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Abstract
A probabilistic model for random hypergraphs is introduced to represent unary, binary
and higher order interactions among objects in real-world problems. This model is an
extension of the latent class analysis model that introduces two clustering structures
for hyperedges and captures variation in the size of hyperedges. An expectation max-
imization algorithm with minorization maximization steps is developed to perform
parameter estimation. Model selection using Bayesian Information Criterion is pro-
posed. The model is applied to simulated data and two real-world data sets where
interesting results are obtained.

Keywords Clustering · Hypergraph · Latent class analysis · Minorization
maximization

Mathematics Subject Classification 62H99 · 62P25

1 Introduction

A large number of random graph models have been proposed (Nowicki and Snijders
2001; Hoff et al. 2002; Handcock et al. 2007; Latouche et al. 2011) to describe com-
plex interactions among objects of interest. Pairwise relationships among objects can
be naturally represented as a graph, in which the objects are represented by the ver-
tices, and two vertices are joined by an edge if certain relationship exists between
them.While graphs are capable of representing pairwise interactions between objects,
they are inadequate to represent unary and higher order interactions that are typically
observed in many real-world problems. Examples of data with unary and higher-
order interactions include co-authorship on academic papers, co-appearance in movie
scenes, and songs performed in a concert.
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For example, the study of coauthorship networks of scientists have attracted sig-
nificant interest in both natural and social sciences (Newman 2001a, b, 2004; Moody
2004; Azondekon et al. 2018). Such networks are typically constructed by connect-
ing two scientists if they have coauthored one or more papers together. However, as
we will illustrate below, such representation inevitably results in loss of information
while a hypergraph representation naturally preserves all information. A hypergraph is
a generalization of a graph in which hyperedges are arbitrary sets of vertices, and can
contain any number of vertices. As a result, hypergraphs are capable of representing
relationships of any order.

We consider a simple example of a coauthorship network with 7 authors and 4
papers, in order to illustrate the benefits of hypergraphmodelling. A hypergraph repre-
sentation of the network is given in Fig. 1, where the vertices v1, v2, . . . , v7 represent
the authors while the hyperedges e1, . . . , e4 represent the papers. For example, the
paper e1 is written by four authors v1, v2, v3 and v4, the paper e2 is written by two
authors v2 and v3, the paper e3 has v3, v5 and v6 as authors and the paper e4 has a
single author v4.

On the other hand, a graph representation of this coauthorship network with edges
between any two authors who have coauthored at least one paper results in the edge set
{(v1, v2), (v1, v3), (v1, v4), (v2, v3), (v2, v4), (v3, v4), (v3, v5), (v3, v6), (v5, v6)}. It
is evident that much information is lost with this representation. In particular, this
representation removes information about the number of authors that co-authored a
paper. For example, one can only deduce from this edge set that v3 has co-authored
with v1 and v2 while unable to conclude that the co-authorship was for the same paper.
Furthermore, the hyperedge e4 which contains a singleton v4 is left out in the graph
representation.

A number of random hypergraph models have been studied in probability and
combinatorics literature, where theoretical properties are investigated (Karoński and
Łuczak 2002; Goldschmidt 2005; de Panafieu 2015; Dyer et al. 2015; Poole 2015).
A novel parametrization of distributions on hypergraphs based on the geometry of
points is proposed in Lunagómez et al. (2017) which is used to infer Markov struc-
ture for multivariate distributions. On the other hand, statistical modeling of random
hypergraph data is less developed. Stasi et al. (2014) introduced the hypergraph beta
model with three variants, which is a natural extension of the beta model for random
graphs (Holland and Leinhardt 1981). In their model, the probability of a hyperedge
e appearing in the hypergraph is parameterized by a vector β ∈ RN, which represents
the “attractiveness” of each vertex. However, their model does not capture clustering
among objects, which is a typical real world phenomenon. In addition, the assumption
of an upper bound on the size of hyperedges violates the structure of many real world
data sets.

One may equivalently represent a hypergraph using a bipartite network (also called
two-mode network and affiliation network). Two-mode networks consist of two dif-
ferent kinds of vertices and edges can only be observed between the two types of
vertices, but not between vertices of the same type. A hypergraph can be represented
as a two-mode network by considering the hyperedges as a second type of vertices.
For example, an equivalent bipartite representation of the hypergraph shown in Fig. 1
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Model-based clustering for random hypergraphs 693

is provided in Fig. 2 where the hyperedges {e1, . . . , e4} are now replaced by the four
green vertices.

Two-mode networks have been studied in various disciplines including computer
science (Perugini et al. 2004), social sciences (Faust et al. 2002; Koskinen and Edling
2012; Friel et al. 2016) and physics (Lind et al. 2005). A number of approaches have
been proposed to analyze and model two-mode network data (Borgatti and Everett
1997; Doreian and Batagelj 2004; Latapy et al. 2008; Wang et al. 2009; Snijders
et al. 2013; Aitkin et al. 2014). In particular, models originally developed for binary
networks were extended for two-mode networks.

Doreian and Batagelj (2004) developes a blockmodeling approach of two-mode
network data which aims to simultaneously partition the two types of vertices into
blocks. Skvoretz and Faust (1999) proposes the exponential random graph models
(ERGMs) for two-mode networks, which models the logit of the probability of an
actor belonging to an event as a function of actor and event specific effects and other
graph statistics. A clustering algorithm for two-mode networks is developed in Field
et al. (2006) based on the modelling framework in Skvoretz and Faust (1999). Several
extensions to the ERGMs for bipartite networks are proposed by (eg.Wang et al. 2009,
2013). Snijders et al. (2013) proposes a methodology for studying the co-evolution of
two-mode and one-mode networks. A network autocorrelation model for two-mode
networks is introduced in Fujimoto et al. (2011). Aitkin et al. (2014) evaluates the
identification of clustering structure in bipartite networks through latent class analysis
and introduces a new Bayesian method for choosing the number of latent classes.

Representing network observations using two-mode networks has the benefits of
modelling vertices of both types jointly. However, in analyzing a two-mode network,
one type of vertices may attract most interest. For example, in co-authorship networks,
the main interest may lie in the collaborations rather than in co-authored papers. When
modeling the co-appearance of characters in the scenes of a movie, one is typically
interested in co-appearance of the characters rather than the movie scenes. In such
scenarios, a hypergraph representation is most natural by converting one type of vertex
into hyperedge.

A related and popular research problem is hypergraph partitioning (Zhou et al.
2007; Leordeanu and Sminchisescu 2012; Purkait et al. 2017). Hypergraph partition-
ing aims to partition vertices in a hypergraph into clusters based on their higher order
interactions, and is an important research problem in computer vision (Agarwal et al.
2006; Li et al. 2013), recommender systems (Bu et al. 2010) and other fields. In con-
trast, we propose a random hypergraph model which captures the clustering structure
of the hyperedges. Since hyperedges are simply arbitrary sets of vertices, interpretable
structure within the vertices can also be inferred from the clustering structure of the
hyperedges. By adopting a probabilistic approach to hypergraph modeling, the pro-
posedmodel is capable of quantifying the uncertainties in the clustering of hyperedges.

In this paper, we propose the Extended Latent Class Analysis (ELCA) model for
random hypergraphs, which is a natural extension of the Latent Class Analysis (LCA)
model (Lazarsfeld and Henry 1968; Goodman 1974; Celeux and Govaert 1991) and
includes the LCA model as a special case. The ELCA can alternatively be interpreted
as a constrained case of the LCA and it achieves significant reduction in model com-
plexity. Furthermore, the model directly captures the variation in sizes of hyperedges
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Fig. 1 A hypergraph
representation of a coauthorship
network

Fig. 2 Bipartite graph
representation of the hypergraph
in Fig. 1

which are typically observed in applications. For example, the number of authors per
scientific publication varies widely across different disciplines. We develop an EM
(Expectation Maximization) algorithm with MM (Minorization Maximization) steps
to performparameter estimation. To determine the number of latent classes, we employ
the Bayesian Information Criterion (BIC). The model is applied to simulated data, and
two applications: Star Wars movie scenes and Reuters news articles.

2 Model andmotivation

2.1 Hypergraph

Ahypergraph is represented by a pair H = (V , E), where V = {v1, v2, . . . , vN } is the
set of N vertices and E = {e1, e2, . . . , eM } is the set of M hyperedges. A hyperedge e
is a subset of V , and we allow repetitions in the hyperedge set E . Thus, the hypergraph
H can alternatively be represented with a N × M matrix X = (xi j ) where xi j = 1 if
vertex vi appears in hyperedge e j and xi j = 0 otherwise.
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2.2 Latent class analysis model for random hypergraphs

The binary latent class analysis (LCA) model (Lazarsfeld and Henry 1968; Goodman
1974) is a commonly used mixture model for high dimensional binary data. It assumes
that each observation is a member of one and only one of the G latent classes, and
conditional on the latent class membership, the manifest variables are mutually inde-
pendent of each other. The LCA model appears to be a natural candidate to model
random hypergraphs where hyperedges are partitioned into G latent classes, and the
probability that a hyperedge e ∈ E contains a vertex v ∈ V depends only on its latent
class assignment.

Let X = (xi j ) be the matrix representation of the hypergraph H where xi j = 1
if vertex vi is in hyperedge e j and xi j = 0 otherwsie. Let π = (π1, . . . , πG) be
the a priori latent class membership probabilities, where πg is the probability that a
hyperedge belongs to latent class g. We define the N × G matrix P, where pig is the
probability that vertex vi is contained in a hyperedge e with latent class membership
g. The probability of observed hyperedge e j , which is represented by (x1 j , . . . , xN j ),
is thus

G∑

g=1

πg

N∏

i=1

p
xi j
ig (1 − pig)

1−xi j .

Thus, the likelihood function of P and π can be written as

L(X;P, π) =
M∏

j=1

[ G∑

g=1

πg

N∏

i=1

p
xi j
ig (1 − pig)

1−xi j
]
.

Let Z(1) be a M × G latent class membership matrix, where z(1)jg = 1 if hyperedge

e j has latent class label g and z(1)jg = 0 otherwise. The complete-data likelihood of P
and π can be expressed as (1).

L(X,Z(1);P, π) =
M∏

j=1

G∏

g=1

[
πg

N∏

i=1

p
xi j
ig (1 − pig)

1−xi j
]z(1)jg

. (1)

In comparison to the hypergraph beta models introduced in Stasi et al. (2014), the
LCA model is capable of capturing the clustering and heterogeneity of hyperedges.
For example, academic papers can be naturally labelled according to subject areas
and conditional on a paper being labelled mathematics, one would expect that the
probability a mathematician co-authored the paper is higher than a biologist. The
LCA model does not assume an upper bound on the size of hyperedges and can
model hyperedges of any size. Furthermore, an expectation maximization algorithm
(Dempster et al. 1977) can be easily derived to perform parameter estimation.
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2.3 Extended latent class analysis for random hypergraphs

While the LCA model captures the clustering and heterogeneity of hyperedges in real
world data sets, a large number of latent classes are typically required to achieve a
good fit of the data. As a result, the number of parameters grows quickly with a mod-
erate or large number of nodes. The complexity of the LCAmodel can be substantially
reduced if we assume that some of the latent class conditional probabilities (pig)Ni=1
tend to be proportional to each other for different values of g. While assuming pro-
portionality of latent class conditional probabilities may appear rather restrictive, it is
a reasonable assumption in many hypergraph applications. We develop the Extended
Latent Class Analysis (ELCA) model which builds on the proportionality assumption
on the conditional probabilities.

Let a = (a1, . . . , aK )with 0 ≤ ak ≤ 1 be a K dimensional vector, the ELCAmodel
assumes that the latent class conditional probabilities are of the form (φigak)Ni=1 for
g = 1, . . . ,G and k = 1, . . . , K . In the context of hypergraph applications, the ak
parameters capture the variations in the size (number of vertices) of the hyperedges
whereas the φig values capture the probability that a node is contained in a hyperedge.
The ELCA model can be considered as having two types of clustering structure, with
the primary clustering structure defined by φig parameters and an additional clustering
structure captured by ak parameters. We note that the ELCA reduces to the standard
LCA when K = 1.

Let τ = (τ1, . . . , τK ) be the clustering assignment probabilities corresponding to
the additional structure, the ELCA model assumes that these two clustering structure
are a priori independent. Thus, the probability that a hyperedge has primary cluster
label g and additional cluster label k is πgτk , and the probability that the vertex vi is
contained in a hyperedge from the clusters pair (g, k) is akφig , and the probability that
the vertex vi is contained in a hyperedge from the primary cluster g is φig

∑K
k=1 akτk .

Under the ELCA model with G primary clusters and K additional clusters, the
probability of observing a hyperedge (x1 j , . . . , xN j ) is given by

G∑

g=1

K∑

k=1

πgτk

N∏

i=1

(akφig)
xi j (1 − akφig)

1−xi j .

Let θ = (π, τ, φ, a) denote the model parameters, the likelihood function can be
written as

L(X; θ) =
M∏

j=1

{ G∑

g=1

K∑

k=1

πgτk

N∏

i=1

(akφig)
xi j (1 − akφig)

1−xi j

}
.

The ELCA model is not identifiable if the parameters (ak)Kk=1 are not constrained.
To see this, if 0 < ak < 1 for all k, then the likelihood function is invariant under
the transformation (ak)Kk=1 → (Cak)Kk=1 and (φig)

i=N ,g=G
i=1,g=1 → (C−1φig)

i=N ,g=G
i=1,g=1 ,

where C is some positive constant such that maxk{Cak} ≤ 1. Thus, to ensure the
identifiability of the model, (ak)Kk=1 are ranked by increasing order with aK = 1.
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We define the M × K additional cluster membership matrix Z(2) = (z(2)jk ), where

z(2)jk = 1 if hyperedge e j has additional cluster label k and z(2)jk = 0 otherwise. The

complete data likelihood function of X, Z(1) and Z(2) is given as

L(X,Z(1),Z(2); θ) =
M∏

j=1

G∏

g=1

K∏

k=1

[
πgτk

N∏

i=1

(akφig)
xi j (1 − akφig)

1−xi j
]z(1)jg z

(2)
jk

. (2)

We note that any ELCA with G primary clusters and K additional clusters can
be equivalently represented as a standard LCA with G × K clusters. Under the stan-
dard LCA representation of the ELCA model, the G × K vectors of latent class
conditional probabilities

{
(pig)Ni=1

}G×K
g=1 can be partitioned into G sets of equal size

K , and (pig)Ni=1 are proportional to each other within each set with the constants
of proportionality determined by (ak)Kk=1. Consider the ELCA with 2 primary clus-
ters and 2 additional clusters, which is a special case of the 4-cluster LCA model.
The probabilities that vertex vi is contained in a hyperedge from the cluster pair
(1, 1), (1, 2), (2, 1), (2, 2) are given by φi1, φi2, a1φi1, a1φi2.

It is easy to see that under the proportionality assumption, the ELCAmodel achieves
significant reduction in the number of parameters. For theELCAmodelwithG primary
clusters and K additional clusters, the number of parameters is given by GN +2(K −
1) + (G − 1) whereas the number of parameters for the LCA with G × K clusters is
GK N + (GK − 1).

2.4 Theoretical properties

We analyze the distribution of the size of a random hyperedge under the proposed
ELCA model. Proposition 1 below shows that the size of the hyperedges simulated
from the ELCAmodel tend to have larger variance than those simulated from the LCA
model.

Proposition 1 Suppose we are given the LCA model with parameters {π, p} and the
ELCAmodelwith parameters {π, τ, a, φ} and N vertices. Suppose the condition pig =
φig

∑K
k=1 akτk holds for i = 1, . . . , N and g = 1, . . . ,G. This condition ensures that

the latent class conditional probabilities of the primary clustering structure are the
same for both models.

Let A denote the cardinality |e1| of a random hyperedge e1 generated under the
LCA model. Similarly, let B denote the cardinality |e2| of a random hyperedge e2
generated under the ELCA model. We have the following results:

E(A) = E(B)

Var(A) ≤ Var(B).

Proof The proof is straightforward and is given in the Appendix. ��
We now let fN (y) be the probability mass of the size of a random hyperedge

simulated from a G cluster LCA model. Similarly, we let hN (y) be the probability
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mass of the size of a random hyperedge simulated from the ELCA model with G
clusters and K additional clusters. The following result can be derived.

Proposition 2 1. Under the specifications of a LCA model with parameters π =
(π1, . . . , πG) and {pig}i=1,...,N ,g=1,...,G, and suppose the following conditions
hold for g = 1, . . . ,G,

λ
(g)
N =

N∑

i=1

pig → λ(g) > 0

N∑

i=1

p2ig → 0

as N → ∞. We have

fN (y) →
G∑

g=1

πg
e−λ(g)

(λ(g))y

y! .

That is, the distribution of the size of a random hyperedge converges to a mixture
of Poisson distributions with G components.

2. Under the specification of a ELCAmodel with parameters π = (π1, . . . , πG), τ =
(τ1, . . . , τK ), a = (a1, . . . , aK ), and {φig}i=1,...,N ,g=1,...,G, and further suppose
the following conditions hold for g = 1, . . . ,G, and k = 1, . . . , K,

λ
(g,k)
N =

N∑

i=1

φigak → λ(g,k) > 0

N∑

i=1

φ2
iga

2
k → 0

as N → ∞. We have

hN (y) →
G∑

g=1

K∑

k=1

πgτk
e−λ(g,k)

(λ(g,k))y

y! .

That is, the distribution of the size of a random hyperedge converges to a mixture
of Poisson distributions with G × K components.

Proof Conditional on the event that a random hyperedge is generated from cluster g,
(Wang 1993, Theorem 3) implies that

fN (y) → e−λ(g)
(λ(g))y

y! .
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Part 1 result follows by marginalizing over the G clusters. The second part of the
proposition can be proved similarly. ��
Proposition 2 implies that under mild conditions, the distribution of the size of hyper-
edges converges to a mixture of Poisson distributions withG×K mixture components
as the number of vertices increases. We note that the mixture components of the limit-
ing mixture of Poisson distribution are subject to the same proportionality condition.
Nevertheless, larger variations in the size of hyperedges tend to be obtained under the
ELCA compared to those obtained under the standard LCA.

3 Estimation andmodel selection

3.1 EM algorithm

We estimate the parameters θ = (π, τ, φ, a) of the ELCA model using an EM algo-
rithm (Dempster et al. 1977) which is a popular method in fitting mixture models. The
E-step of the EM algorithm involves computing the expected value of the complete
data log-likelihood (2) with respect to the distribution of the unobserved Z(1) and Z(2)

given the current estimates. The M-step involves maximizing the expected complete
data log-likelihood.

Taking logarithm of the complete data likelihood in (2), we obtain the complete
data log-likelihood function below.

log L(X,Z(1),Z(2); θ) =
M∑

j=1

G∑

g=1

K∑

k=1

z(1)jg z
(2)
jk

[
logπg + log τk +

N∑

i=1

{
xi j log(ak)

+ log(φig) + (1 − xi j ) log(1 − akφig)
}]

. (3)

3.1.1 E-step

For the E-step, we need to evaluate the expected complete data log-likelihood, which
is the expectation of (3) conditional on data x and current parameter estimates θ(t).
The expected complete data log-likelihood is denoted as Q(θ |θ(t)) and is defined as

Q(θ |θ(t)) := E(log L(X,Z(1),Z(2); θ)|X, θ(t)). (4)

Because the complete-data log-likelihood is linear in Z (1)
jg Z

(2)
jk , we need to evaluate

the expectation
̂

Z (1)
jg Z

(2)
jk := E(Z (1)

jg Z
(2)
jk |X, θ(t)). We have that

E(Z (1)
jg Z

(2)
jk |X, θ(t)) = Pr(Z (1)

jg = Z (2)
jk = 1|X, θ(t))

=
π

(t)
g τ

(t)
k

[ ∏N
i=1(akφig)

xi j (1 − akφig)
1−xi j

]

∑G
g=1

∑K
k=1 π

(t)
g τ

(t)
k

[ ∏N
i=1(akφig)

xi j (1 − akφig)
1−xi j

] . (5)
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In particular, the E-step has a computational complexity ofO(N ) for each pair (g, k),
and an overall complexity of O(NGK ).

3.1.2 M-step

While the E-step of the EM algorithm is straightforward, the M-step involves com-
plicated maximization. For the M-step, we need to maximize Q(θ |θ(t)) with respect
to the model parameters {φig}, {ak}, {πg} and {τk}. Thus, we use the ECM algorithm
(Meng and Rubin 1993) which replaces the complex M-step by a series of simpler
conditional maximizations. The conditional maximizations with respect to the param-
eters φ and a do not have closed form solutions. We utilize the MM algorithm (Lange
et al. 2000; Hunter and Lange 2004) which works by lower bounding the objective
function by aminorizing function and thenmaximizing theminorizing function. Since
theM-step involves a series of conditional maximization, the Q function is guaranteed
to increase (Meng and Rubin 1993, Theorem 1).

Maximize w.r.t. φig

For fixed i and g, the objective function retaining terms involving φig can be written
as

Q =
M∑

j=1

K∑

k=1

̂

Z (1)
jg Z

(2)
jk

(
xi j log(φig) + (1 − xi j ) log(1 − akφig)

)
. (6)

An analytic expression for argmaxφig
{Q} does not exist due to the log(1−akφig) term

and thus we apply theMM (MinorizationMaximization) algorithm (Hunter and Lange
2004). We first apply a quadratic lower bound on the concave function log(1− akφig)

for k < K :

log(1 − akφig) ≥ log(1 − akφ
(t)
ig ) +

( −ak

1 − akφ
(t)
ig

)
(φig − φ

(t)
ig )

+1

2

( −a2k
(1 − ak)2

)
(φig − φ

(t)
ig )2.

Hence, the objective function in (6) up to an additive constant can be minorized by
Qlower :

Qlower =
M∑

j=1

K∑

k=1

̂

Z (1)
jg Z

(2)
jk xi j log(φig) +

M∑

j=1

K−1∑

k=1

̂

Z (1)
jg Z

(2)
jk (1 − xi j )

(( −ak

1 − akφ
(t)
ig

)
φig + 1

2

( −a2k
(1 − ak)2

)
(φig − φ

(t)
ig )2

)

+
M∑

j=1

̂

Z (1)
jg Z

(2)
j K (1 − xi j ) log(1 − φig). (7)
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To simplify the expression above, we define the quantities below:

A1 =
M∑

j=1

K∑

k=1

̂

Z (1)
jg Z

(2)
jk xi j

A2 =
M∑

j=1

̂

Z (1)
jg Z

(2)
j K (1 − xi j )

B1 =
M∑

j=1

K−1∑

k=1

̂

Z (1)
jg Z

(2)
jk (1 − xi j )

−ak

1 − akφ
(t)
ig

B2 =
M∑

j=1

K−1∑

k=1

̂

Z (1)
jg Z

(2)
jk (1 − xi j )

1

2

−a2k
(1 − ak)2

.

Now, the lower bound (7) can be written as below.

Qlower = A1 log(φig) + A2 log(1 − φig) + B1φig + B2(φig − φ
(t)
ig )2.

Taking derivative with respect to φig , we have

A1

φig
− A2

1 − φig
+ B1 + 2B2φig − 2B2φ

(t)
ig = 0.

Let C = B1 − 2B2φ
(t)
ig , we have

φ3
ig − 2B2 − C

2B2
φ2
ig − C − A1 − A2

2B2
φig − A1

2B2
= 0. (8)

Solving the cubic equation above results in the update for φig .
Maximize w.r.t. ak
For afixed k, the objective function (3) retaining terms involvingak can be expressed

as

Q =
M∑

j=1

G∑

g=1

̂

Z (1)
jg Z

(2)
jk

( N∑

i=1

xi j log(ak) + (1 − xi j ) log(1 − akφig)
)
. (9)

Since an analytic expression for argmaxak {Q} does not exist due to the log(1−akφig)

term, we apply the MM (Minorization Maximization) algorithm. We first apply a
quadratic lower bound on the concave function
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log(1 − akφig) ≥ log(1 − a(t)
k φig) +

( −φig

1 − a(t)
k φig

)
(ak − a(t)

k )

+1

2

( −φ2
ig

(1 − φig)2

)
(ak − a(t)

k )2.

Hence, (9) up to an additive constant can be minorized by the function:

Qlower =
( M∑

j=1

G∑

g=1

̂

Z (1)
jg Z

(2)
jk

N∑

i=1

xi j

)
log(ak) +

M∑

j=1

G∑

g=1

̂

Z (1)
jg Z

(2)
jk

N∑

i=1

(1 − xi j )

( −φig

1 − a(t)
k φig

ak + 1

2

( −φ2
ig

(1 − φig)2

)
(ak − a(t)

k )2
)

. (10)

To simply the expression above, we define the following quantities:

A =
M∑

j=1

G∑

g=1

̂

Z (1)
jg Z

(2)
jk

N∑

i=1

xi j

B =
M∑

j=1

G∑

g=1

̂

Z (1)
jg Z

(2)
jk

N∑

i=1

(1 − xi j )
( −φig

1 − a(t)
k φig

)

C =
M∑

j=1

G∑

g=1

̂

Z (1)
jg Z

(2)
jk

N∑

i=1

(1 − xi j )
1

2

( −φ2
ig

(1 − φig)2

)
.

Taking derivative of (9) with respect to ak , we have

∂Qlower

∂ak
= A

ak
+ B + 2C(ak − a(t)

k ) = 0.

Let D = ( B
2C − a(t)

k ), E = − A
2C , we have

âk =
(
E + D2

4

)1/2 − D

2
. (11)

Maximize w.r.t. πg and τk We apply the method of Lagrange multipliers to derive
the updates for πg and τk . The objective function for (πh)

G
h=1 is given by

M∑

j=1

G∑

h=1

K∑

k=1

̂

z(1)jh z
(2)
jk logπh + λ

(
1 −

G∑

h=1

πh

)
, (12)
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where λ is the Lagrange multipler. Differentiating w.r.t. πg and setting to 0 gives

∑M
j=1

∑K
k=1

̂

z(1)jg z
(2)
jk

πg
− λ = 0.

Therefore, the update for πg is given by

π̂g ∝
M∑

j=1

K∑

k=1

̂

Z (1)
jg Z

(2)
jk . (13)

The update for τk can be derived analogously and is given below:

τ̂k ∝
M∑

j=1

G∑

g=1

̂

Z (1)
jg Z

(2)
jk . (14)

The EM algorithm is summarized in Algorithm 1, where line 4 corresponds to the
expectation step and line 5 - 18 are the conditional maximization steps. In particular,
we note that the computational complexity for maximizing φig and ak are given by
O(Niter MK ) andO(Niter MGN ), respectively,where Niter is the number of iterations
required for the MM algorithm.

Algorithm 1 EM Algorithm
Input: x,G, K , tol
Output: φ̂, â, π̂ , τ̂ , ẑ(1), ẑ(2)

1: conv = False
2: Random initialization of φ, a, π, τ

3: while conv = False do
4: Do the E-step according to (5)
5: for i = 1, . . . , N do
6: for g = 1, . . . ,G do
7: Update φig according to (8)
8: end for
9: end for
10: for k = 1, . . . , K − 1 do
11: Update ak according to (11)
12: end for
13: for g = 1, . . . ,G do
14: Update πg according to (13)
15: end for
16: for k = 1, . . . , K do
17: Update τk according to (14)
18: end for
19: Evaluate Change in log-likelihood 	loglik resulting from parameter updates
20: if 	loglik < tol then
21: conv = True
22: end if
23: end while
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3.2 Model selection

We use the Bayesian Information Criterion (BIC) (Schwarz 1978) to determine the
optimal number of primary and additional clusters for the ELCAmodel. For the ELCA
model, the BIC takes the following form:

−2 log L + (GN + 2(K − 1) + (G − 1)) logM

where log L is the log-likelihood evaluated at the estimated parameters, and GN +
2(K − 1) + (G − 1) is the number of parameters in the model. The model with the
lowest BIC value is selected. The accuracy of the BIC as a model selection criterion
requires M to be relatively large compared to N . For the standard latent class models,
existing literature suggests that theBIC is a good indicator of the true number of classes
(Collins et al. 1993) and extensive simulation studies were performed in Nylund et al.
(2007) to validate this claim. The performance of BIC as a model selection criterion
for the ELCA model is assessed using simulation studies in Sect. 4.

4 Simulation studies

We conduct simulation studies to examine the performance of the proposed EM algo-
rithm for the ELCA model and the behavior of BIC as a model selection criterion.
The results presented in Tables 1 and 2 are concerned with assessing the convergence
behavior of the proposed EM algorithm with various latent class assignment proba-
bilities for primary and additional clusters. Hyperedges are simulated from the ELCA
model with two primary clusters and two additional clusters in Table 1 and from the
ELCA model with three primary clusters and two additional clusters in Table 2. The
specific model parameters used in the simulation are given in the Appendix.

For the model parameters φ, a, π and τ of the ELCA model, the 
2 distances
between the true parameters and the estimated ones are presented in Tables 1 and
2 . The misclassification rates for both the primary and additional clusters are also
presented. We observe that the estimated parameters converge to the true values as the
number of hyperedges increases. It is worth noting that the convergence tends to be
faster in the case of two primary clusters compared to three primary clusters.

We examine the performance of BIC in choosing the optimal number of primary
and additional clusters. The values in Tables 3 and 4 are computed by comparing
the BIC across a range of models, then identifying where the lowest values occurred
across thesemodels considered. Themodel parameters which generate the hyperedges
are given in Appendix. For example, with 10 vertices and 200 hyperedges, the lowest
values of BIC occurred at the two primary and two additional cluster model (which is
the truemodel) 67% of the time. Looking across the values in Tables 3 and 4, we notice
that the BIC tends to be a less accurate model selection criterion when the number
of hyperedges is small but improves significantly as the number of hyperedges M
increases.

As a final simulation study, we simulate hyperedges from the LCA models with
two and three clusters and note that they are special cases of the ELCA models with
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K = 1 additional cluster. The simulated data is then fitted with the ELCA models
with K = 2 and K = 3 additional clusters. For various simulation settings, we
simulate 100 sets of hyperedges and examine the proportion of times that the true
model can be recovered. The true model is considered to be recovered if the estimated
parameters satisfy max{τk} > 1 − ε or min{ak} > 1 − ε for some small positive
number ε. Simulation results are shown in Table 5 with ε is set to 0.01 and 0.05.
We see that using the less strict threshold ε = 0.05, the true model is recovered the
majority of times across all simulation settings. We also observe that as the number of
nodes N increases, the proportion of times that the true model is recovered increases
considerably. On the other hand, there is no clear relationship between the number of
hyperedges M and the proportion of successful recovery of the true model.

5 Applications

5.1 StarWars Movie Scenes

Our first application is modeling co-appearance of the main characters in the scenes
of the movie “Star Wars: A New Hope”. We collected the scripts of the movie from
the Internet Movie Script Database1 and constructed a hypergraph for the eight main
characters so that each character is a vertex in the hypergraph. We define each scene in
the movie as a hyperedge with a total of 178 hyperedges, and a character is contained
in the scene if he/she speaks in the scene.

We determine the optimal number of clusters and additional clusters using BIC
where the results are provided in Table 6. The ELCA model with 3 clusters and 2
additional clusters has the lowest BIC value and is selected. It is worth noting that the
standard LCA with 3 clusters is also competitive based on the BIC.

The results from fitting the ELCA model with G = 3 and K = 2 are provided in
Tables 7 and 8. We can see the variation in the size of hyperedges from the parameter
estimates â and τ̂ with the majority (81%) of hyperedges having size much smaller
than the rest of the hyperedges. Thus, one can deduce that a small proportion of the
movie scenes have far more characters.

The estimates φ̂ in Table 8 reveal interesting clustering structure for the 8 main
characters in the movie. For example, the lead character “Luke” has a strong tendency
to appear in the two largest clusters. On the other hand, it is extremely unlikely for
“Obi-Wan” and “Han” appear in the same scene.

The estimated primary cluster assignment probabilities from the EM algorithm for
each movie scene in the Star Wars movie are shown in chronological order in Fig. 3.
We can see from the plot that scenes in the early part of themovie aremainly associated
with cluster 1, while cluster 2 contains most of the scenes from roughly scene 40 to
scene 100. We can deduce from this, for example, that the character “Han” is very
active in the middle part of the movie. On the other hand, there does not appear to be
any obvious pattern for the third cluster. The clustering for many early and late movie
scenes is relatively uncertain, as shown in the plot.

1 Movie script data freely available at https://www.imsdb.com/.
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Table 5 Proportion of times that the true model can be recovered

True model Fitted model N M RR (ε = 0.01) RR (ε = 0.05)

G = 2, K = 1 G = 2, K = 2 10 50 0.55 0.83

100 0.57 0.83

500 0.66 0.91

G = 2, K = 1 G = 2, K = 2 20 50 0.64 0.85

100 0.66 0.83

500 0.72 0.88

G = 2, K = 1 G = 2, K = 3 10 50 0.32 0.51

100 0.27 0.59

500 0.33 0.62

G = 2, K = 1 G = 2, K = 3 20 50 0.56 0.78

100 0.55 0.86

500 0.59 0.83

G = 3, K = 1 G = 3, K = 2 10 50 0.55 0.77

100 0.53 0.80

500 0.52 0.78

G = 3, K = 1 G = 3, K = 2 20 50 0.70 0.93

100 0.67 0.92

500 0.66 0.89

G = 3, K = 1 G = 3, K = 3 10 50 0.43 0.65

100 0.36 0.63

500 0.33 0.64

G = 3, K = 1 G = 3, K = 3 20 50 0.54 0.71

100 0.49 0.76

500 0.53 0.75

The recovery rates corresponding to ε = 0.01 and ε = 0.05 for each simulation setting are shown

Table 6 Model selection for the
Star Wars data set

No. of clusters No. of Additional clusters BIC

1 1 1298.08

1 2 1437.86

2 1 1269.11

2 2 1271.55

3 1 1270.46

3 2 1266.42

3 3 1280.81

4 1 1273.54

4 2 1284.68

5 1 1307.05

5 2 1298.11

5 3 1306.50

The smallest value is bolded
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Table 7 Estimates of π , τ and a
from fitting the ELCA model
with 3 clusters and 2 additional
clusters for the Star Wars data
set

π̂ (0.40, 0.40, 0.20)

τ̂ (0.81, 0.19)

â (0.41, 1.00)

Table 8 Estimates of {φig} from
fitting the ELCA model with 3
clusters and 2 additional clusters
for the Star Wars data set

Character Cluster 1 Cluster 2 Cluster 3

Wedge 0.18 0.00 0.36

Han 0.00 1.00 0.00

Luke 1.00 1.00 0.00

C-3PO 0.75 0.30 0.00

Obi-Wan 0.00 0.00 1.00

Leia 0.12 0.48 0.07

Biggs 0.31 0.00 0.28

Darth Vader 0.19 0.35 0.06
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Fig. 3 Probability of primary clusters for movie scenes in Star Wars data set plotted against movie scene
number for the ELCA model with 3 primary clusters and 2 additional clusters. Cluster 1 is associated with
scenes in the first half of the movie, whereas cluster 2 contains scenes mostly in the middle of the movie.
On the other hand, scenes occuring in the second half of the movie are slightly more likely to be associated
with cluster 3 compared to scenes ocurring in the first half of the movie

The uncertainties in primary clustering are also illustrated in a ternary plot in Fig. 4.
Each dot in the plot represents amovie scene, and the three corners of the plot represent
the three clusters. The closer the dot is to the corner, the higher probability that the
corresponding movie scene belongs to the corresponding cluster. The ternary plot in
Fig. 4 shows significant uncertainties in clustering a number of movie scenes into
the first two clusters. This is reasonable since for a number of actors including the
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714 T. L. J. Ng, T. B. Murphy

Fig. 4 Ternary plot of the a
posteriori group membership
probabilities for the scenes in the
Star Wars data set
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Fig. 5 Probability of additional clusters for movie scenes in Star Wars data set plotted against movie scene
number for the ELCA model with 3 primary clusters and 2 additional clusters. Majority of movie scenes
are in cluster 1 whereas very few scenes are in cluster 2

lead actor “Luke”, the probabilities of scene appearance are similar for the first two
clusters.

The estimated additional cluster assignment probabilities for each movie scene in
the Star Wars movie are shown in chronological order in Fig. 5. We observe that
majority of the scenes are assigned additional cluster 1 with only a small number of
scenes between scene 40 and 100 assigned to additional cluster 2 where these scenes
tend to have more characters.

As a comparison, the results from fitting the standard LCA model with 3 clusters
are shown in Tables 9 and 10, and a contigency table comparing the primary clus-
tering structure of the ELCA model and the LCA model are given in Table 11. The
contingency table shows a very different clustering structure obtained from fitting
the standard LCA model versus the ELCA model. We show the estimated cluster
assignment probabilities for each movie scene for the LCA model with 3 clusters in
chronological order in Fig. 6. In comparing Fig. 3 with Fig. 6, we see that while pri-
mary cluster 2 and 3 for the fitted ELCA model are similar with cluster 2 and 3 for
the fitted LCA model, there is significant difference between primary cluster 1 in the
ELCA model and cluster 1 in the LCA model.
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Table 9 Estimates of π from
fitting the LCA model with 3
clusters for the Star Wars data
set

π̂ (0.17, 0.61, 0.22)

Table 10 Estimates of {pig}
from fitting the LCA model with
3 clusters for the Star Wars data
set

Character Cluster 1 Cluster 2 Cluster 3

Wedge 0.47 0.00 0.00

Han 0.00 0.40 0.00

Luke 0.23 0.74 0.00

C-3PO 0.00 0.24 0.38

Obi-Wan 0.00 0.00 0.60

Leia 0.00 0.21 0.04

Biggs 0.52 0.02 0.00

Darth Vader 0.00 0.18 0.03

Table 11 Contingency table:
ELCA with 3 clusters and 2
additional clusters versus LCA
with 3 clusters

LCA

ELCA 1 2 3

1 16 47 22

2 0 57 0

3 12 0 24

The difference in the clustering structure between the ELCA model and the LCA
model is expected as the ELCA model explicitly captures the variation in the size of
hyperedges. In comparison, the LCAmodel cannot decouple the variation in the size of
hyperedges from the primary clustering structure. This is a key advantage of the ELCA
model where the underlying structure of the size of the hyperedges can be uncovered.
Furthermore, as a constrained version of the LCA model with 6 clusters, the ELCA
model with 3 primary clusters and 2 additional clusters is far more parsimonious.

5.2 Reuters News articles

As a second application of the ELCA model, we collected news articles published
by Reuters2 in January 2020. We analyze the co-appearance relationships among the
Group of Eight+Five (G8+5) countries. A hypergraph is constructed by defining each
news article as a hyperedge and each country as a vertex. A vertex is contained in
a hyperedge if the corresponding country is mentioned in the corresponding news
article. News articles that do not mention any of the 13 countries were removed, and
the resulting hypergraph contains 1828 hyperedges.

The model with 5 clusters and 2 additional clusters was chosen by the BIC and
fitted to the data set. The BIC scores for a range of models are shown in Table 12. It is

2 http://www.reuters.com.
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Fig. 6 Probability of clusters for movie scenes in Star Wars data set plotted against movie scene number for
the LCA model with 3 clusters. Movie scenes in cluster 1 mostly ocurred in the second half of the movie,
whereas cluster 2 contains majority of the scenes in the movie. On the other hand, scenes in the first half of
the movie are slightly more likely to be assoiated with cluster 3 compared to scenes in the second half of
the movie

worth noting that according to the BIC scores the ELCA models with two additional
clusters generally outperform the standard LCA models whereas the standard LCA
performs better than the ELCA with three additional clusters.

The parameter estimates π̂ , τ̂ and â are given in Table 13. The estimate π̂ shows that
the hyperedges are relatively evenly distributed across the five clusters.We can deduce
from â and τ̂ that there are a small number of articles mentioning many countries
whereas the vast majority of the articles mention very few countries. Specifically,
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Table 12 Model selection for
Reuters News data set

No. of clusters No. of additional clusters BIC

1 1 18,018

1 2 19,005

2 1 17,801

2 2 17,711

2 3 17,723

3 1 17643

3 2 17636

3 3 17652

4 1 17562

4 2 17533

4 3 17625

5 1 17507

5 2 17410

5 3 17611

6 1 17468

6 2 17489

7 1 17514

7 2 17526

The smallest value is bolded

Table 13 Estimates of π , τ and
a from fitting the ELCA model
with 5 clusters and 2 additional
clusters for Reuters News data
set

π̂ (0.16, 0.27, 0.19, 0.12, 0.26)

τ̂ (0.94, 0.06)

â (0.28, 1.00)

about 6% of articles mentioned a much larger number of countries compared to the
rest of the articles. The incorporation of an additional clustering structure results in
significant reduction in the number of parameters.

The clustering structure can be deduced from the estimate φ̂ given in Table 14.
China, Russia and USA are among the most popular in articles in cluster 1 whereas
China, France and Japan are the most commonly mentioned by articles in cluster 2.
Canada, Britain andUSAhave the highest probability of appearing in articles in cluster
3 whereas Canada, Mexico and USA are the most likely to appear in news articles
in cluster 4. Germany, France and Britain are most likely to be mentioned by news
articles in cluster 5 (Table 13).
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Table 14 Estimates of {φig} from fitting the ELCA model with 5 clusters and 2 additional clusters for the
Reuters News data set

Country Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

BRA 0.19 0.27 0.00 0.42 0.00

CAN 0.00 0.27 1.00 0.79 0.00

CHN 1.00 1.00 0.46 0.62 0.79

DEU 0.00 0.49 0.38 0.19 0.94

FRA 0.00 0.97 0.80 0.00 1.00

GBR 0.39 0.79 1.00 0.32 1.00

IND 0.66 0.21 0.10 0.45 0.04

ITA 0.00 0.29 0.00 0.13 0.44

JPN 0.12 1.00 0.00 0.00 0.05

MEX 0.00 0.01 0.04 0.95 0.00

RUS 0.95 0.18 0.14 0.10 0.60

USA 1.00 0.35 1.00 1.00 0.47

ZAF 0.20 0.03 0.00 0.04 0.01

The largest three values in each column are bolded

6 Conclusion

We have proposed the Extended Latent Class Analysis model as a generative model
for random hypergraphs. Building on a proportionality assumption, the ELCA model
introduces two clustering structures for hyperedges which captures variation in the
size of hyperedges. The model achieves significant reduction in model complexity
compared to the standard Latent Class Analysis model. An EM algorithm has been
developed for model fitting where the M-step involves a series of conditional maxi-
mization and model selection is performed using BIC. The proposed model is fitted to
two data sets and this yields interesting and interpretable structure within the vertices
and hyperedges.

Several extensions to the ELCA model are possible. Hyperedges typically have
temporal information associated with them, which is the case for the two applications
in this paper.Developing a hypergraphmodel to incorporate such temporal information
is of interest. Furthermore, while the ELCA is developed in the context of hypergraph
applications, the model could be useful in other applications where the proportionality
assumption on latent class conditional probabilities is plausible.
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Appendix A: Proof on Proposition 1

Proof We can write A = ∑N
i=1 Ai where Ai = 1 if node i appears in the hyperedge

and Ai = 0 otherwise. Similarly, we write B = ∑N
i=1 Bi . Let ZA be the latent cluster

assignment of XA where ZA = g if XA is generated from cluster g. Let Z (1)
B and Z (2)

B

be the latent cluster and additional clusters assignments of XB , where Z (1)
B = g and

Z (2)
B = k if XB is generated from cluster g and additional clusters k. We have

E(A) =
G∑

g=1

E(A|ZA = g)Pr(ZA = g)

=
G∑

g=1

N∑

i=1

E(Ai |ZA = g)Pr(ZA = g)

=
G∑

g=1

N∑

i=1

pigπg

E(B) =
G∑

g=1

K∑

k=1

E(B|Z (1)
B = g, Z (2)

B = k)Pr(Z (1)
B = g, Z (2)

B = k)

=
G∑

g=1

K∑

k=1

N∑

i=1

E(Bi |Z (1)
B = g, Z (2)

B = k)Pr(Z (1)
B = g, Z (2)

B = k)

=
G∑

g=1

K∑

k=1

N∑

i=1

φigakτkπg

=
G∑

g=1

N∑

i=1

pigπg

= E(A)

For the variance of the LCA model, we have that

Var(A) =
N∑

i=1

Var(Ai ) + 2
N∑

i< j

Cov(Ai , A j )

where

Var(Ai ) = E(A2
i ) − E(Ai )

2
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= Pr(Ai = 1) − Pr(Ai = 1)2

=
G∑

g=1

pigπg −
( G∑

g=1

pigπg

)2

Cov(Ai , A j ) = E(Ai A j ) − E(Ai )E(A j )

= Pr(Ai = A j = 1) − Pr(Ai = 1)Pr(A j = 1)

=
G∑

g=1

pig p jgπg −
( G∑

g=1

pigπg

)( G∑

g=1

p jgπg

)

Hence, we have that

Var(A) =
N∑

i=1

G∑

g=1

pigπg −
N∑

i=1

( G∑

g=1

pigπg

)2

+2
N∑

i< j

G∑

g=1

pig p jgπg − 2
N∑

i< j

( G∑

g=1

pigπg

)( G∑

g=1

p jgπg

)

Now,

Var(B) =
N∑

i=1

Var(Bi ) + 2
N∑

i< j

Cov(Bi , Bj )

Var(Bi ) = Pr(Bi = 1) − Pr(Bi = 1)2

=
G∑

g=1

K∑

k=1

φigakτkπg −
( G∑

g=1

K∑

k=1

φigakτkπg

)2

=
G∑

g=1

pigπg −
( G∑

g=1

pigπg

)2

Cov(Bi , Bj ) = Pr(Bi = Bj = 1) − Pr(Bi = 1)Pr(Bj = 1)

=
G∑

g=1

K∑

k=1

φigφ jga
2
kπgτk −

( G∑

g=1

pigπg

)( G∑

g=1

p jgπg

)

We have

Var(B) =
N∑

i=1

G∑

g=1

pigπg −
N∑

i=1

( G∑

g=1

pigπg

)2

+2
N∑

i< j

G∑

g=1

K∑

k=1

φigφ jga
2
kπgτk − 2

N∑

i< j

( G∑

g=1

pigπg

)( G∑

g=1

p jgπg

)
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Now,

Var(B) − Var(A) = 2
N∑

i< j

G∑

g=1

K∑

k=1

φigφ jga
2
kπgτk − 2

N∑

i< j

G∑

g=1

pig p jgπg

= 2
N∑

i< j

G∑

g=1

( K∑

k=1

φigφ jga
2
k τk − pig p jg

)
πg

= 2
N∑

i< j

G∑

g=1

φigφ jg

( K∑

k=1

a2k τk −
( K∑

k=1

akτk
)2)

πg

To show the quantity above is non-negative, we have to show that

K∑

k=1

a2k τk −
( K∑

k=1

akτk
)2 ≥ 0

which follows from Jensen’s inequality. ��

Appendix B: Simulation studies

Model parameters for Tables 1 and 3

a = (0.5, 1)

φ =
(
0.8 · · · 0.8 0.1 · · · 0.1
0.1 · · · 0.1 0.8 · · · 0.8

)

Model parameters for Tables 2 and 4

a = (0.5, 1)

φ =
⎛

⎝
0.8 · · · 0.8 0.1 · · · 0.1
0.1 · · · 0.1 0.8 · · · 0.8
0.4 · · · 0.4 0.4 · · · 0.4

⎞

⎠
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Karoński M, Łuczak T (2002) The phase transition in a random hypergraph. J Comput Appl Math 142:125–

135
Koskinen J, Edling C (2012) Modelling the evolution of a bipartite network—peer referral in interlocking

directorates. Soc Netw 34:309–322
Lange K, Hunter DR, Yang I (2000) Optimization transfer using surrogate objective functions. J Comput

Graph Stat 9:1–59
Latapy M, Magnien C, Vecchio ND (2008) Basic notions for the analysis of large two-mode networks. Soc

Netw 30:31–48
Latouche P, Birmelé E, Ambroise C (2011) Overlapping stochastic block models with application to the

French political blogosphere. Ann Appl Stat 5:309–336
Lazarsfeld PF, Henry NW (1968) Latent structure analysis. Houghton Mifflin, Boston
Leordeanu M, Sminchisescu C (2012) Efficient hypergraph clustering. In: Lawrence ND, Girolami M (eds)

Proceedings of the fifteenth international conference on artificial intelligence and statistics. PMLR,
vol 22 of proceedings of machine learning research, La Palma, Canary Islands, pp 676–684

Li X, Li Y, Shen C, Dick A, Van Den Hengel A (2013) Contextual hypergraph modeling for salient object
detection. In: The IEEE international conference on computer vision (ICCV)

Lind PG, GonzálezMC, Herrmann HJ (2005) Cycles and clustering in bipartite networks. Phys Rev E 72:66
Lunagómez S, Mukherjee S, Wolpert RL, Airoldi EM (2017) Geometric representations of random hyper-

graphs. J Am Stat Assoc 112:363–383
MengX-L, Rubin DB (1993)Maximum likelihood estimation via the ECMalgorithm: a general framework.

Biometrika 80:267–278
Moody J (2004) The structure of a social science collaboration network: disciplinary cohesion from 1963

to 1999. Am Sociol Rev 69:213–238
Newman MEJ (2001a) Scientific collaboration networks. I. Network construction and fundamental results.

Phys Rev E 64:016131

123



Model-based clustering for random hypergraphs 723

Newman MEJ (2001b) Scientific collaboration networks. II. Shortest paths, weighted networks, and cen-
trality. Phys Rev E 64:016132

Newman ME (2004) Who is the best connected scientist? A study of scientific coauthorship networks. In:
Ben-Naim E, Frauenfelder H, Toroczkai Z(eds) Complex networks. Springer, Berlin, pp 337–370

Nowicki K, Snijders TAB (2001) Estimation and prediction for stochastic blockstructures. J Am Stat Assoc
96:1077–1087

Nylund KL, Asparouhov T, Muthén BO (2007) Deciding on the number of classes in latent class analysis
and growth mixture modeling: a Monte Carlo simulation study. Struct Equ Model 14:535–569

Perugini S, Gonçalves MA, Fox EA (2004) Recommender systems research: a connection-centric survey.
J Intell Inf Syst 23:107–143

Poole D (2015) On the strength of connectedness of a random hypergraph. Electron J Combin 22, Paper
1.69, 16

Purkait P, Chin T, Sadri A, Suter D (2017) Clustering with hypergraphs: the case for large hyperedges. IEEE
Trans Pattern Anal Mach Intell 39:1697–1711

Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464
Skvoretz J, Faust K (1999) Logit models for affiliation networks. Sociol Methodol 29:253–280
Snijders TA, Lomi A, Torló VJ (2013) A model for the multiplex dynamics of two-mode and one-mode

networks,with an application to employment preference, friendship, and advice. SocNetw35:265–276
Stasi D, Sadeghi K, Rinaldo A, Petrovic S, Fienberg S (2014) β models for random hypergraphs with

a given degree sequence. In: Proceedings of COMPSTAT 2014—21st international conference on
computational statistics, pp 593–600

Wang YH (1993) On the number of successes in independent trials. Stat Sin 3:295–312
Wang P, Sharpe K, Robins G, Pattison P (2009) Exponential random graph (p*) models for affiliation

networks. Soc Netw 31:12–25
Wang P, Pattison P, Robins G (2013) Exponential random graph model specifications for bipartite

networks—a dependence hierarchy. Soc Netw 35:211–222
ZhouD,Huang J, Schölkopf B (2007) Learningwith hypergraphs: clustering, classification, and embedding.

In: Schölkopf B, Platt JC, Hoffman T (eds) Advances in neural information processing systems 19.
MIT Press, pp 1601–1608

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Model-based clustering for random hypergraphs
	Abstract
	1 Introduction
	2 Model and motivation
	2.1 Hypergraph
	2.2 Latent class analysis model for random hypergraphs
	2.3 Extended latent class analysis for random hypergraphs
	2.4 Theoretical properties

	3 Estimation and model selection
	3.1 EM algorithm
	3.1.1 E-step
	3.1.2 M-step

	3.2 Model selection

	4 Simulation studies
	5 Applications
	5.1 Star Wars Movie Scenes
	5.2 Reuters News articles

	6 Conclusion
	Acknowledgements
	Appendix A: Proof on Proposition 1
	Appendix B: Simulation studies
	References




