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Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe
form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration
causing hypoxemia and death in a substantial number of affected individuals. Loss of
endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment
into the injured lung are recognized mechanisms that contribute to the progression of
ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative
and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased
protein and fluid permeability and interstitial edema, further impairing lung function. While
most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity,
studies in animal models suggest that transendothelial transport of protein through
caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS.
Here, we discuss the role of transcytosis in healthy and injured endothelium and
highlight recent studies that have contributed to our understanding of the process during
ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver
therapeutics to the lungs which may prevent further injury or improve recovery.
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INTRODUCTION

Acute Lung Injury (ALI) and its more severe form, Acute Respiratory Distress Syndrome (ARDS)
are characterized by hypoxemic respiratory failure of both lungs, preventing tissue oxygenation that
may result in multi-organ dysfunction and death (Matthay et al., 2019). ALI/ARDS results from
numerous etiologies, including infectious agents, trauma, pancreatitis, and transfusion of blood
products. While some affected individuals have a mild course of injury and recover, many require
mechanical ventilation and additional treatment within intensive care units. Unfortunately, there
is no cure for ARDS and the mainstay of treatment is supportive care (Fan et al., 2018). Prior to the
COVID-19 pandemic, the available data estimated that there were roughly 190,000 cases of ARDS
in the United States each year (Rubenfeld et al., 2005). In the wake of the COVID-19 pandemic
and the subsequent increase in the incidence of ARDS, there is a renewed interest in understanding
the underlying mechanisms contributing to the pathogenesis and progression of ARDS, which may
lead to novel interventions that improve recovery and survival outcomes (Matthay et al., 2020).
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Pneumonia and non-pulmonary sepsis remain the leading
causes of ARDS (Pham and Rubenfeld, 2017). Sepsis is
characterized by a host response to a pathogen with or without
organ dysfunction and is diagnosed clinically, although the
exact definition and criteria for diagnosis remain under intense
debate (Singer et al., 2016). Sepsis may progress into septic
shock, which carries a high mortality due to poor perfusion of
organs and subsequent organ failure (Rhee et al., 2019). Several
mechanisms contribute to the development and progression of
ALI/ARDS, including vascular injury, widespread immune cell
activation, cytokine release, and thrombosis (Matthay et al.,
2019). These mechanisms may synergistically contribute to
vascular injury as inflammation and pro-inflammatory cytokines
damage endothelial cells (Sprague and Khalil, 2009). Trauma to
endothelial cells directly from pathogens or cytokines may in
turn contribute to platelet adhesion and aggregation (Stokes and
Granger, 2012). During ALI/ARDS, the lungs are often affected
due to high vascularity and in the case of respiratory infections,
proximity to the pathogenic source. Subsequent damage to
the lung vasculature increases permeability to plasma protein
and fluid, interstitial/alveolar inflammation, and extravascular
fibrin deposition that ultimately contribute to poor respiratory
status and mortality (Sibbald et al., 1981; Meduri et al., 1995;
Frantzeskaki et al., 2017).

CONTRIBUTIONS OF
INTER-ENDOTHELIAL JUNCTIONS TO
EC BARRIER FUNCTION

In the healthy state, pulmonary capillaries deliver deoxygenated
blood to alveoli which facilitate gas exchange (Wagner, 2015).
The capillary lining of alveoli consists of a single layer of
endothelial cells which form a tight protective barrier that
restricts passage of large molecular weight macromolecules
and fluid (Lampugnani, 2012; Komarova et al., 2017). Like
single-layer epithelium, endothelial cells form inter-cellular
junctions that restrict diffusion of large proteins and fluid from
the intravascular space (Lampugnani, 2012). Inter-endothelial
junctions vary in organization and filtration properties between
vascular beds, with endothelial cells in the brain and central
nervous system demonstrating the most restrictive barrier
function of all blood vessels (Sweeney et al., 2019). There is
wide heterogeneity between endothelial cells, with a recent study
suggesting that vascular endothelium exhibits tissue-specific
gene expression affecting barrier properties (Jambusaria et al.,
2020). Inter-cellular junctions include adherens junctions, tight
junctions, and gap junctions. We will briefly review the role
each type of junction in lung endothelial cells. Characteristics of
endothelial junctions across vascular beds and the contributions
of junctional proteins to vascular barrier function has been
reviewed elsewhere (Komarova et al., 2017).

Adherens junctions are formed by vascular endothelial
cadherin (VE-cadherin), catenin proteins (α, β, and p120) and
plakoglobin (Lampugnani et al., 1995; Duong and Vestweber,
2020). The junctions are anchored to the cell cytoplasm via actin
filaments and intermediate filaments (Lampugnani, 2010). The

cadherins and catenins organize into a zipper-like arrangement
that promotes adhesion between cells (Reglero-Real et al.,
2016; Lampugnani et al., 2018). VE-cadherin is an 90–
140 kDa (variable due to glycosylation) transmembrane protein
with extracellular cadherin domains at the N-terminus that
mediate homophilic interactions between cells (Vincent et al.,
2004; Brasch et al., 2011). Tension between endothelial cells
is regulated by the presence of VE-cadherin at endothelial
junctions and the rate of VE-cadherin internalization (Juettner
et al., 2019). Loss of VE-cadherin prevents organization of
endothelial cells into monolayers and vessel-like structures,
resulting in fetal death in affected mice (Vittet et al., 1997).
Moreover, mice expressing VE-cadherin mutants more prone
to endocytosis exhibit microvascular hemorrhaging and have
reduced survival rates (Grimsley-Myers et al., 2020). On the
other hand, mutant VE-cadherin resistant to internalization
protects against increased permeability in response to vascular
endothelial growth factor (Broermann et al., 2011). VE-
cadherin forms a complex with plakoglobin, β-catenin, and
actin binding protein α-catenin (Lampugnani et al., 1995).
α-Catenin might play a dynamic role in junctional integrity
and actin polymerization, as α-catenin binds either beta catenin
or actin but not both simultaneously (Drees et al., 2005;
Yamada et al., 2005). Notably, α-catenin binding to actin
prevents actin polymerization (Drees et al., 2005). Loss of
β-catenin increases permeability in cultured lung endothelial cells
(Sawant et al., 2011). Disruption of junctions may also occur
downstream of mechanical sensor piezo1 in mice experiencing
increased hydrostatic pressure and acute heart failure (Friedrich
et al., 2019). Local cytoskeletal dynamics regulate paracellular
permeability, as actin polymerization stabilizes cortical actin
and promotes cell-cell adhesion (Prasain and Stevens, 2009).
Rho GTPases RhoA and Rac1, which regulate actin stress
fiber assembly, regulate endothelial junctions in an opposing
manner: RhoA inhibition reduces endothelial permeability, while
Rac1 inhibition increases permeability (Wojciak-Stothard et al.,
2001; Timmerman et al., 2015). Neuronal (N) cadherin is
expressed in endothelial cells, localizes to endothelial junctions,
and regulates expression of both VE-cadherin and p120 catenin
(Luo and Radice, 2005). N-cadherin recruits guanine nucleotide
exchange factor Trio which promotes Rac1 mediated VE-
cadherin trafficking to adherens junctions (Timmerman et al.,
2015; Kruse et al., 2019).

Tight junctions are formed by transmembrane proteins
[claudins, junctional adhesion molecules (JAMs), occludins],
intracellular scaffolding proteins (zona occludens, occludins),
and cytoskeleton binding proteins (e.g., cingulin and myosins)
(Bazzoni et al., 2000; Zihni et al., 2016). Tight junction proteins
contribute substantially to the blood-brain barrier but are
present to a lesser extent in lung endothelial cells. Claudin-5
is nearly ubiquitously expressed across the vasculature (Morita
et al., 1999). Overexpression of claudin-5 improves vascular
barrier function in rat pulmonary endothelial cells (Soma et al.,
2004). Similar to claudin-5, JAM-A is ubiquitously expressed
across the vasculature. Loss of JAM-A increases endothelial
permeability in lung endothelial cells by downregulating
claudin-5 expression and inactivating Ras-related protein 1
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(Rap-1) (Kakogiannos et al., 2020). Mechanistically, loss
of JAM-A reduces expression of C/EBP-α which binds to
the claudin-5 promoter to induce gene expression. JAM-A
expression is also required for cAMP-mediated increases
in claudin-5 expression in endothelial cells (Ishizaki et al.,
2003; Kakogiannos et al., 2020). There is evidence of crosstalk
between adherens and tight junctions in endothelial cells.
VE-cadherin controls expression of claudin-5 through Akt-
mediated phosphorylation of forkhead box factor FOXO1, which
inhibits interaction of FOXO1 with β-catenin and restricts
FOXO1-mediated transcriptional repression of the CLDN5 gene
(Taddei et al., 2008).

Gap junctions are comprised of connexin molecules.
Connexins are tetraspanin integral membrane proteins that
form hexamers and then migrate to the basolateral surface
(Skerrett and Williams, 2017). Hexamers in adjacent cells form
channels that allow transport of small molecules, including
ions, nucleotides, amino acids, and other molecules (Figueroa
et al., 2004). Electron microscopy studies of cells with gap
junctions demonstrate close apposition of hexamers, with
nearly 2–3 nm separating plasma membranes between adjacent
cells (Goodenough and Paul, 2009). Of the known connexins,
endothelial cells express Cx37, Cx40, Cx43, and Cx47 (Figueroa
et al., 2004). Cx40 and Cx43 expression regulate both expression
of ROCK1 and phosphorylation of the 20 kDa Myosin Light
Chain 1, which are both associated with increased endothelial
permeability (Zhang et al., 2015; Yin et al., 2019).

CONTRIBUTIONS OF CAVEOLAR
TRANSCYTOSIS TO EC BARRIER
FUNCTION

As discussed above, inter-cellular junctions restrict diffusion of
small molecular weight proteins across the endothelial barrier.
Tracer studies with dextrans of various sizes demonstrate
that small molecules (radii <10 nm) are transported from
the blood into lymphatics in a size-dependent fashion, with
smaller proteins appearing in the lymphatics with greater
efficiency. In contrast, dextrans with radii >10 nm appeared
in the lymphatics with similar efficiency despite varying
size. This strongly suggests that the endothelium permits
selective passage of large macromolecules (notable exception
includes brain and CNS endothelium), however, the route of
transport was speculated to differ from that utilized by smaller
molecules. Rather than passage of large molecules through static
intracellular pores, electron microscopy studies of continuous
endothelial cells demonstrate transport of large molecular weight
molecules through intracellular plasmalemmal vesicles known
as caveolae. These vesicles start as membrane-attached flask-
shaped invaginations that subsequently internalize into the cells
and migrate to the opposing membrane, delivering content to
the outside of the cell (Milici et al., 1987; John et al., 2003).
This process is defined as transcellular transport or transcytosis.
Transcytosis is observed primarily in endothelial and epithelial
cells and can occur through caveolae, clathrin-coated pits, or
other mechanisms (Tuma and Hubbard, 2003).

Among other functions, endothelial cells maintain organ
integrity and function by restricting extravasation of fluid and
macromolecules from the vasculature into the interstitial and
alveolar space (Komarova et al., 2017). Thus, endothelial cells
maintain vascular barrier function, preventing widespread edema
and multi-organ dysfunction. Since the 1950s, seminal studies
utilizing electron microscopy have demonstrated that caveolae
are the predominant mediators of macromolecule transport in
healthy endothelial cells (Palade, 1953). Several ligands have been
shown in vivo to be transported by caveolae rather than clathrin-
coated pits or paracellular transport (Simionescu et al., 1973;
Milici et al., 1987; Wagner and Chen, 1991). Moreover, deletion
of caveolin-1 prevents internalization of specific ligands into the
cell and consequently, transcellular transport of ligand (Schubert
et al., 2001; Sun et al., 2011). Inhibition of exocytosis restricts
deposition of ligand but not internalization, providing strong
evidence that macromolecules are transported primarily via
caveolar vesicles upon internalization and subsequent trafficking
through endothelial cells (Predescu et al., 1994, 1997; Schnitzer
et al., 1995a). Importantly, experiments performed in vivo
strongly suggest that caveolae-mediated uptake and transport
of circulating macromolecules eventually results in deposition
of the internalized cargo (macromolecular ligand) into the sub-
endothelial space (Vogel et al., 2001). Thus, the majority of
ligand that enters the cell is trafficked into the interstitial and
parenchymal tissue. Endothelial transcytosis can be organized
into three main steps: endocytosis (internalization of the
vesicle), vesicular trafficking, and exocytosis (fusion of vesicle
with abluminal membrane and release of contents into the
extracellular space).

In lung endothelial cells, caveolae are the primary mediators
of transcytosis and are responsible for delivering most
macromolecules across the lung vascular wall (Jones and
Minshall, 2020). In this review, we will focus on the important
contributions of caveolae as transport organelles and the
role of transcytosis during ALI/ARDS. We will also review
potential therapeutic approaches that may (1) utilize increased
transcytotic activity during ALI/ARDS for drug delivery or (2)
limit endothelial transcytosis by inhibiting platelet activation
and subsequent ICAM1 expression on endothelial cells. These
strategies may improve recovery while reducing severity and
mortality of ALI/ARDS.

BIOCHEMICAL COMPOSITION OF
CAVEOLAE

Lung endothelial cells contain an abundant number of 40–80 nm,
omega-shaped membrane-attached vesicles typically present as
a linear array at the luminal surface (Palade, 1953). These
vesicles are known as caveolae and are found in a variety of
cells, including endothelial, epithelial, fibroblasts, adipocytes, and
smooth muscle cells (Cheng and Nichols, 2016; Parton, 2018).
There is a high degree of variability in caveolae density among the
different cell types, with venous endothelium expressing the most
caveolae among cell types studied and reported in the literature
(Simionescu et al., 1974; Simionescu and Simionescu, 1984).
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In addition, caveolae exhibit different functions in different
cell types (Cheng and Nichols, 2016). In addition to transport,
caveolae function as signaling centers that recruit receptors,
kinases, glycosphingolipids, and other molecules that contribute
to endothelial cell and organ homeostasis (Parton, 2018). At
the luminal surface, caveolae are identifiable by characteristic
intermittent ridges on the cytosolic surface of the endothelial cell
plasma membrane when viewed by scanning electron microscopy
(Peters et al., 1985).

Caveolae are important for cell development and maintenance
of cellular functions (Parton, 2018). These vesicles are comprised
of specialized constituent proteins termed “caveolins” and
“cavins” due to their localization within or associated with the
caveolar membrane and relevance to caveolar stability, shape, and
function (Sowa, 2012). Lung endothelial cells express caveolin-
1 and caveolin-2, whereas muscle cells also express caveolin-
3 (Tang et al., 1996; Razani et al., 2002; Kogo et al., 2004).
Caveolin-1 is a 22 kDa scaffolding protein that is required
for caveola formation in non-muscle cells. Loss of caveolin-1
prevents formation of caveolae and thus eliminates transcytosis
(Schubert et al., 2001). Caveolin-1 via its scaffolding domain
recruits endothelial nitric oxide synthase, which binds L-arginine
as a substrate and generates nitric oxide (Bernatchez et al.,
2005). Caveolin-1 deletion also leads to increased production of
reactive nitrogen and oxygen species, nitrosylation of endothelial
junctional proteins, and increased paracellular permeability
(Siddiqui et al., 2011). Interesting, caveolin-2 deletion in mice
has no effect on caveolae formation but causes lung endothelial
proliferation and exercise intolerance (Razani et al., 2002).
Deletion of caveolin-3 results in T-tubule abnormalities (Bryant
et al., 2018), whereas loss of cavin-1 and cavin-2 results in loss of
lung endothelial caveolae (Liu et al., 2008; Hansen et al., 2013).
Cavin-2 regulates formation of caveolae in the lungs and adipose
tissue but does not alter vesicle abundance in the heart which
strongly implicates cavin-2 as having tissue specific function in
the biogenesis and/or formation of caveolar vesicles (Hansen
et al., 2013). Cavin-3 regulates abundance of caveolae in smooth
muscle, while a recent study suggests that Cavin-4 (expressed
in muscle cells exclusively) regulates T-tubule maturation in
developing organisms (Zhu et al., 2017; Lo et al., 2021). Thus,
caveolins and cavins regulate both caveolae abundance and
function in a variety of cell types. Alteration in expression of
these proteins can be found in many conditions, including ALI,
cancer, and ischemia (Burgermeister et al., 2008; Zhang et al.,
2016; Oliveira et al., 2017).

Glycosphingolipids, cholesterol, enzymes, caveolins, cavins,
and other molecules are concentrated in lipid rafts (Parton,
2018), and in presence of caveolin-1, form caveolae (Razani
et al., 2001). These specialized lipid rafts facilitate signaling events
that modify cellular activity, including transcytosis, migration,
nitric oxide production, proliferation, and apoptosis. Loss of
lipid rafts via cholesterol depletion or caveolin/cavin deletion
alters caveolae formation and/or function (Dreja et al., 2002;
He et al., 2016). For example, caveolin-1 deletion results in
dysregulation of endothelial nitric oxide synthase, resulting in
peroxynitrite formation and disturbance of endothelial junctions
(Miyawaki-Shimizu et al., 2006; Siddiqui et al., 2011). Together

with coat proteins, macromolecules recruited to the caveolar
microdomain regulate formation, shape, internalization and
trafficking of caveolae (Sverdlov et al., 2009; Shu and Shayman,
2012; Jones et al., 2020).

RECEPTOR MEDIATED ENDOCYTOSIS
OF MEMBRANE CAVEOLAE

Endocytosis is thought to be mediated by receptor-ligand
interactions, but “fluid-phase” (non-receptor mediated) uptake
also occurs in endothelial cells. Receptor-ligand interactions
may result in subsequent fluid-phase uptake, suggesting that
the two mechanisms are linked (John et al., 2003). Circulating
macromolecules (e.g., albumin, LDL, viruses, bacteria, and
cytokines) bind their cognate receptor localized in or near
caveolar vesicles (Schnitzer and Oh, 1994; Jiao et al., 2013; Park
and Lee, 2013; Shang et al., 2016). In the case of albumin, ligand-
receptor interactions result in clustering of the albumin receptor
gp60 and signaling via Gβγ unit (Tiruppathi et al., 1997; Shajahan
et al., 2004b). These actions result in downstream activation of
eNOS and nitric oxide (NO) production (Alpern et al., 1983;
Maniatis et al., 2006; Chen et al., 2012). NO subsequently drives
auto-phosphorylation of non-receptor tyrosine kinase c-Src at
tyrosine 416. Indeed, loss of eNOS prevents calcium-mediated Src
activation and reduces transcytosis of albumin (Chen et al., 2018).
Once activated, c-Src phosphorylates caveolin-1, the essential
coat protein that regulates caveolar formation in endothelial cells
(Li et al., 1996; Labrecque et al., 2004). Under basal conditions,
caveolin-1 forms higher order oligomers that regulate the shape
of the caveolar vesicle (Zimnicka et al., 2016). Phosphorylation
of caveolin-1 via activated Src causes the destabilization or
loosening of caveolin-1 oligomers, which in turn, enable the
swelling of caveolae, ligand uptake, and ligand internalization
(Zimnicka et al., 2016). Forced expression of phospho-mimetic
caveolin-1 mutant Y14D increased the number of internalized
caveolar vesicles, the size of caveolae, and the amount of albumin
internalization in lung endothelial cells compared to WT caveolin
and phospho-defective Y14F mutant expression (Zimnicka et al.,
2016). Src-mediated phosphorylation of caveolin-1 depends on
palmitoylation of caveolin-1 at C156, as C156S expression
mutants prevent both caveolin-1 phosphorylation and ligand
endocytosis (Lee et al., 2001). In addition to caveolin-1, activated
Src also phosphorylates dynamin-2 at tyrosine-231 and tyrosine-
597, causing dynamin-2 to self-oligomerize and increase its
interaction with caveolin-1 near the neck of membrane attached
caveolae (Shajahan et al., 2004a). Dynamin-2 is a GTPase which
upon phosphorylation, hydrolyzes GTP to promote fission of
the caveolar vesicle from the membrane (Schnitzer et al., 1996;
Henley et al., 1998). Indeed, dynamin-2 is required for fission
as dynamin mutants or dynamin inhibitors prevent caveolar
endocytosis (Oh et al., 2012; Triacca et al., 2017; Ali et al., 2019).

While the events described above comprise the canonical
mechanism concerning receptor-mediated endocytosis, several
studies suggest that caveolae recruit additional proteins to the
neck region which regulate endocytosis and trafficking. Lung
endothelial caveolae and caveolae in other continuous-type
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endothelial cell-lined vascular beds (to a lesser extent) express
5–7 nm thick diaphragms at the neck region (Stan, 2005).
These diaphragms appear similar in electron micrographs to
those found in fenestrated endothelial beds of abdominal
organs (especially intestines and kidneys) (Stan, 2007). However,
diaphragms in continuous-type endothelium appear to have
a different biochemical composition when compared to those
found in fenestrated endothelium (Simionescu et al., 1981; Pino,
1986). The only known protein component of the diaphragms is
plasmalemmal vesicle associated protein (PLVAP, PV1), a 60 kDa
protein which forms higher order oligomers that contribute
to the formation and spoke-like structure of the diaphragms
(Stan et al., 1999a,b). The role of PV1 in endothelial caveolae
has long remained elusive but critical for human embryonic
development and survival (Herrnberger et al., 2012; Stan et al.,
2012). Endothelial deletion of PV1 in adult mice increased
lung vascular permeability primarily of albumin by enabling an
increase in its internalization (Jones et al., 2020). Moreover, loss
of PV1 profoundly affected caveolar shape, increased the number
of internalized caveolar vesicles, and increased caveolar cluster
formation (Figure 1). Taken together, PV1 appears to restrict
vascular permeability by limiting caveolar transport. Additional

proteins that localize to the neck domain have also been shown
to regulate transcytosis. The short isoform of intersectin-1,
termed intersectin-1s, forms a scaffold at the neck region that
interacts with dynamin-2 and SNAP-23 to mediate vesicle fission
(Predescu et al., 2003).

CYTOSKELETAL DYNAMICS DURING
VESICULAR TRAFFICKING

Electron microscopy studies have demonstrated that caveolae
lie near cortical actin filaments (Rohlich and Allison, 1976;
Singer, 1979). Given these findings, it has long been suggested
that caveolae are anchored to the cell through associations with
the cellular cytoskeleton. Subsequent studies have demonstrated
the regulatory role of actin filaments and microtubules in
caveolar trafficking (Echarri and Del Pozo, 2015). Actin is a
globular protein that polymerizes into filaments that modulate
cell shape, membrane remodeling, cell contraction and cell
migration (Dominguez and Holmes, 2011). In labeled cells,
caveolin-1+ vesicles co-localize with cortical actin (Mundy et al.,
2002). Further, actin depolymerization promotes widespread

FIGURE 1 | Caveolar neck protein PV1 regulates vesicle shape and internalization. Gold-labeled (Au) albumin was infused into control (PV1fl/fl ) and PV1 deficient
(PV1i1EC) mice for 15 min. Lungs were subsequently harvested, minced, fixed, and further prepared for electron microscopy. (A) Endothelial cells contain an
abundant number of caveolar vesicles (black arrowheads). Most vesicles are present on the luminal and abluminal membranes. Here, caveolae are observed filled
with Au-Albumin present in the capillary lumen (Cap.). An internalized vesicle is noted (arrow) inside the cell and will ultimately migrate to the abluminal surface to
deposit its content. (B) Loss of PV1 in endothelial cells increases vesicle internalization, noted by fewer caveolae at the cell membrane and increased number of
vesicles (arrows). Loss of PV1 also increases caveolae clusters (yellow arrowheads). (C) A survey of lung endothelial cells reveals caveolae that feature diaphragms
(blue arrowhead) comprised of PV1 oligomers and caveolae without diaphragms (black arrowhead). (D) Loss of PV1 results in loss of diaphragms and change in
caveolar shape (red arrowheads). Observable changes include increased vesicle neck width, increased vesicle depth, and increased vesicle filling. Scale bar, 0.5 µm.
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internalization of caveolin-1+ vesicles (Mundy et al., 2002).
Accordingly, loss of actin polymerization following cytochalasin
D increased albumin transport across lung endothelial cells
in vivo and caused increased pulmonary edema in perfused
rabbit lungs (Shasby et al., 1982). In vascular isolated smooth
muscle cells, actin polymerization also increases total cellular
levels of caveolin-1 and cavin-1, while depolymerization
has the opposite effect (Krawczyk et al., 2015). Although
characterized to a lesser extent than actin filaments, some
evidence exists that microtubules maintain caveolae at the
cell surface. Microtubules are formed from polymerization of
tubulin proteins, resulting in larger filaments (∼25 nm) in
comparison to actin filaments (∼6 nm) (Knossow et al., 2020). In
contrast to actin depolymerization, loss of microtubules increases
the number of membrane-bound caveolar vesicles in vitro
(Mundy et al., 2002). Taken together, these findings indicate
that cytoskeletal dynamics regulate trafficking of caveolae.
A number of important questions remain regarding cytoskeletal
dynamics during endocytosis and immediately following fission.
Biochemical studies have shown that depolymerization of either
actin or microtubules perturbs lipid raft composition and reduces
caveolin co-localization with the cytoskeleton (Head et al., 2006).
Caveolin-1 interacts with actin-binding proteins, particularly its
phosphorylated form phospho-caveolin (Thomsen et al., 2002;
Sverdlov et al., 2009). Caveolae in turn may regulate cytoskeletal
dynamics, as overexpression of caveolin-1 increases microtubule
polymerization, whereas down-regulation has the opposite effect
(Kawabe et al., 2006).

In addition to receptors and signaling effectors, caveolae
recruit proteins known to regulate actin filaments and
microtubules. To date, interactions between actin proteins
and caveolae have been better delineated in the literature
compared to interactions between microtubules and caveolae.
Rho GTPases, ∼21 kDa proteins known to regulate the cell
cycle and actin polymerization, have been shown to localize
to caveolae/lipid rafts (Ellis and Mellor, 2000). Rac1 forms a
WAVE regulatory complex with WASP family members and
promotes actin polymerization via Arp2/3 complex (Chen
et al., 2017; Hinze and Boucrot, 2018). RhoA mediates actin
polymerization via mDia1 and ROCK signaling (Maekawa
et al., 1999; Watanabe et al., 1999). Cdc42 signals to neuronal
WASP and promotes actin polymerization via Arp2/3 complex
(Rohatgi et al., 2000; Hussain et al., 2001). The role of Rac1 in
caveolar transcytosis has been studied in intestinal epithelial
cells, where loss of Rac1 impaired the transcytosis of Salmonella
(Lim et al., 2014). Moreover, Rac1 is required for transcytosis
of horseradish peroxidase in brain endothelial cells (Coelho-
Santos et al., 2016). Similarly, RhoA mediates transcytosis
of Escherichia coli across brain endothelial cells (Khan et al.,
2002; Zhang et al., 2002). The role of Cdc42 in transcytosis is
less defined in the literature, however, inhibition of Cdc42 via
caveolin-1 appears to promote caveolae-mediated endocytosis
(Shitara et al., 2019). This corresponds to findings that Cdc42
negatively regulates endocytosis in acinar cells of salivary glands
(Shitara et al., 2019). Moreover, Cdc42 acts downstream of
intersectin 2L, a guanine nucleotide exchange factor, to promote
actin polymerization and reduce vesicle internalization in lung

endothelial cells (Klein et al., 2009). Filamin A, an actin-binding
scaffold protein, is recruited to caveolar vesicles via phospho-
caveolin-1 following Src activation and is required for albumin
transcytosis across lung endothelial cells (Sverdlov et al., 2009).
Furthermore, phosphorylation of filamin-A via PKC at serine
2152 appears to be required for internalization and trafficking
of caveolae (Muriel et al., 2011). The Ras related small GTPase
RalA stimulates phospholipase D mediated-phosphatidic acid
production and forms a complex with caveolin-1 and filamin
A in lung endothelial cells exposed to albumin (Jiang et al.,
2016). Loss of RalA or inhibition of phospholipase D prevents
internalization of albumin (Jiang et al., 2016).

Recently, caveolar neck proteins have been implicated
in cytoskeletal remodeling and vesicle internalization. Eps15
homology domain-containing 2 (EHD2), a member of the ATP-
binding dynamin family EHD proteins, has been shown to form
oligomers at the caveolar neck region which restrict fission and
vesicle trafficking (Stoeber et al., 2012). Loss of EHD2 or its
ATP binding protein increases caveolae internalization (Moren
et al., 2012; Hoernke et al., 2017). EHD2 binds Protein Kinase
C and Casein Kinase Substrate in Neurons-2 (pacsin2), which
complexes with F-actin (Moren et al., 2012; Kostan et al., 2014).
Pacsin2 regulates vesicle shape, neck diameter and vesicle depth
(Hansen et al., 2011; Senju et al., 2011). PKC phosphorylates
pacsin2 resulting in reduced localization of pacsin2 to caveolae
and caveolae internalization (Senju et al., 2015). In addition,
EHD2 regulates eNOS function, as loss of EHD2 in endothelial
cells impairs NO production (Matthaeus et al., 2019).

TETHERING, FUSION AND EXOCYTOSIS
OF CAVEOLAE

In endothelial cells and other polarized cells, caveolae are
trafficked across the cytoplasm to the opposing membrane
to which the vesicles fuse and deposit their contents outside
the cell. This process is referred to as exocytosis. In contrast,
caveolae trafficking in non-polarized cells (e.g., fibroblasts)
often involves delivery of vesicles to subcellular organelles
(e.g., lysosomes, proteasomes, etc.) (Parton, 2018). The precise
mechanisms regarding vesicle targeting of the plasma membrane,
fusion, and delivery of contents outside of the cell are not well
understood. Fractionation studies have shown that endothelial
cells like other vesicle-containing cells (e.g., neurons) express
proteins that facilitate exocytosis, including N-ethylmaleimide
sensitive fusion protein (NSF), soluble NSF attachment protein
receptor (SNARE) proteins, and synaptosomal-associated
proteins (SNAPs) (Schnitzer et al., 1995b; Predescu et al.,
2001; Yamakuchi et al., 2008). Internalized vesicles contain
v-SNARE proteins which interact with membrane-associated
target (t) SNARE proteins and likely function to promote
fusion of vesicles with the membrane (Predescu et al., 2001).
As mentioned previously, SNAP-23 promotes fusion to the
abluminal membrane and exocytosis of the vesicular content
into the sub-endothelial space (Predescu et al., 2005). Although
not well characterized in endothelial cells, 7–8 proteins (Exo70,
Exo84, Sec3, Sec5, Sec6, Sec8, Sec10, and Sec15) form an exocyst
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complex which appear to initiate tethering of vesicles to the
membrane (Wu and Guo, 2015; Martin-Urdiroz et al., 2016).
One of the exocyst proteins, Sec15, interacts with Rab11 which
has been shown to regulate tethering of vesicles to the membrane
and exocytosis of vesicle content in endothelial cells (Wu et al.,
2005; Takahashi et al., 2012). Exo70 appears to interact with
Rho GTPase Cdc42 which appears to be required for exocytosis
(Wu et al., 2010) family-member.

ENDOTHELIAL TRANSCYTOSIS
CONTRIBUTES TO PATHOGENESIS OF
ACUTE LUNG INJURY

Several studies have demonstrated that ALI/ARDS is associated
with vascular dysfunction (Ryan et al., 2014). In response
to pathogens, trauma, or widespread inflammation, the
endothelium becomes hyper-permeable thereby allowing
extravasation of proteins and fluid (Matthay et al., 2019).
Endothelial cells may be directly injured by pathogens (e.g.,
E. coli LPS and SARS-Cov-2) or indirectly injured via widespread
cytokine-mediated endothelial cell activation and injury
(Cheng et al., 2017; Varga et al., 2020). Endothelial injury
can progress to cell death and the extent of lung endothelial
cell depletion is associated with mortality (Liu et al., 2019).
Disruption of endothelial barrier function is thought to be a
primary contributor to the development of ALI/ARDS and is
associated with increased mortality (Komarova et al., 2017). Since
endothelial barrier function is regulated by both endothelial
junctions and transcytotic activity, the hyperpermeability state
associated with ALI/ARDS likely involves alterations of both the
paracellular and transcellular pathways. Important questions
remain about the relative contributions of each pathway
following lung injury. Most preclinical studies evaluate the
extent of hyperpermeability rather than the route of protein
and fluid transport following lung injury. Given that ALI arises
from several distinct etiologies, the relative contributions of
each pathway may differ widely in accordance with the variable
natural history of disease progression.

Loss of endothelial junction integrity following inflammation
has been well described in the literature. In cultured cells, inter-
cellular junctions dissemble within minutes upon exposure to
permeability factors thrombin, histamine, and VEGF-A (Rabiet
et al., 1996; Ashina et al., 2015; Ourradi et al., 2017). However, in
animal models of lung injury, significant vascular permeability
defects are observed hours after LPS delivery or cecal ligation
puncture, with the greatest differences in permeability observed
between 6 and 24 h after injury (Gill et al., 2014). These findings
likely reflect immediate changes to permeability in response
to injury (e.g., disrupted junctions), apoptosis/pyroptosis, and
transcriptional responses mediated by inflammatory signaling.
Recent studies show that VE-cadherin, the adhesion protein
required for formation of adherens junctions, is transcriptionally
repressed by the inflammatory cytokine interleukin-1β following
LPS-induced ALI in mice (Xiong et al., 2020). In contrast to
adherens junctions, gap junctions may facilitate rather than
prevent endothelial barrier disruption following ALI. Loss of

Cx40 limits thrombin-induced endothelial disruption in cultured
lung endothelial cells (Yin et al., 2019). Similarly, connexin
inhibitor carbenoxolone prevented sepsis induced pulmonary
vascular leakage in mice that underwent cecal ligation puncture
(O’Donnell et al., 2014).

There is a growing number of studies highlighting the
contributions of the transcellular permeability pathway upon
exposure of cultured endothelial cells to inflammatory mediators
and following in vivo lung injury. High resolution electron
microscopy studies of rabbit lung endothelium revealed that
there is increased abundance and internalization of caveolae
immediately following intratracheal instillation of LPS (Heckel
et al., 2004). In this study, 90% of tracer transport was mediated
by transcytosis. This occurred 2 h after LPS delivery and was
associated with thickened interstitial spaces and development
of lung edema (Heckel et al., 2004; Tiruppathi et al., 2008).
Similarly, in vitro studies have shown that LPS increases
caveolin-1 phosphorylation and transcytosis prior to disruption
of junctions (Wang et al., 2015). In agreement, LPS-mediated
acute lung injury in mice is associated with increases in caveolin-
1 phosphorylation (Oliveira et al., 2017). Loss of caveolin-
1 or inhibition of caveolin-1 phosphorylation results in less
albumin transport, less edema formation, and improved survival
in mouse models of ALI (Garrean et al., 2006; Ivanciu et al.,
2006; Jiao et al., 2013). Toll-like receptor 4 (TLR4), a pattern
recognition receptor found in endothelial cells, is recruited
into caveolar microdomains after binding LPS (Triantafilou and
Triantafilou, 2002; Triantafilou et al., 2004). Loss/mutation of
either TLR4 or caveolae (via caveolin-1 deletion) results in
less injury and improved survival in models of ALI (Qureshi
et al., 1999; Jiao et al., 2013). LPS induces TLR4-mediated
activation of MyD88 and downstream activation of nuclear factor
kappa B, resulting in increased caveolin-1 expression (Figure 2).
PV1, which was recently shown to regulate caveolar uptake
and internalization, is down-regulated acutely (<6 h) following
LPS-mediated lung injury in mice, which may contribute to
the immediate increase in caveolar transport following ALI
(Jambusaria et al., 2020; Jones et al., 2020). Moreover, inhibition
of exocytosis via competitive inhibition of SNAP-23 prevents
ALI (Bai et al., 2015). These studies indicate that endothelial
cells upregulate caveolae-mediated transcytosis in response to
endotoxin and/or acute lung injury. In turn, an increase in
transcytosis likely contributes to the overall loss of protein
from the intravascular space and accumulation in the lung
parenchyma, further driving fluid leakage via the Starling
effect (Levick, 2004). Inflammation likely indirectly increases
endothelial transcytosis, as neutrophil binding to intercellular
adhesion molecule 1 (ICAM1) in vivo increases endothelial
permeability to albumin (Hu et al., 2008). Similarly, hydrogen
peroxide, which is produced from superoxide released from
activated neutrophils, increases albumin transcytosis in mice by
promoting caveolin-1 phosphorylation (Sun et al., 2009).

Procoagulant and platelet activation factors may further
promote endothelial transcytosis. Notably, several of these
factors have been found in the plasma of patients with
ALI/ARDS. Indeed, thrombin, via caveolin-1-regulated
activation of protease-activated-receptor-1 (PAR1) has been
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FIGURE 2 | LPS-mediated inflammatory signaling increases transcytosis in endothelial cells. (1) LPS present in the lumen binds to TLR4 in caveolar microdomains.
(2) TLR4 signaling activates MyD88 and Src kinase, resulting in caveolin-1 phosphorylation at tyrosine-14 and reduction in caveolin-1 oligomer stability. The vesicle is
internalized via dynamin-mediated fission and TLR4 is subsequently degraded or recycled. (3) NF-κB is activated downstream of MyD88, resulting in translocation of
NF-κB into the nucleus and p65/RelA-mediated upregulation of caveolin-1 expression. LPS also reduces PV1 expression, however, the mechanism through which
this occurs is unclear. (4) Upregulation of caveolin-1 increases formation of vesicles, while less caveolar diaphragms are generated due to lack of PV1, which is
essential for diaphragm formation. (5) Caveolae traffic to the cell membrane and invaginate, exhibiting wider neck and bulb diameter in the absence of diaphragms
resulting in greater filling of the vesicle. Vesicles subsequently undergo fission, contributing to increased protein permeability of the endothelial barrier resulting in
protein rich edema formation and ALI.

shown to stimulate albumin transcytosis via increased acid
sphingomyelinase (ASM) activity and ceramide production
(Kuebler et al., 2016). In the coagulation pathway, thrombin
converts fibrinogen to fibrin and promotes the cross-linking of
fibrin to generate clots (Mann et al., 2003). Endotoxin stimulates
platelet aggregation and inflammation activates the coagulation
pathway, resulting in clot formation intravascularly and in the
parenchyma as evidenced by fibrin deposition in lung alveoli
(Zhang et al., 2009; Foley and Conway, 2016). In addition, platelet
activating factor (PAF) also increases lung vascular permeability
via activation of ASM and ceramide production (Burhop et al.,
1986; Uhlig et al., 2005; Yang et al., 2010). The PAF receptor
(PAFR) localizes to caveolae, and disruption of lipid rafts prevents
PAFR-mediated signaling through the ERK/MAPK pathway
(Poisson et al., 2009). Ceramide production in endothelial cells
increases exocytosis of Weibel-Palade bodies and von Willebrand
factor (vWF) secretion (Bhatia et al., 2004). Elevated levels of
vWF, which facilitates platelet adhesion, have been reported in
patients with ALI and is associated with increased mortality
(Ware et al., 2004). High mobility group box 1 (HMGB1), a
non-histone chromosomal protein, is released by macrophages
during sepsis where it is thought with an emerging role in
the development of thrombosis, to act as a pro-inflammatory
cytokine (Vogel et al., 2015; Karakike et al., 2019). HMGB1

increases albumin transcytosis in lung endothelial cells in vitro
by binding to the receptor for advanced glycation end products
(RAGE) resulting in Src activation followed by caveolin-1
phosphorylation (Shang et al., 2016). Taken together, these data
suggest the possibility that increased ceramide production in the
setting of endothelial inflammation/injury drives transcytosis
and SNAP-mediated exocytosis of vWF resulting in increased
endothelial permeability and platelet aggregation.

The recent emergence of SARS-Cov-2, a novel coronavirus
belonging to the beta-coronavirus genus, has resulted in
an urgent need to understand the underlying mechanisms
concerning viral entry, replication, and apoptosis/necrosis of
affected cells (Hu et al., 2021). The clinical syndrome associated
with SARS-Cov-2, termed COVID-19 by the World Health
Organization, ranges in severity from mildly symptomatic
(e.g., cough and body aches) to ALI/ARDS, multi-organ
system failure, and death (Goyal et al., 2020; Guan et al.,
2020). The available evidence suggests that SARS-Cov-2 infects
endothelial cells, causing endotheliopathy, thrombosis, and
cellular death (Goshua et al., 2020; Varga et al., 2020; Liu et al.,
2021). Spike proteins located on the virion surface of SARS-
Cov-2 interact with ACE2 which is localized in lipid rafts
(Lu et al., 2008; Zamorano Cuervo and Grandvaux, 2020).
Indeed, loss of membrane cholesterol inhibits SARS-Cov-2 entry
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(Sanders et al., 2021). There are conflicting data regarding the
expression levels of ACE2 in endothelial cells, however, there
is likely heterogeneity in expression between vascular beds (Lei
et al., 2021; McCracken et al., 2021). In epithelial cells, SARS-
Cov-2 infection activates ASM leading to increased ceramide
production (Carpinteiro et al., 2020, 2021). This finding raises
the possibility of a similar mechanism occurring in endothelial
cells, which would presumably lead to an increase in caveolae-
mediated macromolecular transport via transcytosis. Moreover,
the nucleocapsid protein of SARS-COV-2 has been shown
to stimulate expression of ICAM1 in endothelial cells, which
suggests the possibility that SARS-Cov-2 may indirectly stimulate
transcytosis by promoting neutrophil-ICAM-1 interactions
(Qian et al., 2021). The widespread endotheliopathy, thrombosis
and subsequent organ damage may therefore be due to in
part to virus-mediated endothelial inflammation and increase
in the levels of circulating pro-thrombotic proteins that drive
transcytosis and platelet aggregation via vWF secretion. On
the other hand, SARS-Cov-2 appears to also directly injure
endothelial cells which may in turn increase vascular permeability
and thrombosis. Additional studies are needed to assess the
connection between transcytosis, vWF secretion, and platelet
aggregation in response to SARS-Cov-2 infection.

Endothelial damage contributes to the development of
ALI/ARDS secondary to multiple etiologies, including pathogens,
mechanical trauma, and complications of blood product
transfusions (Matthay et al., 2019). Regarding pathogens,
infection and the initial inflammatory endothelial response likely
vary depending on the specific pathogen, availability and quantity
of cognate receptors and signaling effectors, host endothelial
cell responses, and immune-modifying agents. The literature
suggests that some pathogens present either in the blood or
at the abluminal surface can be internalized via endocytic
vacuoles and subsequently spread to different tissues. Group B
streptococcus, a leading cause of neonatal meningitis and sepsis,
enters endothelial cells via membrane-bound vacuoles (Nizet
et al., 1997). Similarly, E. coli K1 and Citrobacter spp., which also
cause neonatal meningitis and sepsis, are transported through
endothelial cells in vitro without altering inter-endothelial
junctions (Stins et al., 2001). Leptospira interrogans, which causes
renal, liver, respiratory, and neurological symptoms in humans,
utilizes caveolin-1 dependent internalization for transport across
endothelial cells in vitro (Li et al., 2019). Loss of caveolin-1
decreases Influenza A H1N1 internalization in cultured non-
endothelial cells (Sun et al., 2010). Several additional pathogens
require caveolin-1 or caveolin-2 expression and/or interaction
with lipid rafts in order to infect cells (Zaas et al., 2009).
Important questions remain concerning whether bacteria or
viruses actually utilize caveolae to infect endothelial cells in vivo.
Caveolae appear to be dispensable for development of ALI
due to sepsis or endotoxemia, however, ALI in this setting
may be in part attributable to increased activation of the
immune system and subsequent cytokine release, particularly
from macrophages (Feng et al., 2010; Oliveira et al., 2017).
It is important to note that pathogens utilize various means,
including non-caveolae cell entry, to infect endothelial cells. Once
infected, activated endothelial cells may subsequently upregulate

transcytosis of serum macromolecules. Dengue virus infection
of endothelial cells increases caveolar transport of albumin
in vitro (Chanthick et al., 2016, 2018). Endotoxin exposure
likely increases transcytosis acutely due to binding of ICAM1
by leukocytes, and in the later sub-acute phase of ALI, by
increasing caveolin-1 expression and reducing PV1 expression
(Figure 2).

TARGETING TRANSCYTOSIS FOR DRUG
DELIVERY IN ACUTE LUNG INJURY

In survivors, resolution of ALI/ARDS is associated with
widespread fibrosis leading to long-term impairment of
respiratory function. There is a need for novel interventions that
improve mortality and morbidity in patients experiencing lung
injury. Due to the abundance of caveolae in lung endothelium,
targeting caveolar transport may be an especially useful approach
for delivering therapeutics into lung tissue. The established
method for targeting lung endothelial transcytosis involves
identification of cell surface proteins enriched in caveolar
microdomains, developing or utilizing antibodies against these
proteins, and assessing subsequent uptake across different
tissues. Delivery of Aminopeptidase P (APP) antibodies resulted
in lung specific uptake as APP is highly enriched in lung
endothelial caveolae (McIntosh et al., 2002; Oh et al., 2007).
The available literature suggests that there is heterogeneity in
caveolar abundance, spatiotemporal organization, and function
between tissues (Hansen et al., 2013; Raheel et al., 2019).
Given the known heterogeneity between vascular endothelial
beds, there is great potential for selective targeting of healthy
and injured/altered endothelium especially where caveolae
are abundant (Aird, 2012). Comparisons between healthy
and tumor endothelium have shown that tumor-associated
endothelial caveolae selectively recruit Annexin A1, thereby
allowing for targeted uptake of conjugated antibodies into
tumors but not normal parenchymal tissue (Oh et al., 2014).
Although selective changes in caveolar protein expression
following ALI/ARDS have been published (Oliveira et al.,
2017), to our knowledge a detailed proteomic analysis of
lung endothelial caveolae following inflammation/injury has
not been reported.

As PV1 is a caveolar-associated protein expressed primarily
in endothelial cells and has a relatively accessible extracellular
domain, PV1 has emerged as an attractive target for investigation
of drug delivery via transcytosis. Delivery of superoxide
dismutase conjugated to PV1 antibodies resulted in lung uptake,
reduced LPS-induced VCAM expression, and a reduction in LPS-
induced cytokine secretion (Shuvaev et al., 2018). In a mouse
model of pulmonary fibrosis, prostaglandin E2 conjugated to
PV1 antibody reduced bleomycin-induced collagen deposition
and lung expression of profibrotic proteins (Marchetti et al.,
2019). Lipid nanoparticles conjugated to PV1 antibody reduced
uptake of nanoparticles into the spleen and improved delivery
to lung tissue (Li et al., 2020a). Further, the binding affinity of
PV1 antibodies as well as the size of antibodies may alter uptake
properties and tissue selectivity in vivo (Li et al., 2020b).
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POTENTIAL ROLE OF ANTIPLATELET
THERAPY IN VASCULAR BARRIER
PROTECTION

Endothelial activation, injury, and cell death during ALI/ARDS
is mediated by endotoxin, inflammatory cytokines, and often
circulating blood cells derived from the bone marrow (Matthay
et al., 2019). During ALI/ARDS, platelets (the anucleate non-
red blood cells differentiated from megakaryocytes) become
activated and secrete pro-inflammatory cytokines (e.g., IL-1β)
which in turn increase endothelial permeability (Middleton et al.,
2016, 2018). The role of platelets in ALI/ARDS is complex, as
thrombocytopenia (characterized by clinically significant loss of
circulating platelet number) is also associated with increased
vascular permeability (Middleton et al., 2018). Thrombin-
activated platelets stimulate expression of ICAM1 on the surface
of endothelial cells (Gawaz et al., 2000). In patients with
myocardial infarction, activated platelets release miR-320b, which
is taken up by endothelial cells and can regulate expression of
ICAM1 (Gidlof et al., 2013). Recently, elevated serum levels of
miR-320b have been reported in COVID-19 patients, especially
deceased patients when compared to survivors (Giuliani et al.,
2022). As ICAM1 binding increases lung endothelial transcytosis,
these findings raise interesting questions regarding the role of
platelets in the development of hyperpermeability during the
early phase of lung injury.

Clinical trial data raise the possibility that antiplatelet therapy
can reduce vascular permeability in the setting of sepsis and
ALI/ARDS. The Platelet Inhibition and Patient Outcomes trial
found that in patients with acute coronary syndromes, treatment
with ticagrelor reduced both recurrent ischemic events and
overall mortality when compared to treatment with clopidogrel
(James et al., 2009; Wallentin et al., 2009). A separate analysis of
the trial data found that the improvement in mortality benefit
was at least partially due to fewer deaths attributable to sepsis
while on the medication (Storey et al., 2014). Ticagrelor but
not clopidogrel reduced plasma TNFα levels and prevented the
increase in lung permeability to fluid in mice (Sexton et al.,
2018). Synthetic PAF antagonists lexipafant and TCV-309 have
been tested in clinical trials but have not proven effective in
reducing mortality in patients with sepsis or septic shock (Poeze
et al., 2000; Suputtamongkol et al., 2000). Although there was
no effect on overall mortality, TCV-309 decreased the extent of
multi-organ failure in patients with septic shock and notably
reduced vasopressor use and ventilation requirements (Poeze
et al., 2000). Another recent study demonstrated that peptide-
based targeting of leukocyte and platelet Gα13-mediated integrin
“outside-in” signaling improved survival, lung albumin uptake,
and thrombosis in mice (Cheng et al., 2021). These findings
occurred in the absence of bleeding or hemorrhagic events, a
common complication of antiplatelet therapies. Finally, studies
from our laboratory have demonstrated that direct targeting
of αSNAP protein via novel Gα12 N-terminal derived peptide
inhibits the interaction between Gα12 and αSNAP and thereby
reduces vWF secretion and microvascular thrombosis in mice
(Rusu et al., 2014; Bae et al., 2019). Additional research may lead

to novel antiplatelet therapies that target both thrombosis and
lung vascular permeability in sepsis and ALI/ARDS.

CONCLUSION

ALI/ARDS is characterized by widespread loss of endothelial
barrier function, interstitial edema, alveolar inflammation,
hypoxemia, and impairment of respiratory function. Despite
advances in supportive therapy, there remains no specific
treatment to address the underlying mechanisms that contribute
to the development and progression of ALI/ARDS. Lung
endothelial transcytosis is mediated primarily through caveolae
which transport macromolecules between the vasculature
and subendothelial space. Caveolae-mediated endocytosis and
subsequent transcytosis is regulated by both the phosphorylation
and interaction of caveolar coat proteins and proteins located
at the neck region. PV1, EHD2, and intersectin-1s specifically
regulate caveolar shape and the rate of vesicle internalization
in endothelial cells. Preclinical studies suggest that ALI is
associated with increased transcytosis, which may occur upon
direct activation of endothelial cells by infectious agents/injury
or by stimulation with pro-thrombotic proteins. Targeting
proteins enriched in caveolar microdomains may significantly
improve transcytosis of therapeutics and thus enhance drug
delivery into extravascular tissues and organs such as the lung.
Patients with ALI/ARDS may benefit from lung tissue-specific
therapies that limit interstitial/alveolar inflammation, edema
formation, and cell death. Currently available and emerging
antiplatelet therapies may reduce lung vascular permeability in
the setting of sepsis and ALI/ARDS. As death from pulmonary
complications comprises a significant portion of the mortality
burden due to ALI/ARDS and specifically COVID-19, a greater
understanding of the underlying mechanisms of lung endothelial
transcytosis may result in novel treatment strategies that improve
morbidity and mortality.
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