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Abstract

Chromatin remodelling is essential for cardiac development. Interestingly, the role of histone
chaperones has not been investigated in this regard. HIRA is a member of the HUCA (HIRA/
UBN1/CABIN1/ASF1a) complex that deposits the variant histone H3.3 on chromatin inde-
pendently of replication. Lack of HIRA has general effects on chromatin and gene expression
dynamics in embryonic stem cells and mouse oocytes. Here we describe the conditional
ablation of Hira in the cardiogenic mesoderm of mice. We observed surface oedema, ventric-
ular and atrial septal defects and embryonic lethality. We identified dysregulation of a subset
of cardiac genes, notably upregulation of troponins Tnni2 and Thnt3, involved in cardiac con-
tractility and decreased expression of Epha3, a gene necessary for the fusion of the muscu-
lar ventricular septum and the atrioventricular cushions. We found that HIRA binds GAGA
rich DNA loci in the embryonic heart, and in particular a previously described enhancer of
Tnni2/Tnnt3 (TTe) bound by the transcription factor NKX2.5. HIRA-dependent H3.3 enrich-
ment was observed at the TTe in embryonic stem cells (ESC) differentiated toward cardio-
myocytes in vitro. Thus, we show here that HIRA has locus-specific effects on gene
expression and that histone chaperone activity is vital for normal heart development, imping-
ing on pathways regulated by an established cardiac transcription factor.

Introduction

The heart is the first organ to be formed that is vital for embryogenesis. In the post-gastrulation
embryo at embryonic day (E) 6.5, the mesodermally derived cardiac crescent appears and
undergoes a series of regulated morphological changes leading to a linear heart tube [1]. After
heart looping at E9.5, the four chambers are progressively septated. By E15.5 the heart is fully
functional. Cardiovascular development is tightly regulated by dynamic gene expression.
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Epigenetic modifications such as post-translational histone modification have been described
to influence development and differentiation [2]. However, little is known of the role of histone
chaperone functions during cardiac development.

HIRA is a component of the HUCA complex that deposits the variant histone H3.3 into
chromatin independently of cellular replication [3], influencing transcription [3-5], genome
integrity [6], fertilization [7], cellular senescence [8], and genome reprogramming [9]. In
mouse embryonic stem cells (ESCs), HIRA deposits H3.3 predominantly in genic regions, but
also at a subset of enhancer and intergenic regions [4]. Hira null embryos display a range of
developmental defects during and subsequent to gastrulation [10]. A small proportion of these
mutants survived to E10.5 and showed abnormal heart looping and substantial pericardial
oedema amongst other defects including abnormal placentation suggesting that the heart
defects may have been a secondary effect.

In order to assess the role of HIRA in cardiovascular development, we used a conditional
allele of Hira in mice in conjunction with various relevant cardiac relevant CRE recombinases
to bypass the early lethality of Hira null embryos. Mesp1 is the earliest known marker of car-
diac progenitors which give rise to cardiomyocytes, endothelial cells (ECs), epicardial derived
cells and smooth muscle cells. We employed MespICre to target Hira in these early cardiac
progenitors, and then used Nkx2.5Cre, Mef2cCre and Tie2Cre drivers to refine requirements of
HIRA in the second heart field (SHF) and endothelial lineages.

We show here that HIRA plays a major role in the cardiogenic mesoderm. Mesp! condition-
ally mutant Hira embryos presented with generalised oedema and cardiac malformations such
as ventricular septal defect (VSD), atrial septal defect (ASD), thin ventricular wall and constricted
pulmonary trunk (PT). Using RNAseq we report that, of the most significantly changed genes,
absence of HIRA impacts troponins known to be relevant for regulation of muscle contractility,
and Epha3 required for the endothelial to mesenchymal transition (EMT) taking place in the
atrioventricular cushions prior to septation and valve formation. Quantitative Chromatin Immu-
noprecipitation (QChIP) and ChIP followed by sequencing (ChIPseq) analyses show that HIRA
is strongly enriched at the common enhancer of troponins Tnni2 and Tnnt3 (the TTe site) in
E12.5 Wild Type (WT) hearts. ESCs differentiated towards cardiomyocytes confirmed this spe-
cific HIRA enrichment at the TTe site, associated with HIRA-dependent H3.3 deposition. The
TTe site has been shown to be bound by NKX2.5, as determined by previous ChIP in embryonic
hearts [11], and DamID experiments using HL-1 cells [12]. In summary we provide the first indi-
cation that histone chaperone complexes have a role in cardiovascular development and suggest
that HIRA complexes directly regulate a subset of genes vital for cardiovascular morphogenesis.

Methods
Mouse lines

Animal maintenance, husbandry and procedures were carried out in accordance with British
Home Office regulations. Hira knockout mice have been described previously [10]. The Hira
pre-conditional allele was generated by the Wellcome Trust Sanger Institute: Hiratmla
(EUCOMM) Witsi, MGI:4431679. The Cre line used were: Mesp1Cre (MGI:2176467;
Mesp1tm2(cre)Ysa), Mef2CCre (MGI:3639735 Tg(Mef2c-cre)2Blk), Wnt1Cre (MGI:2386570;
Tg(Wntl-cre)11Rth), Nkx2.5Cre (MGI:2654594; Nkx2-5tm1(cre)Rjs), Tie2Cre (MGI: 2450311,
Tg(Tek-cre)1Ywa). All lines were maintained on a CD1-ICR background.

Optical projection tomography

Embryos were fixed overnight in 4% PFA/PBS and mounted in low-melting agarose (Life
Technologies). Up to E14.5, whole embryos were processed. At E15.5, the trunks were opened
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and cartilage from the rib cage was discarded to help with the subsequent scanning since carti-
lage does not clear completely. Samples were then trimmed to remove the excess of agarose
and washed in 100% methanol followed by clearing in benzyl alcohol:benzyl benzoate (BABB).
Scanning was undertaken using a Bioptonics OPT Scanner 3001M (MRC Technology, Edin-
burgh, UK). NRecon software (Skyscan NV) was used for image reconstruction from projec-
tions using a back-projection algorithm. FIJI (Image J) and Volocity were used for image
analysis and 3D reconstruction.

RNA extraction and sequencing

RNA extraction was done in triplicate from Mesp1Cre;Hira™" and Mesp1Cre;Hira™" embry-
onic hearts at E11.5 and E12.5 using the QIAGEN RNeasy mini kit (74104). RNA QC was per-
formed by a 2100 bioanalyzer. RN Aseq was processed by Illumina NextSeq 500, and paired
ends reads were produced. Reads were aligned and normalised using BOWTIE and DEseq R
package. Strand NGS 2.5 software, which uses the DEseq algorithm, was used to incorporate
additional downstream analysis such as Gene Ontology. The Mann Whitney unpaired test and
Benjamini Hochberg False discovery rate (FDR) were applied. The genes were sorted using the
following settings: adjusted p-value < 0.05 and absolute fold change > 1.5. We found 95% of
similar results between the two analysis methods.

Reverse transcription and quantitative real time PCR

The High-Capacity RNA-to-cDNA™ Kit (Thermo fisher 4387406) was used to obtain cDNA
from the RNA (see above) for the qRT-PCR experiments, according to the manufacturer’s
instructions. Primers for QRT-PCR were designed using primer-blast (http://www.ncbi.nlm.
nih.gov/tools/primer-blast/) with the following option: primers must span an exon-exon junc-
tion and be separated by at least one intron, thus ensuring amplification of cDNA and not pos-
sible gDNA contamination. The PCR product size was set to be between 80 and 160 bp. The
standard curve method was performed using SYBR green and results normalised to Gapdh.
The CFX96 Touch™ Real-Time PCR Detection System was used. Following the reaction, melt-
ing curves were checked and samples were run on an agarose gel to verify the amplimer size.

In situ hybridisation on paraffin sections

The following plasmids were used: Tnni2, Image clone 1448494, Epha3 Pblu2KSP. They were
kindly provided by Tim Mohun and Jeffrey Bush respectively. Briefly, plasmids were linearized
using EcoRI and Xhol respectively and RNA synthesised using T3 and T7 RNA polymerase
respectively. RNA was extracted from a 1% agarose gel using the QIAquick Gel Extraction Kit
(Qiagen). 1 pg of linearised plasmid was used for in vitro transcription of probes using a DIG
RNA labelling kit (Roche). Probes were purified by precipitation with the addition of 2 pl 0.5M
EDTA (pH 8), 5 ul 4 M LiCl and 150 pl ethanol to the reaction and centrifugation of the
precipitates.

Paraffin sections were prepared as follow. Briefly, slides were incubated in 20 pg/ml Protein-
ase K (Sigma-Aldrich) for 8 minutes, washed in 2 mg/ml glycine then PBS, then fixed in 4%
PFA/PBS for 20 minutes. Following further PBS washes they were incubated for 1 hour at 70°C
in a humidified chamber in hybridisation buffer (50% formamide, 5X SSC pH 4.5, 50 pug/ml
yeast RNA, 1% SDS, 50 pg/ml heparin) followed by overnight incubation in hybridisation
buffer containing between 1 and 2 pg/ml of antisense RNA probe. Slides were then rinsed twice
in 2X SSC buffer pH4.5, followed by three washes at 65°C in Solution I (50% formamide, 5X
SSC pH4.5, 1% SDS), two washes in Solution II (50% formamide, 2X SSC pH4.5) and finally
two washes at RT in MABT (0.1 M maleic acid, 0.15 M NaCl, 0.01% Tween-20, 2 mM
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Levamisole (Sigma-Aldrich), pH?7.5). Slides were then incubated in blocking solution (2%
Boehringer Blocking Reagent (Roche), 10% sheep serum in MABT) for 1 hour followed by
overnight incubation at 4°C with an alkaline-phosphatase (AP) conjugated anti-DIG antibody
(Roche) diluted 1:2000 in blocking buffer. Following further washes in MABT and AP buffer
(100 mM Tris, pH 9.5, 50 mM MgCI2, 100 mM NaCl, 0.1% Tween-20, 2 mM Levamisol), AP
activity was detected using BM Purple (Roche) for at least 24 hours.

HIRA qChIP

30 to 40 E12.5 WT hearts were pooled, washed in PBS and cross-linked for 45 min with 1.5
mM of EGS (Sigma, E3257), followed by 15 min of 1% formaldehyde (from a freshly made fil-
tered stock at 18.5%) at 37°C. The reaction was quenched by the addition of 125 mM of Gly-
cine, left for 15 min at RT. Hearts were lysed in 50 mM Hepes-KOH pH 7.5, 140 mM NaCl, 1
mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton, 1X anti-protease cocktail (Roche,
04693132001), 1 mM PMSF for 10 min at 4°C (LB1). The hearts were briefly spun down and
resuspended in 10 mM Tris-HCL pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1X
anti-protease cocktail, | mM PMSF for 10 min at 4°C (LB2). Finally the hearts were resus-
pended in10mM Tris-HCL pH 8.0, 100mM NaCl, ImM EDTA, 0.5mM EGTA, 0.1% DOC,
0.5% N-Lauroylsarcosine, 1X anti-protease cocktail and ImM PMSF (LB3) rolling O/N at 4°C.
5 min sonication at 5 A with Soniprep 150 MS was completed 30 times, with 5 min on ice in
between. Antibodies were coupled to magnetic beads (Dynabeads, InVitrogen, 112.03D) for at
least 4 hours at 4C and washed 3 times in LB3. 10% of input was isolated and protein-DNA
complexes were immunoprecipitated using WC15 antibody against HIRA, rolling overnight.
Beads were then washed once with 20 mM tris pH 8.0, 150 mM NaCl, 0.1% SDS, 1% Triton, 2
mM EDTA (WB1), once with 20 mM Tris pH 8.0, 500 mM NaCl, 0.1% SDS, 1% Triton, 2mM
EDTA (WB2), once with 10 mM Tris pH 8.0, 150 mM LiCl, 1% NP-40, 1% DOC, 1 mM
EDTA, then TE 10:1, 50 mM NaCl (WB3), and finally in TE 10:1. Samples were treated over-
night with 50 mM Tris pH 8.0, 10 mM EDTA and 1% SDS at 65°C (EB), then with RN Ase
(Qiagen, 19101) for an hour at 25°C and with PK for 2h at 56°C. DNA was purified with QIA-
GEN’s PCR purification kit (28104). Purified DNA was quantified by quantitative PCR, using
the purified input chromatin as a positive control. ChIP enrichment was calculated by normali-
sation to the Input signal (= 100%).

NKX2.5 gChlP

E12.5 embryos were dissected in PBS. Hearts were flash frozen and stored at -80°C during gen-
otyping. 20 WT hearts and 20 Mesp1CreHira" hearts were pooled respectively and fixed for 15
min in 1% formaldehyde at 37°C then quenched by 125 mM of Glycine for 15 min at RT.
Hearts were lysed in RIPA buffer (50 mM Tris pH7, 150 mM NacCl, 1% NP-40, 1 mM EDTA,
50 mM NaF, 0.5% DOC, 0.1% SD. 2 uM sodium orthovanadate, protease inhibitor cocktail 1X
(Roche) and PMSF 1 mM were added prior to the experiment. The hearts in lysis buffer were
placed on a rotating wheel at 4°C overnight. A syringe (25G) was used to finish the lysis. The
lysates were then sonicated (10 rounds of 1 min of sonication at 5 pA with Soniprep 150 MS,
with 1 min on ice in between). The protein G beads were incubated overnight at 4°C in PBS
with 10 pg of NKX2.5 antibody (N-19 Santa Cruz) and washed 3x in the previous RIPA bulftfer.
They were then incubated with the sonicated chromatin at 4°C O/N. The following day, the
beads were washed 2X for 5min in WB1 (10 mM HEPES pH 7.6, 1 mM EDTA, 0.5 mM EGTA,
0.25% Triton X-100) and 2X for 5 min in WB2 (10 mM HEPES pH 7.6, 200 mM NaCl, 1 mM
EDTA, 0.5 mM EGTA, 0.01% Triton X-100). The samples were then processed the same way
as for HIRA qChIP.
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Library preparation, Sequencing and Analysis for HIRA ChlPseq

Libraries were prepared using the NEB DNA Ultra kit, with a selection of fragments size of
~200bp. They were sequenced on the Illumina NextSeq 500, v2 chemistry and produced paired
ends. Alignment was done using bowtie2 with mm10. Peak detection and consensus sequence
discovery was undertaken using Strand NGS software 2.5, which includes the algorithm of
MACS1.4 (p<107*, other settings left as default) (Model-based Analysis for ChIPseq), after
removal of poor quality and duplicate sequences normalisation was done using RPKM. Lists of
genes within +/- 5Kb of the TSS and TES was generated using Strand NGS. Bedtools intersect
tool was used to define the overlapping peaks between different BED files. In addition, PAPST
(Peak Assignment and Profile Search Tool) software was used to overlap regions of interest
and establish genome wide enrichment patterns of HIRA ChIPseq [13].

Embryonic stem cell culture and differentiation to cardiomyocytes

H3.3-HA tagged wild type (W9.5) and Hira-null (Clone 104) mESCs have been previously
described [5]. They were maintained in an undifferentiated state on 0.1% gelatin coated flasks
in Knockout™ D-MEM (GIBCO, 10829), supplemented with 15% ES-FCS (Millipore ES-009B),
1X Glutamax (GIBCO 35050-038), 1X Penicillin/Streptomycin (GIBCO 15140), 1X MEM
NEAA (GIBCO 11140-035), 0.1 mM 2-B-mercaptoethanol (SIGMA M-7522) and 103 Units/
ml LIF (Millipore, ESG-1106) at 37°C and 5% CO2. These cells were differentiated using the
well-described hanging-drop method [14] at a concentration of 25 cells/pl in DMEM (GIBCO
61965-026), complemented with 15% ES-FCS (Millipore ES-009B), 1x Penicillin/Streptomycin
(GIBCO 15140), 1x MEM NEAA (GIBCO 11140-035), 0.1mM 2-mercaptoethanol (SIGMA
M-7522). Cells were detached and plated on regular gelatin coated TC plates at day 4 of
differentiation.

Immunofluorescence

Paraffin sections were rinsed in PBS and permeabilised with 0.5% Triton X-100 for 10 mins at
RT. Then rinsed twice in PBS. Blocking was accomplished with 1% BSA, 10% sheep serum and
0.1% Triton X-100 for 1 hour at RT. Slides were incubated with primary antibody (1:100 of
Troponin C: ab30807) diluted in block buffer, then washed 3X in PBS + 0.1% Triton X-100 fol-
lowed by 2 rinses in PBS. Incubation with secondary antibody was done diluted in block
(1:200) for 1hr at RT. Finally the slides were rinsed 3 times (5-10 minutes) in PBS + 0.1% Tri-
ton X-100 (including DAPI in the final wash, and then rinsed twice in PBS) and mounted.
Slides were captured on the confocal using Tilescan and Zstack on a 63x objective and merged
with FIJI.

Co-immunoprecipitation

20 E14.5 hearts, and 30 E12.5 hearts, were dissected from WT embryos in cold PBS and flash
frozen in liquid nitrogen before being digested in RIPA buffer (50 mM Tris pH 7.4, 150 mM
NaCl, 1% NP-40, 1 mM EDTA, 50mM NaF, 0.5% deoxycholic acid, sodium orthovanate 20
nM, anti-protease cocktail 1X, 1 mM PMSF). Sequential syringes with gradually smaller nee-
dles (19G, 23G, 25G) were used to help the lysis. Magnetic beads coated with sheep anti-mouse
IgG (AB 11201D) were incubated overnight at 4°C with either the supernatant recovered from
HIRA hybridomas (WC15) or the mouse IgG1k monoclonal isotype control antibody (AB
18447, lot GR 53099-6). The beads were then washed 3x with the previous RIPA buffer the
next day. After the final wash, the protein lysate was incubated with the beads overnight rolling
at 4°C. 100 pl of 1 ml was saved and stored at -80°C to load as the input. The next day the
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beads were washed in RIPA and resuspended in Laemli buffer (3X Laemli: 120 mM Tris pH6.8,
3% SDS, 5% Glycerol, 0.01% Bromophenol, 1.5% B-mercaptoethanol) and boiled for 15min to
separate the beads from the antibodies and proteins. Pre-cast gradient gels (Mini-PROTEAN
TGX 4%-15%, Biorad 456-1083) were used. 28 pl was loaded per well. The proteins were then
transferred onto a PVDF membrane (Biorad 162-0177) using wet transfer. The membrane was
blocked with 5% milk-TBST 1X (0.5% tween) for 1 hour at RT, washed 3 times with TBST then
incubated with 1/100 of anti-WHSC1 (Atlas HPA015801), or 1/4 of WC119 hybridoma super-
natant in 1% milk- TBST 1X overnight at 4°C. Next the membrane was washed 3 times with
TBST, incubated with a secondary antibody (Amersham NA93310V) for 45 min at RT then
washed 3 times with TBST and finally revealed with ECL (Amersham RPN2209, 28906837)
with the appropriate secondary antibody (Amersham NA93340V or NA93310V). The hybrid-
omas WCI15 and WC119 were kindly given by Peter Adams.

Database Deposition

The RNAseq data is deposited at the Gene Expression Omnibus database with accession
GSE79937, and ChIPseq data with accession GSE79826.

Results
HIRA is required in the developing heart

Hira is ubiquitously expressed from E8.5 during mouse embryogenesis [15]. Consistent with
this, we detected expression throughout the embryonic heart at E13.5 by using the 3-galactosi-
dase cassette present in the preconditional Hira allele (S1A Fig). We then generated the Hira
conditional allele using a FLPase transgenic cross (S1B Fig). This Hira conditional allele has
been previously used in the literature [9], and when combined with an ubiquitous ActinCre
driver, we observed the same gastrulation phenotypes as in our constitutive Hira null embryos
(data not shown) [10]. Using our existing constitutive Hira null allele (Hira"), we bred
Mesp1Cre to Hira”* mice to generate MesplCre;H ira”* mice. Next we mated MespICre;
Hira™* with Hira™" mice to examine the role of HIRA in cardiac progenitors (the single null
allele was included so only a conditional allele would be recombined, maximizing Cre-medi-
ated production of MespICre lineage Hira null cells). We validated the recombination by PCR
(SI1C Fig), lack of exon 4 representation in the RNAseq (S1D Fig), and HIRA expression by
western blotting (S1E Fig). Of 4 litters born, we did not identify any live Mesp1Cre;Hira™"
pups (Table 1), indicating that cardiogenic mesodermal ablation of Hira from E6.5 is embry-
onically lethal.

We detected a small proportion of exencephaly and haemorrhage at E12.5 (Fig 1A, Table 1).
All MespICre;Hira™™ embryos presented with a severe oedema at E15.5 (Fig 1A, Table 1). We
observed a fully penetrant VSD in the heart of all mutants (n = 12); whilst the muscular ven-
tricular septum completely separated the two ventricles in their littermate WT embryos at
E15.5. Some embryos had atrioventricular septal defects with a common atrioventricular junc-
tion (Fig 1B, S1 Video). The large interventricular communication observed in MespICre;
Hira™" embryos is not likely compatible with life during the late stage of embryogenesis [16].
In 83% of mutants, we detected a deficiency of the flap valve of the oval fossa, a derivative of
the primary atrial septum, resulting in an ASD. None was observed in their WT littermates
(Fig 1B) (n = 10). Haematoxylin and Eosin (H&E) staining revealed that some E12.5
Mesp1Cre;Hira”™ embryos displayed abnormally shaped atrioventricular cushions, whilst mes-
enchymal tissue normally swells in the atrioventricular canal as a result of EMT in their WT lit-
termates (Fig 1C). In normal development, the rightward tubercles of the atrioventricular
cushions form the membranous septum [17, 18]. We have observed deficiency of the muscular
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Table 1. Embryonic phenotype resulting from the conditional ablation of Hira.

STAGE E10.5
VSD N/A
ASD N/A
Thin ventricular wall 0/4
Constricted PT 0/4
Oedema 0/4
Haemorrhage 0/4
Exencephaly 0/4

VIABLE by P10

Mesp1Cre;Hira™" Nkx2.5Cre;Hira™" | Mef2cCre;Hira’™ | Tie2Cre;Hira’® | Wnt1Cre;Hira™"
E125 E13.5 E15.5 E15.5 ADULT E15.5 E18.5
N/A N/A 12/12 5/9 N/A 0/5 0/10
N/A N/A 10/12 4/9 N/A 0/5 0/10
0/9 0/12 3/12 0/9 N/A 0/5 0/10
0/9 0/12 112 3/9 N/A 0/5 0/10
0/9 3/12 12/12 0/9 N/A 0/5 0/10
0/9 6/12 12/12 0/9 N/A 0/5 0/10
1/9 0/12 0/12 0/9 N/A 0/5 0/10
NO (0/12) YES (1/9) YES (4/4) YES (3/6) NO (0/40)

Number of embryos observed for the indicated phenotype at the indicated stage related to the total number of embryos collected. N/A indicates none
observed. The number of collected and thus viable embryos are also indicated at 10 days post-birth (P10) related to the number of expected embryos.

doi:10.1371/journal.pone.0161096.t001

part of the ventricular septum, since the point of contact between the septum and the atrioven-
tricular cushions was mispositioned in the mutants compared to controls (Fig 1C). Further-
more, cushions were crescent shaped in the wild type but straighter in the mutants (Fig 1C).
Thus, HIRA is required for normal cardiovascular development.

HIRA is required in the Nkx2.5, but not in the Mef2c or Wnt1 lineages

We then refined the requirement of HIRA in cardiac lineages with Nkx2.5Cre and Mef2cCre
drivers. The expression of Nkx2.5Cre is restricted to cardiomyocytes, cardiac endothelium and
pharyngeal endoderm [19, 20], and appears 24 hours later than Mesp1Cre expression. We
observed that 33% (n = 3) of Nkx2.5Cre;Hira™" embryos had a hypoplastic pulmonary trunk
(PT) (Fig 2A). 56% (n = 5) of mutants displayed a large VSD (n = 5) (Fig 2A) but did not show
any sign of oedema. The survival rate of mutant pups was extremely low (1 mutant out of 9
expected) (Table 1).

We next mated Mef2cCre;Hira ™" with Hird"" mice to test whether HIRA was required in
the SHF. Mef2c is expressed from E7.5 in the progenitors of the right ventricle, outflow tract,
and ventricular septum. Mef2cCre driven ablation of Hira had no noticeable effect on develop-
ment and postnatal life (Table 1 and Fig 2B).

A requirement for Hira has been described both in endothelial cells [21] and in neural crest
cells [22] (in chick), we tested the role of Hira in these lineages using Tie2Cre and Wnt1Cre
drivers, respectively. The Tie2Cre mutants were fully viable and had no detectable vessel defects
at E15.5 (Fig 2C). Nevertheless, adult mutants were smaller at 8 weeks of age, with hearts
smaller but in proportion relative to their reduced body size (Fig 2C), and without apparent
structural abnormalities by OPT (n = 3). Wnt1Cre;Hira™" embryos demonstrated a perinatal
lethality, not due to a cardiac malformation since they presented with a normal heart structure
and no apparent vessel malformations at E18.5 (Fig 2D & 2E).

Absence of HIRA dysregulates cardiac gene expression

The full penetrance of MespICre Hira-conditional mutants allowed us to investigate the tran-
scriptional changes underlying the cardiovascular defects observed in the absence of HIRA.
We chose the E11.5 and E12.5 stages as they were prior to the appearance of the major pheno-
types. At E11.5 and E12.5 stages there were 156 and 360 coding transcripts respectively with
significantly altered expression in the mutant hearts (Mann Whitney unpaired test, Benjamini
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Fig 1. HIRA is required in the developing heart. A. Lateral view of littermate embryos with the indicated genotype. Mesp1Cre;Hira™" embryos had a
low penetrance external phenotype at E12.5: exencephaly (E) and light haemorrhage (H) are indicated in the mutants. At E15.5, all mutants showed
severe oedema (O) as indicated. B. Transverse OPT reconstructions followed by virtual reslicing of E15.5 embryo trunks with the indicated genotype.
VSD (V) and ASD (A) are indicated in the mutants. H&E of transverse sections of E14.5 embryos with the indicated genotype also showed a common
atrioventricular junction (CJ) in the mutants as indicated. C. H&E staining of transverse sections from E12.5 embryos reveals a disruption of the
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endocardial cushion (EC) fusion (two controls and two littermate mutants shown). The muscular septum is deficient (*, top) and the relatively flat
rather than crescentic cushion shape in the mutant are indicated (arrows). Scale bars represent 2mm (A), 0.5mm (B-C). D. Transverse sections of
E12.5 embryonic hearts of the indicated genotype immunostained with DAPI and Troponin C captured on confocal showing disrupted sarcomeric

structure in the mutant ventricular free wall. Scale bar: 10um.

doi:10.1371/journal.pone.0161096.g001

Hochberg FDR, p < 0.05, FC > 1.5) (Fig 3A, S1 and S2 Tables), with no trend towards up- or
down-regulation of global transcription (48.8% down and 51.2% up; Fig 3B). We performed a
gene ontology (GO) analysis with the differentially expressed genes and observed a link with

myocyte contractility (S3 Table). Four GO terms included the same eight genes related to
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contractility and sarcomeric structure (Fig 3C), including the most up-regulated gene Tnni2.
We next used quantitative real-time PCR (qQRT-PCR) to validate expression differences for 11
changed genes that are relevant to cardiac development, and the eight genes related to cardiac
contractility (Fig 3D).

We examined selected genes known for their role in cardiac development and displaying
the highest expression change in our mutants in both E11.5 and E12.5 mutants (Fig 3A). The
expression of Epha3, a receptor tyrosine kinase required for EMT in the atrioventricular cush-
ions [18], was downregulated of 2.7 fold in the heart of the mutants compared to their control
littermates (Fig 3D). In agreement, in situ hybridization (ISH) revealed that Epha3 expression
was greatly diminished in the cushions and the membranous part of the ventricular septum in
the mutants compared to their control littermates (Fig 4A). We also found that Tnni2, a fast
twitch skeletal muscle gene, was the most upregulated gene in the mutant hearts by both RNA-
seq (5.9 fold) and qRT-PCR (7 fold) (Fig 3D). ISH confirmed Tnni2 overexpression in the
mutants (Fig 5A), suggesting heart contractility could be affected by alteration of sarcomeric
components. Indeed, staining with Troponin C on transverse sections to examine sarcomeric
organisation demonstrated a lack of typical parallel organisation of the filament structures in
the mutants (Fig 1D). There were no significant transcription changes in Hira"'" hearts at
E12.5 (54 Fig).

HIRA is enriched in the vicinity of the Tnni2/Tnnt3 gene loci

To assess whether HIRA was directly regulating gene expression, we performed a HIRA ChIP-
seq of WT E12.5 hearts. We found 6625 peaks using Model-based Analysis for ChIPseq
(MACS) analysis (p<10~*) which mostly covered distal intergenic regions of the genome
(74%) and introns (22.5%) (S2A Fig). Interestingly, 45% of the peaks contained the consensus
motif GAGAGAGA (Fig 5D) that in Drosophila melanogaster is known to bind the GAGA
factor.

Two significant HIRA-bound regions were identified in intronic regions of Epha3 (Fig 4B),
of which one contained a GAGA motif. One GAGA motif was observed within a significant
HIRA-bound region 17Kb downstream of Tnni2, 38Kb upstream of Tnnt3, and 1 kb of Lsp1
(Fig 5B). We subsequently refer to this peak as the Tnni2-Tnnt3-enh (TTe) site (see below).
The expression of both Tnni2 and Tnnt3 was strongly upregulated in our mutant model how-
ever, we did not observe any dysregulation of Lsp1 expression. This is strikingly similar to what
is observed in Nkx2.5 hypomorphs, which show Tnni2/Tnnt3, but not Lsp1, overexpression in
E11.5 mutant versus wild type hearts [11] (S2B Fig). Moreover, it has been shown that the
Tnni2 and Tnnt3 genes are directly repressed by NKX2.5 via direct binding to the TTe site
(E11.5 hearts), and that the TTe sequence can direct reporter expression in the HL-1 (cardio-
myocyte) cell line [11]. We found a 25-fold enrichment of HIRA at the TTe compared to a neg-
ative intergenic control region by qChIP (Fig 5B). We next examined active enhancer marks by
overlapping HIRA E12.5 ChIPseq peaks with the histone modification H3K4meland
H3K27Ac ChIPseq peaks at E13.5, as well as P300 in embryonic hearts at E12.5 [23] at the TTe
(Fig 5C) and genome wide (S2C Fig). Of the 78 sites containing overlaps of HIRA and NKX2.5,
63 (80.7%) overlapped with both H3K4mel and H3K27Ac, including TTe. We interrogated
these histone marks at the TTe in ESCs differentiated to cardiomyocytes and in their originat-
ing ESCs [24] (S3 Fig). The TTe locus became enriched for H3K4mel and H3K27Ac in differ-
entiated cardiomyocytes compared to ESCs, in agreement with the TTe-reporter data
indicating that TTe is an active enhancer in the heart [11]. We next tested whether absence of
HIRA affected NKX2.5 occupancy at the TTe by performing a NKX2.5 qChIP. At E12.5,
NKX2.5 binding was moderately but significantly reduced to 75% (Fig 6) in Mesp1Cre;Hira""
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revealed a trend in upregulation of sarcomeric contractile fibre genes (aside from Tnnt1 and Sic4a1 which were
downregulated). D. gRT-PCR and RNASeq of the indicated genes within E12.5 hearts displayed as the fold
induction in the mutants compared to their WT littermates (n = 3). Unpaired t-test: p<0.05 *, p<0.01 **, p<0.001

*¥ %

doi:10.1371/journal.pone.0161096.g003

hearts compared to WT hearts. In addition to Tnni2 and Trnnt3, we examined three other
genes dysregulated in both Mesp1Cre;Hird"” and Nkx2.5 hypomorphic E11.5 hearts: Clcnkb,
Abca4 and Sic9a3r1. Similarly to Tnni2 and Tnnt3, all three were upregulated by 2.9, 1.72 and
1.53 fold respectively in Hira mutant hearts. A reduced NKX2.5 binding at the Slc9a3r1 locus
was also observed in the hearts of Hira conditional null mutants (Fig 6).

As NKX2.5 interacts with the WHSC1 histone methyltransferase to repress target genes
during heart development [25], and in HeLa cells HIRA interacts with WHSC1 [26], we tested
whether there was a HIRA-WHSCI interaction in mouse embryonic hearts using co-immuno-
precipitation. We detected an interaction between HIRA and WHSCI at E12.5 (S5 Fig) and at
E14.5 (Fig 7A).

We then used previously reported WT and Hira-null ESCs carrying an HA-tag knock in of
H3.3 [4] to investigate potential interactions during the early stages of cardiac differentiation.
The cells were differentiated for fifteen days using the aggregation method in order to obtain
cardiogenic mesoderm and primitive cardiomyocytes. qRT-PCR was performed to assess the
sequential gene expression of specific mesodermal and cardiac markers. Brachyury, Mespl and
Nkx2.5 were expressed sequentially at days 3, 5 and 8 of differentiation respectively (Fig 7B),
and spontaneously beating cardiomyocytes were observed (S1 Video). At day 15 of differentia-
tion towards cardiomyocytes, the HIRA-WHSCI interaction was observed (Fig 7C).

HIRA regulates H3.3 deposition at the TTe in differentiated embryonic
stem cells

Using the same ESC culture conditions as above, we then tested HIRA and H3.3-HA enrich-
ments at the TTe by qChIP at D0 and D15 of differentiation. We found enrichment of HIRA
and H3.3 at the TTe in WT, but not Hira null, differentiated cells (Fig 7D).

Discussion

Modification of chromatin is well established as an important mechanism of genetic regulation
and is usually associated with covalent modification of histones or deposition of variant his-
tones, or both [27]. In this work we examine the role of the replication independent histone
chaperone component HIRA, a known modulator of gene expression [28]. Previous work sug-
gested HIRA acts during vascular EC development [21] and in cardiac neural crest cells [29].
Hira knockout embryos had abnormal cardiac structure and function [10], but as these
embryos were delayed with yolk sac vascular anomalies it was not known whether these defects
were secondary events.

We successfully bypassed early lethality of Hira”~ embryos using a Hira conditional allele,
demonstrating HIRA plays a crucial role in the cardiogenic mesoderm. At E15.5 all MespICre;
Hira™" embryos presented with whole body oedema and large VSDs, the majority of which
were accompanied by ASDs, defects likely incompatible with life. No live born mutants of this
genotype were recovered. Nkx2.5Cre is mainly expressed in ventricular cardiomyocytes of the
FHF and SHEF, although the extent and degree of expression in the SHF appears to be reporter
gene and genetic background dependent [30, 31]. In Nkx2.5Cre;Hira™" embryos we detected
an overriding aorta, a VSD, and a constriction of the PT in some mutants. The lack of pheno-
type in Mef2c conditional knockouts suggests that Hira is required in the FHF and ablation in
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C. IGV profile showing the HIRA ChIP seq peak present at the Thni2/Lsp1/Tnnt3 (TTe) site (situated 17Kb downstream of Tnni2 and 34Kb
upstream of Thnt3), co-localizing with NKX2.5 ChlPseq peaks (E11.5 heart [11]), NKX2.5 DamID peaks (HL-1 cell line [12]), and the active
enhancer marks H3K4me1 and H3K27Ac ChlPseq peaks on WT E13.5 hearts (encode database ENCSR663VWL) and P300 (WT E12.5
heart [23]). D. The Matrix-based nucleotide profiles display here the motifs that HIRA binds most frequently. 45% of HIRA enriched sites
contained a GAGA/TCTC motif.

doi:10.1371/journal.pone.0161096.g005

the SHF has no effect or acts to exacerbate the phenotype of FHF mutants. We note that the
Nkx2.5Cre used here is a knock-in allele and thus there is the potential for interaction between
hemizygous levels of NKX2.5 and complete absence of HIRA. However, we did not observe
any phenotype in Nkx2.5Cre;Hira™" embryos.

As the MespICre lineage includes vascular ECs we investigated whether Hira was required
for vessel development within this population using Tie2Cre, which is active from E7.5 [32].
Moreover, HIRA has been previously shown to mediate the response to angiogenic signals by
upregulating Vegfrl in yolk sac ECs [21]. The authors of this work concluded that HIRA was
required for growth of new blood vessels. However, we found that Tie2Cre;Hira™" mutants suf-
tered only from partially penetrant proportionate growth reduction, with no embryonic lethal-
ity despite efficient recombination of the conditional allele [21]. The absence of vessel defects
and embryo oedema suggests that the oedema observed in Mesp1Cre mutants is not secondary
to an EC defect and is therefore more likely due to the septal defects and any disturbance of
contractility secondary to alterations in troponin gene expression (see below).

Experiments in chick, using antisense morpholinos directed against Hira, suggested that
Hira may play a role in the cardiac neural crest [29] and is required for outflow tract septation.
The absence of cardiac and great vessel abnormalities in the Wnt1Cre;Hira™" embryos up to
E18.5 argues against an autonomous role of HIRA in cNCCs during cardiovascular develop-
ment. The perinatal death that was observed in Wnt1Cre;Hira”" mutants could rather be the
result of a neurological problem or a cleft palate defect interfering with swallowing [33], since
WntlCre is expressed in craniofacial NCCs. In considering these results it is worth noting the
recent discussion of the fact that various murine mutations of genes expressed in NCCs pro-
duce different phenotypes to those of other vertebrates [34].

We next asked how absence of HIRA affected the gene expression profile in the developing
heart. We chose to analyse MespI conditional knockouts since this was a setting with a 100%
penetrant phenotype (by E15.5). In total, less than 2% of the genes expressed in the heart at
E12.5 were significantly upregulated or downregulated. Several genes critical for heart develop-
ment were unaffected by the ablation of Hira, e.g. Myh6/7, Gata4, Nkx2.5 and Tbx5, implying
that HIRA has a specific effect on transcription at a small number of target genes. In order to
understand the relevant molecular mechanism we performed a HIRA ChIPseq on E12.5 hearts.
We detected HIRA enrichment at 6625 loci mapped to 2515 genes, with mapping defined as
the presence of a peak in the gene body and/or within 5Kb upstream of the TSS and down-
stream of TES. There were 47 such genes that had a dysregulated expression in the absence of
HIRA by RNA-seq, although this was not a statistically significant increase over chance. Fur-
ther work, such as chromatin conformation capture, would be required to corroborate peak-
gene relationships. It should also be borne in mind that, as for the TTe site discussed below, rel-
evant enhancer binding sites may be >5kb from a target gene. Nevertheless, we reason HIRA
acts directly at a relatively small subset of genes, and indirectly modulates expression via more
general effects on chromatin structure acting over longer ranges. This is consistent with our
finding that just over 7.5% of HIRA peaks at E12.5 were found to overlap with both H3K4mel
and H3K27Ac marks (at E13.5, the closest stage available).

Examination of HIRA binding sites for over representation of sequences that might be
responsible for HIRA recruitment revealed that the most frequent sequence had a core
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consensus sitt GAGAGAGA, which is equivalent to that identified as the binding motif for the
Drosophila melanogaster transcriptional regulator GAGA factor [35]. GAGA factor interacts
with FACT, and intriguingly GAGA/FACT associates with Drosophila HIRA. Together, these
proteins direct H3.3 replacement to establish chromatin boundaries e.g. at HOX loci [36].

Interestingly, HIRA enrichment at the TTe locus in the wild type situation correlates with
an upregulation of cardiac Tnni2 (7 fold) and Tnnt3 (3.2 fold) following conditional ablation
in the cardiogenic lineage. The encoded proteins are classified as fast skeletal muscle troponins
[37]. The troponin complex binds calcium ions, and through its association with actin and
tropomyosin is involved in the regulation of striated muscle contraction. While various tropo-
nins are expressed in developing heart at E12.5 [38], skeletal troponins have low expression in
cardiac muscle, and upregulation of Tnnt3 has been associated with reduced cardiac contractil-
ity [39]. In a Notchl gain of function mutant, structural defects of the myocardium were attrib-
uted to elevated expression of Tnni2 [40]. GO analysis of the RN Aseq revealed that several
sarcomeric genes (also under the GO term myofibril) were dysregulated. Tnni2, Tnnt3, Casql,
Actal, Krt8, Krt19 [41] were upregulated and the anion exchanger Slc4al and Tnntl were
downregulated. The disorganised sarcomeric structure we observed within mutant embryonic
cardiomyocytes likely contributes to diminished efficiency of contraction [42]. The mouse
heart starts beating at E8.5; reduced cardiac output can lead to whole body oedema at E14.5
[43]. Thus, the haemorrhage and oedema we observed at E15.5 could be a consequence of both
morphological abnormalities (septal defects) and compromised cardiomyocyte function.

The dysregulation of Tnni2/Tnnt3 was investigated further in the light of recently published
work demonstrating that both in the HL-1 cardiomyocyte cell line (DamID screening) and
E11.5 whole hearts (ChIPseq) NKX2.5 bound a sequence 17kb downstream of Tnni2 and 38kb
upstream of Tnnt3 coincident with our HIRA binding site (Fig 5C) [11, 12]. In hearts of E11.5
and E14.5 embryos with a hypomorphic allele of Nkx2.5 there was upregulation of Tnni2 and
Tnnt3 [11], recapitulating what we observed in Hira conditionals, raising the possibility that
HIRA and NKX2.5 might co-regulate this locus. Absence of HIRA resulted in a diminution of
NKX2.5 binding at the TTe.

The literature suggested a further potential mechanism whereby NKX2.5- and HIRA-regu-
lation might converge. In fibroblasts HIRA was previously described to interact with the his-
tone-lysine N-methyltransferase WHSCI, regulating the H3.3 deposition and H3K36me3
marks at interferon-regulated genes [26]. WHSCI is a gene haploinsufficient in the Wolf-
Hirschhorn syndrome, a human birth defect where congenital heart defects, usually atrial and/
or ventricular septal defects, occur in 30-45% of cases [44]. WhscI-null mice also have atrial
and ventricular septal defects [25]. Whereas no Nkx2.5"" or Whsc1™ mice had septal defects,
such abnormalities were found in one third of double heterozygotes [25]. In support of such a
connection we found HIRA and WHSCI co-immunoprecipitated from embryonic hearts and
cardiomyocytes. It will therefore be interesting to investigate whether WHSC1 and HIRA co-
regulate Tnni2 and other targets during heart development analysing compound mutants and
histone modifications in such mice. Both NKX2.5 and WHSCI are implicated in human genetic
haploinsufficiency resulting in congenital heart defect. However, to our knowledge, no muta-
tions of HIRA have been described in exome sequencing analyses of patients with congenital
heart defect, although one study of a Chinese cohort discovered a genetic association between a
variant in the 3° UTR region of HIRA and the diagnosis of tetralogy of Fallot [45].

As HIRA is known to deposit the H3.3 variant within chromatin we examined H3.3 levels at
the TTe site in the presence and absence of HIRA. We utilized a cell line model akin to that
used by Wamstad and colleagues [24] to examine H3.3 deposition in ESC-derived cardiomyo-
cytes, making use of an HA-knockin to H3.3. We confirmed HIRA enrichment at the TTe in
differentiated ESCs (equivalent to Wamstad stages 3 and 4 based upon marker expression and
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the presence of beating cardiomyocytes) versus undifferentiated ESCs, and observed a 7 fold
increase of HIRA-dependent H3.3 deposition at the TTe.

We also examined one of the most significantly down-regulated genes at both E11.5 and
E12.5 which had a known role in heart development: Epha3. Epha3 is expressed in the atrio-
ventricular cushion and mesenchymal cap of the developing septum primum from E10.5 [18].
Accordingly, we examined expression in E12.5 Mesp1Cre;Hira™" mutants hearts and observed
a consistent downregulation of Epha3 in precisely those regions of mutants versus the controls.
Interestingly, Epha3-null embryos are perinatal lethals with ASD and cardiac failure, and have
earlier atrioventricular cushion defects [18]. This mirrors several defects seen at E12.5 in
Mesp1Cre;Hira”™ mutant hearts. Thus, we reason diminished expression of Ephas3 is likely to
contribute to the septal defects in Hira mutants. Epha3 expression was not significantly altered
in Nkx2.5 hypomorphs [11], nor was there evidence of NKX2.5 binding close to Epha3 in either
the DamlID [12] or NKX2.5 ChIPseq datasets [11]. There were two HIRA binding regions at
Epha3, one of them containing the GAGA consensus site. Thus, we anticipate other HIRA
partners might be involved in transcription activation at this locus. The NKX2.5-WHSCI com-
plex is thought to repress targets [25], so the absence of NXK2.5 binding sites at the down-reg-
ulated Epha3 is not unexpected.

In summary, our data provide the first in vivo demonstration in vertebrates of a post-gastru-
lation requirement for the histone chaperone complex protein HIRA: conditional mutagenesis
in cardiogenic mesoderm resulting in severe structural defects and evidence of heart failure
leading to embryonic lethality. HIRA was shown to bind to the same enhancer of Tnni2 as the
cardiogenic transcription factor NKX2.5, suggesting regulation of specific loci as well as more
general effects on chromatin represent an important subset of the pleiotropic functions of
HIRA. This work also emphasises HIRA can act in repressive as well as activating situations, as
has recently been shown in ESCs and plants [5, 46]. It has previously been shown that the WD
repeats and LXXLL motifs are necessary for HIRA-mediated repression in vitro [22]. In ESCs,
only a third of enhancer sites bound by HIRA had significantly reduced H3.3 levels in the
absence of HIRA [5]. Thus, it will be interesting to determine the role of other H3.3 chaperone
associated proteins, such as DAXX, during heart development. Moreover, as a member of a
replication independent histone chaperone complex, HIRA might have a particular role in
post-mitotic tissues later in life, for instance in the aging of cardiomyocytes and neurones, and
in their response to injury.

Supporting Information

S1 Fig. Hira expression in the heart and recombination of the conditional allele. A. 3-
Galactosidase assay on E10.5 and E13.5 Hira*"*""* and Hira"’* embryos, either on whole
mount or on heart sections as indicated, showing an ubiquitous expression of Hira. B. Sche-
matic representation of the different Hira alleles used in the manuscript. C. Recombination of
the floxed allele by MespI driven CRE recombinase was assessed by PCR using DNA from the
anterior limb which contains Mesp1 positive cells, detection of the various alleles is shown. D.
Recombination was also demonstrated at the mRNA level by the reduced number of reads in
RNAseq (22 in control and 3 in mutant). E. Reduced protein level of HIRA in MespICre;Hira”
T hearts. This experiment was done by comparing pools of 3 Hira™™ and 3 Mesp1Cre;Hira™"
E13.5 hearts. Remaining protein is likely to originate from non-MespI-expressing cardiac lin-
ages (e.g. circulating cells and ingressing neural crest).

(TIFF)

S2 Fig. Analysis of HIRA ChIPseq. A. Table summarising the genic distribution of HIRA
binding sites and the GAGA motifs across the genome. 45% of HIRA peaks were found to have
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a GAGA motif. B. Venn diagram displaying the number of genes upregulated in hearts of
E12.5 Mesp1Cre;Hira”™ embryos and in E11.5 Nkx2.5 hypomorph hearts [11]. C. Venn dia-
gram displaying the number of overlaps between HIRA ChIPseq peaks at E12.5 (this study),
enhancer signatures H3K4mel and H3K27Ac at E13.5 (encode database ENCSR663VWL) and
NKX2.5 ChIPseq peaks in E11.5 hearts [11] as indicated. D. a. Venn diagram displaying the
overlap between genes whose expression is dysregulated in E12.5 Mesp1Cre;Hira™ hearts and
genes which are enriched for HIRA in WT E12.5 hearts. The enrichment includes any peak in
the gene body and/or within 5Kb upstream of the TSS or downstream of TES. b. The equation
for the calculation of the probability of having 47 genes (x) in common between two indepen-
dent groups: 2515 (b, HIRA ChIPseq genes) and 360 (a, RNAseq data) in the mouse genome
which has approximately 22 000 genes (n). The result of this hypergeometric probability calcu-
lation is not significant: p(x > =47) = 0.184.

(TIFF)

S3 Fig. Histone enrichments at the TTe showing the characteristics of an enhancer in ESC
derived cardiomyocytes compared to embryonic stem cells. The enrichment of H3K4mel
and H3K27ac and the lack of repressive H3K27me3 modifications represent a distinct chroma-
tin pattern observed in active enhancers (black box around the TTe). The development of this
pattern mirrors the upregulation of Tnni2 seen during the differentiation process and supports
the association of the TTe enhancer with its expression. Histone ChIpseq in ESC derived cardi-
omyocytes and ESCs were obtained from Wamstad and colleagues [24] (Gnomex accession
numbers 44R and 7R2).

(TIFF)

$4 Fig. Gene expression is not significantly affected in Hira”* embryonic hearts at E12.5. A
subset of genes affected in Mesp1Cre;Hira™" hearts was quantified in Hira™” mutant hearts
using real time PCR. No significant changes were detected in Hira heterozygotes.

(TIFF)

S5 Fig. HIRA interacts with WHSCI1 in the heart at E12.5. 30 embryonic hearts from WT
embryos were isolated at E12.5, pooled and immunoprecipitated (IP) with anti-HIRA Wcl5
antibody then immunoblotted with anti-WHSC1 antibody. Presence of HIRA in the IP was
verified using anti-HIRA Wc119 antibody.

(TIFF)

S1 Table. Genes identified through RNAseq with a significant decreased expression in
Mesp1Cre;Hira™" embryonic hearts at E12.5.
(TIFF)

S2 Table. Genes identified through RNAseq with a significant increased expression in
Mesp1Cre;Hira™" embryonic hearts at E12.5. Presented here are genes with the lowest p-
value. The fold change is presented here as an absolute value. Test applied: Mann-Whitney
unpaired, Benjamini Hochberg FDR, p < 0.05, FC > 1.5. The complete list can be accessed
with at the GEO database under accession number GSE79937.

(TIFF)

$3 Table. Gene Ontology terms obtained from RNAseq. GO analysis of the genes signifi-
cantly dysregulated in Mesp1Cre;Hira™" embryonic hearts that have an over-representation of
one or more GO terms that pass the cut-off p-value of 10~*. Terms relating to contractility and
myofibril structure are highlighted in orange.

(TIFF)
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$4 Table. Primers used for qRT-PCR.
(TIFF)

S5 Table. Primers used for qChIP.
(TIFF)

S1 Video. 1: Transverse reconstruction of an OPT scan of MesplCre;Hira*m and MespICre;
Hira™" embryonic trunks at E15.5 with the VSD indicated. 2: 3D reconstruction of the PT in
Nkx2.5Cre;Hira™" and Nkx2.5Cre;Hira™" embryonic hearts at E15.5. 3: Beating ESCs observed

in differentiation experiment.
(72)
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