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Abstract

Interindividual variation is important in the response to metformin as the first-line therapy for

type-2 diabetes mellitus (T2DM). Considering that OCT1 and MATE1 transporters deter-

mine the metformin pharmacokinetics, this study aimed to investigate the influence of

SLC22A1 and SLC47A1 variants on the steady-state pharmacokinetics of metformin and

the glycemic response. This research used the prospective-cohort study design for 81

patients with T2DM who received 500 mg metformin twice a day from six primary healthcare

centers. SLC22A1 rs628031 A>G (Met408Val) and Met420del genetic variants in OCT1 as

well as SLC47A1 rs2289669 G>A genetic variant in MATE1 were examined through the

PCR-RFLP method. The bioanalysis of plasma metformin was performed in the validated

reversed-phase HPLC-UV detector. The metformin steady-state concentration was mea-

sured for the trough concentration (Cssmin) and peak concentration (Cssmax). The pharma-

codynamic parameters of metformin use were the fasting blood glucose (FBG) and glycated

albumin (GA). Only SLC22A1 Met420del alongside estimated-glomerular filtration rate

(eGFR) affected both Cssmax and Cssmin with an extremely weak correlation. Meanwhile,

SLC47A1 rs2289669 and FBG were correlated. This study also found that there was no cor-

relation between the three SNPs studied and GA, so only eGFR and Cssmax influenced GA.

The average Cssmax in patients with the G allele of SLC22A1 Met408Val, reaching 1.35-fold

higher than those with the A allele, requires further studies with regard to metformin safe

dose in order to avoid exceeding the recommended therapeutic range.

Introduction

The incidence of diabetes mellitus (DM) in Indonesia is getting higher every year, reaching

2.1% increase since 2013 based on the 2018 National Basic Health Research report. Of the total

population, 13.1% has a high level of fasting blood glucose [1]. Consequently, to prevent and
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decrease DM-induced mortality and morbidity, a good blood glucose management is needed

[2].

During the period of 2013–2021, metformin had been listed in the Indonesian National

Formulary along with other oral antidiabetic drugs, including glipizide, glimepiride, and glib-

enclamide, as a drug provided by primary healthcare centers [3]. Compared to other oral anti-

diabetic drugs, metformin has a better ability to decrease the level of HbA1c by 1.0–2.0% and

has less hypoglycemia effects. However, it is known that the glycemic response to metformin is

varied because 35–40% patients have not reached the target for fasting blood glucose [4]. Our

previous research revealed high variability in metformin plasma steady-state concentration

(PSSC), reaching >100x at the trough and 15x at the peak [5]. Genomic variation likely leads

to patients’ variability in the drug pharmacokinetic and pharmacodynamic variability, includ-

ing those of metformin [6]. Metformin has renal excretion as the major elimination pathway

with>0.6 genetic component (rGC), indicating that genetic factor greatly affects the variability

in metformin renal clearance [7]. Genetic variation has an influence on the protein function in

metformin bioavailability or therapeutic effects.

With the hydrophilic property as a cationic species (>99.9%) at a physiological pH, the

pharmacokinetics of metformin is effective depending the function of the transporters [8]. The

main transporters that have a key role in the pharmacokinetics of metformin to date are

Organic Cation Transporter1 (OCT1) and Multidrug and Toxin Extrusion1 (MATE1). Mainly

expressed in the liver, OCT1 is a protein transporter that carries metformin to hepatocytes, the

target of metformin action. The genetic variation in SLC22A1 as the OCT1 coding gene can

change the protein function, leading to a reduced amount of metformin in the receptors and

therefore a declined therapeutic response. A number of studies showed that SLC22A1 genetic

variation resulted in varied steady-state concentration of metformin and various glycemic

response [9–12]. Furthermore, latest studies found that such genetic variation was associated

with metformin intolerance in the gastrointestinal tract [13,14].

In addition, the SLC47A1 is a MATE1 protein-coding gene mostly located in the apical

membrane of renal tubular cells and canalicular membrane of hepatocytes. MATE1 transports

metformin from hepatocytes to the bile and excretes metformin through the kidneys. Some

research proved that the polymorphisms in SLC47A1 affect the pharmacokinetic variability as

well as the glycemic response [15,16]. To date, however, the majority of metformin pharmaco-

genetic studies focus on the effects of OCT1 and MATE1 polymorphisms on glycemic control

at various doses. Only one study has linked this to the minimum steady-state concentrations

but not to the maximum [10], which is likely associated with a predisposition to lactic acidosis.

Meanwhile, a large number of studies of the peak concentrations only focus on single adminis-

tration of metformin to healthy volunteers for bioavailability-bioequivalence studies but not

on repeated administration as an actual condition of metformin use among T2DM patients.

Both transporters are known to play an important role in metformin bioavailability. In addi-

tion, metformin pharmacogenetic studies conducted prospectively in a similar dose with a

control on the adherence factors remain extremely limited. Therefore, this prospective study

aimed to analyze how the genetic variation in two metformin transporter encoding genes cor-

relates with not only the glycemic response but also with the minimum and maximum steady-

state concentrations.

Materials and methods

Recruitment of the subjects

T2DM patients administered metformin 500 mg twice daily for at least 2 weeks from six pri-

mary healthcare centers in Yogyakarta Special Province were involved. An explanation of the
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research, such as the objectives, the procedures for the participants to follow as well as the risks

and benefits of the research were conveyed both orally and in writing directly to the eligible

subjects. The subjects were allowed time to decide whether they would participate in the study.

When they have verbally expressed their consent, they signed 2 (two) informed consent forms

containing the consent to participate in the study (sheet 1) and to permit the research team to

store and use their remaining specimens or DNA (sheet 2). The subjects recruited were in the

30–60 age range and literate, thus requiring no parent or guardian involvement in the subject

recruitment procedure to indicate their consent to participate in this study. The ethical clear-

ance was approved by the Ethics Committee of the faculty of Medicine of Universitas Gadjah

Mada with the approval letter Number KE/FK/648/EC and conducted in accordance with the

Declaration of Helsinki.

Analysis of the genotypes

The genotype analysis was done through Polymerase Chain Reaction (PCR) and Restriction

Fragment Length Polymorphism (RFLP).

SLC22A1 (OCT1) rs628031 (Met408Val). The PCR primer design used 5’-TTT CTT
CAG TCT CTG ACT CAT GCC-3’ and 5’-AAA AAA CTT TGT AGA CAA AGG TAG CAC
C-3’. The analysis of the 397-bp amplification products was done in 1% agarose gel followed by

the restriction digestion in MscI with 16–18 hours of incubation at 37˚C. The digestion yielded

397-bp fragments for the homozygous variants (val/val) as well as 210-bp and 187-bp frag-

ments for the wild-type (Met/Met). The size of the digestion products (397 bp, 210 bp, and 187

bp) showed a category of heterozygotes (Met/Val). The genotype analysis were confirmed

through the sequencing in a previous study [17].

SLC22A1 Met420del in OCT1. The PCR primer design used 5’-AGGTTCACGGACTCT
GTGCT-3’ as the forward primer and 5’-AAGCTGGAGTGTGCGATCT-3’ as the reverse primer.

The analysis of the 600-bp amplification products was done in 1% agarose gel at 100 Volt for

30 minutes, and the restriction digestion used BspHI with ±12 hours of incubation at 37˚C.

The T-CATGA sequence was cut by the BspHI enzyme at 197th DNA template base. The

BspHI identified and digested the AA genotype, but this enzyme did not identify the PCR

products with a T-CATTT sequence, making such products remain undigested. The digestion

produced 600-bp fragments of AA (wild type) genotype, 403-bp and 197-bp fragments of aa

(mutant) genotype, and 600-bp, 403-bp, 197-bp of heterozygotes (Aa).

SLC47A1 (MATE1) rs2289669 (G>A). The PCR primer design used the forward primer

of 50-TCA GTT TCC ACA GTA GCG TCG-30 and the reverse primer of 50-GAC ACT GGA
AGC CAC ACT GAA-30. The TaqI restriction endonuclease digested the amplification prod-

ucts (211 bp), which were then analyzed in 2% agarose gel. The restriction digestion used the

TaqI with 16–18 hours of incubation at 65˚C. The 211-bp amplicons were digested into 21-bp

and 190-bp fragments of AA genotype, 211-bp fragments of GG genotype/wild-type as well as

21-bp, 190-bp, and 211-bp fragments of heterozygous genotype [18].

Pharmacokinetics of metformin steady-state concentrations

The patients reported the time of the last metformin administration which was done for uni-

form doses and intervals. In 12 hours after the last dose administration, they visited the pri-

mary healthcare center for blood sampling to measure the same-day trough and peak

concentrations. The sampling for the trough PSSC was immediately done before the next-dose

administration (pre-dose), while the peak PSSC sample was taken in 3.5–4.0 hours after the

metformin administration (post-dose). The samples were then delivered to the Laboratory of

Drugs, Food, and Cosmetics of the Pharmacy Department of Universitas Islam Indonesia to
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be centrifuged for 10 minutes at 3500g, and the plasma aliquot was stored in a 2-ml polypro-

pylene tube at -20˚C in a maximum of one hour after the sampling. The metformin plasma

concentrations were determined through a validated reversed-phase high performance liquid

chromatography (HPLC) assay with Sunfire1 C-18 column, 4.6 x 150mm x 5μm from

Waters, and SM7 injector with an ultraviolet (UV) detector at 234 nm wavelength [19]. The

metformin PSSC could estimate the elimination rate, and the metformin half-life was also cal-

culated using the following formula [20].

K =hourð Þ ¼
ln Cssmax

Cssmin

� �

8

t1=2 hourð Þ ¼
0; 693

K

Measurement of the glycemic response

The FBG and GA of T2DM patients given metformin monotherapy were measured before and

after the continuous administration of metformin 500 mg twice daily for six weeks. The UV/

VIS spectrophotometry of Hitachi 9021 was used to measure FBG with the GOD-PAP

method, and the ELISA reader of ADVIA1 was employed in the measurement of GA with

the KAOD (Ketoamine oxidase) method.

Statistical analysis

The metformin PSSC obtained was displayed in mean ± SD values. A comparison of patients’

metformin PSSC among the groups of allele types and genetic variants was made using the

independent t-test and one-way ANOVA for normally distributed data as well as the Mann-

Whitney and Kruskal-Wallis test for non-normal data distribution. To analyze the patient-

related factors affecting the pharmacokinetics of metformin steady-state concentrations and

glycemic control, the linier regression was employed with a statistically significant p value of

�0.05.

Results and discussion

There have been no prospective studies of the influence of genetic polymorphisms on the phar-

macokinetics of steady-state concentrations and glycemic response that involve T2DM

patients who adhere to metformin therapy with a similar dose for a minimum of eight weeks.

Given that metformin is a long-term antidiabetic drug, the pharmacokinetic variability of

repeated administration can give a more accurate description of the concentration variability,

while in a single-dose administration it is left unknown.

The discussion on the effects of genetic polymorphisms on the variability of the pharmaco-

kinetics of steady-state concentrations and glycemic control resulted from metformin use

should begin with an understanding of the function, physiological role of OCT1 and MATE1

protein transporters, as well as the level of gene expression in various human tissues. The fol-

lowing table describes the predicted pharmacokinetic variability of metformin steady-state

concentrations and its glycemic response with regard to SNPs in SLC22A1 and SLC47A1
genes.

Meanwhile, the research findings related to the steady-state pharmacokinetic variability in

each genetic variant and allele of both target genes are presented in Table 1.

In general, Table 1 shows that the T2DM patients in the Javanese-Indonesian population

have a significant difference in the Cssmax between the Aa and aa variants. As previously

described in Table 2, OCT1 is highly expressed in the basolateral membrane of hepatocytes,

PLOS ONE The pharmacogenetics of metformin in SLC22A1 and SLC47A1 among Javanese-Indonesian population

PLOS ONE | https://doi.org/10.1371/journal.pone.0271410 July 29, 2022 4 / 12

https://doi.org/10.1371/journal.pone.0271410


making the polymorphisms able to reduce the protein function of OCT1 in transporting met-

formin into hepatocytes as the action target. As a result, metformin is retained in the systemic

circulation at a higher concentration than in wild-type patients. Since such variant was not

found in this study, no further comparative analysis could be performed. Although the

Table 1. Variability of metformin steady-state concentrations according to the genetic variants and alleles.

Group of Patients Frequency

(%)

Cssmin (μg/mL)

(P Value)

Cssmax (μg/mL)

(P Value)

SLC22A1 Met408Val

AA

AG

GG

5 (6.17)

53 (64.43)

23 (28.40)

0,358±0.292

0.365±0.244

0.347±0.335

0.964

0.818±0.445

1.323±0.854

1.006±0.654

0.144

SLC22A1 Met408Val

A Allele (AA genotype)

G Allele (AG and GG genotype)

5 (6.17)

76 (93.83)

0.596±0.486

0.600±0.453

(0.986)

1.363±0.743

1.845±0.944

0.265

SLC22A1 Met420del

AA

Aa

Aa

0 (0.00)

3 (3.70)

78 (96.30)

-

0.549±0.210

0.352±0.272

0.222

2.831±0.518

1.778±0.928

0.015

SLC47A1 rs2289669

GG

GA

AA

14 (17.28)

35 (43.21)

32 (39.51)

0.440±0.259

0.316±0.314

0.372±0.221

0.337

1.298±0.573

1.166±1.030

1.202±580

0.303

SLC47A1 rs2289669

G Allele (GG genotype)

A Allele (GA and AA genotype)

14 (17.28)

67 (82.72)

0.720±0.435

0.574±0.455

(0.277)

1.846±0.727

1.810±0.978

(0.618)

Cssmax, maximum steady-state concentration; Cssmin, minimum steady-state concentration.

https://doi.org/10.1371/journal.pone.0271410.t001

Table 2. Prediction of the steady-state pharmacokinetic variability and glycemic response affected by the genetic polymorphisms in SLC22A1 and SLC47A1.

Location of SNPs Affected stage of metformin

pharmacokinetics

Prediction of the effects of SNPs on the glycemic control parameters (FBG and

GA) based on metformin Css as opposed to that of the wild-type variant

Cssmax Cssmin Final FBG

valuea
Changed FBG

valueb
Final GA

valuea
Changed GA

valueb

SLC22A1 encoding OCT1 in the basolateral

membrane of intestinal cells

Absorption lower minimum

effect

higher higher higher higher

SLC22A1 encoding OCT1 in the basolateral

membrane of hepatocytes�
Influx to the action target in

hepatocytes

higher minimum

effect

higher higher higher higher

SLC47A1 encoding MATE1 in the hepatic

canalicular membrane�
Efflux to the bile lower minimum

effect

lower lower lower lower

SLC22A1 encoding OCT1 in the apical

membrane of renal tubular cells

Reabsorption in the renal tubules lower Lower higher higher higher higher

SLC47A1 encoding MATE1 in the brush-

border membrane of renal tubular cells�
Efflux from the renal cells to be

eliminated via urine

higher higher lower lower lower lower

Note

�highly expressed [31]; aafter the administration of metformin 500 mg every 12 hours for 6 weeks.
bobtained from the final value of glycemic control (FBG, GA) minus the baseline value.

OCT1, organic cation transporter 1; MATE1, Multidrug and Toxin Extrusion 1; Cssmax, maximum steady-state concentration; Cssmin, minimum steady-state

concentration; FBG, fasting blood glucose; GA, glycated albumin.

https://doi.org/10.1371/journal.pone.0271410.t002
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difference was insignificant, a finding similar to the prediction was indicated by the difference

in the mean Cssmax between the A allele and the G allele in SLC22A1 Met408Val, which was

1.363±0.743 g/mL and 1.845±0.944 g/mL, respectively. The presence of the rs628031 Met408-

Val polymorphisms in SLC22A1 is known to decrease the concentration of OCT1 mRNA in

the human liver [21], resulting in reduced OCT1 function to transport metformin to hepato-

cytes. Consequently, polymorphisms in the SLC22A1 gene decrease the function of OCT1 in

transporting metformin to hepatocytes, resulting in the highest Cssmax being found in the vari-

ant-type group. In relation to the risk of lactic acidosis, the G allele has the higher potential

than the A allele. Given the accumulation of metformin concentration becomes a predisposi-

tion to metformin associated lactic acidosis (MALA), the maximum recommended dose of

metformin, particularly on the G allele, should be considered. A number of studies have found

that metformin accumulation leads to lactatemia either with or without decreased renal func-

tion [22,23]. In fact, there is a 6-fold increased risk of lactic acidosis in the initial use of metfor-

min alongside a decreased renal function, and a 12–13 times higher risk is found in patients

with cumulative exposure to high-dose metformin in the past year or initial exposure to high-

dose metformin [24]. The administration of subtherapeutic dose is not a solution since the gly-

cemic target is by no means achieved [25]. Metformin dose is not correlated with plasma lac-

tate or serum creatinine as shown in a study involving the incidence of MALA for over 30

years of observation [26]. There is no examination of metformin concentration or control of

adherence factors, making the accumulation of metformin in plasma remain a predisposing

factor for MALA. However, other factors such as BMI [27] and comorbidities, including renal

impairment, also clearly become the co-factors of metformin accumulation to induce MALA

[28–30]. Not only the dose but also the long-term metformin use become a risk factor for met-

formin accumulation due to the distribution of metformin into the erythrocyte compartment

as previously found in our study [5].

Using an approach of elimination half-life calculation based on the allele type in SLC22A1
Met408Val, this study found that the mean Cssmax was 1.35-fold higher in the G allele group

(AG+GG) when compared to the wild-type group. A longer t1/2 (1.25 times) was also found in

the GG homozygous mutant group (Val/Val) when compared to the AG heterozygous group

(Met/Val). Therefore, it is recommended that the maximum dose of metformin for patients

with the G allele (AG+GG) is lower than that for the wild-type group, and a longer interval of

administration is recommended for the GG homozygous mutant group (Val/Val) in order to

minimize the incidence of lactic acidosis.

Meanwhile, the SLC47A1 that encodes MATE1 is highly expressed in the canalicular mem-

brane of hepatocytes in the bile and in the brush-border membrane of renal tubular cells. Each

of which plays a role in the efflux to the bile and efflux from the kidney cells to be eliminated

through urine, with predicted lower and higher Cssmax than those of the wild-type variant,

respectively with the similar prediction for the glycemic response (Table 2). The mean metfor-

min concentration in both the peak and trough PSSC is lower in the group of patients with the

A allele of SLC47A1 rs2289669 when compared to the wild-type group although there is no sig-

nificant difference. The likely decreased function of MATE1 in the canalicular membrane of

hepatocytes in the bile which is more significant that in the brush-border membrane of renal

tubular cells requires further studies.

It is found in our previous study that differences in the regimen of oral antidiabetic drugs

and the duration of metformin use have led to significantly different mean of Cssmax and

Cssmin, respectively. In addition, the linear regression analysis has shown that only the Cssmax,

alongside the glycemic control factors, affect FBG and GA while the Cssmin has an influence

on FBG. Therefore, this study proceeds with a linear regression test to further analyze the

patient factors, including the genetic variants in the two target genes that influence the steady-
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level pharmacokinetics, glycemic response, and time estimates for metformin elimination to

provide an approximation of the effective metformin dose as presented in Table 3.

With regard to the use of glycemic control parameters, such as FBG and GA in this study

but not HbA1c which is commonly used in the majority of metformin pharmacogenetic stud-

ies, a strong correlation between these three parameters has been demonstrated in some

research [32–36]. The use of GA in Indonesia as both a diagnostic function and parameter for

monitoring the success of diabetes therapy remains limited and has not become the gold stan-

dard of either the Indonesian Society of Endocrinology or the American Diabetic Association.

However, GA is preferred for describing a glycemic control as opposed to HbA1c, especially in

patients with impaired renal function or decreased life span of erythrocyte such as hemolytic

anemia [37]. In addition, even with a shorter life span of albumin compared to that of HbA1c

(±15 days), GA can describe the glycemic control in patients with diabetes mellitus for a

Table 3. Patient-related factors correlated with glycemic response after the administration of metformin 1000mg/day for 6 weeks.

Dependent variable Predictor Coefficient Coefficient of

correlation

P value ANOVA test

result

Adjusted R Square in the Model

Summary

Cssmin (μg/mL) eGFR -0.006 -0.246 0.026 0.015 0.093

Variant genotype of SLC22A1
Met420del

-0.551 -0.231 0.043

BMI -0.020 -0.200 0.080

Cssmax (μg/mL) eGFR -0.013 -0.258 0.018 0.009 0.103

Variant genotype of SLC22A1
Met420del

-1.430 -0.288 0.011

BMI -0.029 -0.135 0.228

Metformin elimination

half-life

Duration of previous metformin

therapy

3.696 0.254 0.022 0.029 0.064

Allele type of SLC22A1
Met408Val

-4.542 -0.181 0.101

Final FBG Baseline GA 3.093 0.463 0.004 0.001 0.333

Variant genotype of SLC47A1
rs2289669

20.460 0.404 0.011

FBG change Baseline FBG 3.135 0.347 0.078 0.000 0.621

Baseline GA -1.006 -0.968 0.000

Variant genotype of SLC47A1
rs2289669

20.425 0.299 0.014

Final GA Baseline GA 1.142 1.274 0.000 0.000 0.727

Baseline FBG -0.077 -0.749 0.001

eGFR 0.086 0.305 0.020

Variant genotype of SLC47A1
rs2289669

-0.889 -0.131 0.222

Cssmin -3.622 -0.176 0.244

Cssmax 2.582 0.443 0.011

GA change Baseline FBG -0.793 -0.838 0.000 0.000 0.460

eGFR -0.060 0.353 0.039

Variant genotype of SLC22A1
Met408Val

0.068 -0.192 0.182

Cssmax 1.689 0.365 0.026

Cssmax, maximum steady-state concentration; Cssmin, minimum steady-state concentration; FBG, fasting blood glucose; GA, glycated albumin; eGFR, estimated-

glomerular filtration rate; BMI, body mass index.

https://doi.org/10.1371/journal.pone.0271410.t003
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minimum of 2–3 weeks [38], making it more appropriate for this study which involves adher-

ent patients taking metformin for eight weeks (including metformin use duration as the inclu-

sion criteria).

Together with eGFR and BMI, the SLC22A1 Met408del polymorphisms affect the pharma-

cokinetics of steady-state concentration of metformin with only a low adjusted R Square. This

indicates that the two steady-state concentrations of metformin are mostly explained by other

variables which are not involved in this study. Similarly, an extremely weak correlation is also

shown by the SLC22A1 Met408del variant type alongside the duration of previous metformin

use and the elimination half-life of metformin. Meanwhile, in the glycemic response based on

FBG, only SLC47A1 rs2289669 affects both the decrease in and the final FBG values, particu-

larly the decreased FBG with 0.621 adjusted R Square.

Encoded by the SLC47A1 gene, the metformin transporter MATE1 is mostly expressed in

the apical membrane of renal tubular cells and canalicular membrane of hepatocytes. It has

therefore a major role in the final phase of cationic organic compound excretion, including

metformin [39]. On the other hand, a number of studies have investigated SLC47A1 rs2289669

polymorphisms and their effects on the pharmacokinetics, response, and other biochemical

parameters for metformin. The rs2289669 polymorphisms interact with SLC22A1 rs594709,

thus decreasing FBG and postprandial insulin as well as increasing HOMA-IR in the AA geno-

type group that has SLC22A1 and SLC47A1 as opposed to the group with a G allele [40]. There-

fore, this study confirms the correlation between rs2289669 SLC47A1 polymorphisms and

FBG values.

Meanwhile, when the final GA parameter is employed, none of the genetic variants studied

affect it; instead, it is the baseline glycemic concentration, eGFR, and Cssmax with a good value

of adjusted R Square of 0.727 that influence GA. In addition, changes in GA are affected by the

baseline glycemic concentration, eGFR, and Cssmax. Such findings on the effects of rs2289669

SLC47A1 polymorphisms are different from those of other studies that use another parameter

of glycemic response in metformin use. Research on the effects of rs2289669 on glycemic

response to metformin using HbA1c reveals that the AA homozygous variant has the best gly-

cemic response. This is probably caused by the reduced function of MATE1, which has an

important role in the renal secretion of metformin, marked by a high AUC but low ClR among

ten patients with such variant as opposed to those with other variants [18]. This result is simi-

lar to that of the research on 142 patients in Slovakia in which 20% of those with AA homozy-

gous variant have two-fold reduced HbA1c after using metformin for six months [41].

Another similarity is found among 116 Caucasian patients with T2DM where those with the A

allele SLC47A1 rs2289669 have 0.3% more reduction in HbA1c upon taking metformin [42].

Therefore, along with the baseline glycemic value and eGFR, the pharmacokinetics of maxi-

mum steady-state concentration (Cssmax) has a correlation with GA. The results of Cssmax

examination in this study indicate that 64.6% patients have metformin concentrations in the

therapeutic range (0.75–5 g/mL), and only 1/10 has Cssmin that is greater than or equal to 0.75

g/mL. This can possibly cause Cssmax to be the only parameter associated with GA. Therefore,

these findings confirm the importance of adherence to metformin therapy to guarantee the

achievement of metformin therapeutic concentrations.

Although the best efforts have been made through multicenter studies in some primary

healthcare centers, there is a limitation in this study related to the number of patients involved.

It becomes one of the factors in the incomprehensive analysis of the effects of polymorphisms

on the pharmacokinetics of metformin steady-state concentrations and glycemic response.

The difficulty in involving patients who are adherent to metformin therapy for a minimum of

eight weeks is also a challenge for further studies.
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Conclusion

In general, this study has found that the three polymorphisms absolutely have no effects on the

pharmacokinetics of metformin steady-state concentrations. Although a further analysis

involving other variables indicate the influence of SLC22A1 Met408del polymorphisms on the

pharmacokinetics of metformin steady-state concentrations, the variables that are not studied

here in fact play a more major role (>95%). Alongside the baseline glycemic value, rs2289669

SLC47A1 affects FBG while only eGFR and Cssmax influence GA, but the three SNPs studied

do not. These findings lead to a recommendation of further studies involving more subjects

for a safe approach of metformin dose, particularly in T2DM patients with the G allele

SLC22A1 Met408del to prevent metformin accumulation beyond the recommended therapeu-

tic range.
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