer (d, e). Scale bars: in (a), pertains to (a–c) = 10 µm, (d) = 7, (e) = 10 µm.

nerve layer of eGFP-CNPase transgenic mice showed colo-
calization of GFP expression with the p75NGFR receptor
(Figures 2(a)–2(c)). OECs can readily be identified in
olfactory nerve as glial cells ensheathing large numbers of
nonmyelinated olfactory nerve fibers and are distributed
in the outer nerve layer of the olfactory bulb. For more
detailed cellular localization of CNPase, immunoperoxidase
staining of the olfactory bulb with a GFP antibody was
performed and semithin plastic sections counterstained with
toluidine, blue were obtained for more precise localization
of eGFP in the OECs of the olfactory bulb and nerves. The
eGFP (CNPase expressing cells) was localized in structurally
well-defined OECs in the outer nerve layer of the olfactory
bulb (Figure 2(d); higher magnification in Figure 2(e)). The
cytoplasmic processes of the OECs wrapped bundles of
nonmyelinated axons projecting within the outer nerve layer
(Figure 2(e)). Thus, coexpression of p75 and CNPase within
OECs in the olfactory bulb argues for the remyelination
potential of OECs.

3.2. Cultured OECs from the CNPase Transgenic Mouse Main-
tain Their GFP Expression. The CNPase expression observed
in situ was maintained in culture when cells were prepared
for cell transplantation (Figures 3(a)–3(d)). Confirmation of
OEC identity was established by p75 (Figure 3(b)) immunos-
taining characteristic of OECs. OECs are the only cells
expressing p75NGFR in the olfactory bulb. Dissociated OECs

derived from the olfactory bulb and maintained in culture
for 4 days had both intense p75NGFR immunostaining and
eGFP-CNPase expression (Figure 3(d)).

3.3. OECs Transplanted into Injured Peripheral Nerve Remyeli-
nate Regenerating Axons. OECs prepared from olfactory
bulb and transplanted into transected peripheral nerves
remyelinate the regenerated axons [2]. The transplanted
OECs, shown in green, aligned longitudinally with the regen-
erated axons (Figure 4(a)). The sciatic nerve crush model
(axonotmesis) used completely transects all axons within
the nerve. The images for Figure 4 were obtained several
millimeters distal to the crush site indicating that regenerated
axon were remyelinated by the transplanted OECs. Images
of the sciatic nerve at 5 weeks post-OEC transplantation
demonstrated an abundance of eGFP-OECs distributing
along the injured nerve (Figure 4(a) with inset in (a)). eGFP
can be seen in the nuclei and cytoplasm around regenerating
peripheral nerve axons. The transplanted eGFP-OECs are
longitudinally oriented and associated with neurofilament-
(NF-) stained axons (inset Figure 4(a)). Longitudinal sec-
tions of a group of regenerated axons demonstrated GFP-
OECs surrounding the axon (Figure 4(b)), and importantly,
the remyelinated axons have nodes of Ranvier (Figure 4(b))
with appropriate sodium channel Nav1.6 expression
(Figure 4(c)) flanked by the Caspr immunostained par-
anodes (Figure 4(d); overlay is shown in Figure 4(e)).
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Figure 3: Cultured OECs from the CNPase transgenic mouse maintain their GFP expression. (a–d) Immunostaining of cultured olfactory
bulb OECs derived from the eGFP-CNPase mouse indicates colocalization with p75. Nuclei stained blue with DAPI. Note the small cluster
of spindle-shaped OECs and a more flattened OEC (upper left) both colocalize GFP (CNPase) and p75. Scale bar: (a) = 5 µm.

4. Discussion

Here we demonstrate that OECs in the outer nerve layer of
the olfactory bulb express CNPase, the universal marker for
myelinating cells. CNPase expression in OECs is maintained
in highly purified cultures and OECs transplanted into
injured peripheral nerves remyelinate regenerated nerve
fibers. A difficulty in comparing results regarding the
remyelinating potential from OEC transplantation studies
from various laboratories is that differences are present in
the age of the animals used for cell harvesting, purification
procedures, and lesion models into which the cells were
transplanted. OECs used in the present study were prepared
relatively acutely from the outer nerve layer of the adult
olfactory bulb; a CNS area rich in OECs in vivo [18].
The degree of cell purity (>95%) in our cell suspension as
assessed using p75NGFR/S100 immunostaining was about
the same as in other studies where immunopanning tech-
niques were used [14, 31] or where OECs were prepared from
embryonic tissue [32]. Mitotic inhibitors and stimulators
of cell proliferation and differentiation were used in those
studies. In our cell preparation method from adult tissue,
we did not use mitotic inhibitors nor did we stimulate
proliferation and differentiation in vivo. Contamination by
SCs, which are also p75/S100 positive, in our cultures would
be problematic in the interpretation that adult OECs are able
to form peripheral-like myelin. However, one would expect
at best a very minor contamination of SCs possibly associated
with blood vessel innervation [14] or meningeal cells [32].

Such minor contamination could not account for the vast
majority (>95%) of our cells displaying a p75NGFR/S100+

phenotype in relatively acute cell suspensions.
Using transgenic mice which express GFP only in cells

which express CNPase, we were able to show that OECs from
the outer nerve layer of the olfactory bulb express CNPase
and that OEC preparations isolated from this tissue using
our isolation methods also express CNPase. This expression
is an important prerequisite to demonstrate the myelination
potential of OECs.

Transplantation of OECs prepared from adult olfac-
tory bulb into various traumatic spinal cord injury and
nerve injury models have demonstrated improved functional
recovery. Histologically, axonal regeneration, remyelination,
and neuroprotection have been reported following OEC
transplantation [33]. However, Li et al. (2007) report that
while OECs remyelinated regenerated spinal cord axons
that they did not remyelinated regenerated optic nerve
axons [34], while Schwann cells did remyelinate some optic
nerve axons. Reason for this difference is uncertain. We
demonstrated that the migration properties of OECs and SCs
are different in the X-irradiated spinal cord: OECs migrate
extensively in both gray and white matter and SCs do not
[35]. Indeed, a number of unique properties have been
described for OECs to distinguish them from SCs [36]. While
several groups point out unique properties following in vivo
transplantation of OECs as compared to SCs such as the
formation of cellular tunnels which provide a permissive
environment for axonal regeneration and greater mobility



6 Journal of Biomedicine and Biotechnology

NF

(a)

GFP

(b)

Nav1.6

(c)

Caspr

(d)

Merged

(e)

Figure 4: OECs transplanted into injured peripheral nerve remyelinate regenerating axons. (a) GFP can be seen in the nuclei and cytoplasm
around regenerating peripheral nerve axons. The inset indicates that the GFP elements are longitudinally oriented with neurofilament-
(NF-) stained regenerated axons. (b–e) Longitudinal section of a group of regenerated axons with GFP cells (b) surrounding the axons and
sodium channel Nav1.6 (c) being flanked by the Caspr immunostained paranodes (d) indicating that the transplanted OECs can remyelinate
regenerated axons which form appropriate sodium channels at the newly formed nodes of Ranvier (overlay in (e)). Scale bars: (a) = 50 µm
(a), (b–e), and (a) inset in (a) = 5 µm.

in astrocytic regions [36] others suggest that the functional
benefits of OEC transplantation may result from recruitment
of endogenous SCs by the OECs [13, 19].

Currently, a number of clinical studies are underway
exploring the potential clinical utility of OEC transplantation
in spinal cord injury patients [37–41]. Better understanding
of the ability of transplanted OECs to improve functional
outcome and direct comparison to transplanted SCs in CNS
injury will have an impact on the direction of future research
directed toward clinical applications.

5. Conclusion

The results of this study indicate that OECs in the outer
nerve layer of the olfactory bulb express CNPase, a universal
marker for myelinating cells. CNPase expression in OECs
is maintained in highly purified cultures and colocalizes
in cells with p75 receptor expression. Moreover, in culture
the OECs maintain strong eGFP-CNPase expression. OECs
transplanted into injured peripheral nerves remyelinate
regenerated nerve fibers which formed nodes of Ranvier

with high density of sodium channels between the myelin
segments formed by the transplanted OECs. These data
demonstrate that OECs share the molecular machinery of
CNPase expression with oligodendrocytes and Schwann cells
indicating a third dominant myelinating cell type within the
nervous system. These results encourage ongoing work with
OECs as a therapeutic tool in peripheral nerve repair, in CNS
trauma and demyelinating diseases.

Abbreviations

CNPase: 2′-3′-cyclic nucleotide 3′-phosphodiesterase
CNS: Central nervous system
DMEM: Dulbecco’s modified medium
eGFP: Enhanced green fluorescent protein
FCS: Fetal calf serum
FITC: Fluorescein isothiocyanate
Nav1.6: Sodium channel subtype 1.6
NF: Neurofilament
OECs: Olfactory ensheathing cells
ONL: Outer nerve layer
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OPC: Oligodendrocyte precursor cells
PBS: Phosphate-buffered saline
p75NGFR: P75 nerve growth factor receptor
PNS: Peripheral nervous system.
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