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Abstract

Background

Differences in within-person emotion dynamics may be an important source of heterogene-
ity in depression. To investigate these dynamics, researchers have previously combined
multilevel regression analyses with network representations. However, sparse network
methods, specifically developed for longitudinal network analyses, have not been applied.
Therefore, this study used this approach to investigate population-level and individual-level
emotion dynamics in healthy and depressed persons and compared this method with the
multilevel approach.

Methods

Time-series data were collected in pair-matched healthy persons and major depressive dis-
order (MDD) patients (n = 54). Seven positive affect (PA) and seven negative affect (NA)
items were administered electronically at 90 times (30 days; thrice per day). The population-
level (healthy vs. MDD) and individual-level time series were analyzed using a sparse longi-
tudinal network model based on vector autoregression. The population-level model was
also estimated with a multilevel approach. Effects of different preprocessing steps were
evaluated as well. The characteristics of the longitudinal networks were investigated to gain
insight into the emotion dynamics.

Results

In the population-level networks, longitudinal network connectivity was strongest in the
healthy group, with nodes showing more and stronger longitudinal associations with each
other. Individually estimated networks varied strongly across individuals. Individual varia-
tions in network connectivity were unrelated to baseline characteristics (depression status,
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neuroticism, severity). A multilevel approach applied to the same data showed higher con-
nectivity in the MDD group, which seemed partly related to the preprocessing approach.

Conclusions

The sparse network approach can be useful for the estimation of networks with multiple
nodes, where overparameterization is an issue, and for individual-level networks. However,
its current inability to model random effects makes it less useful as a population-level
approach in case of large heterogeneity. Different preprocessing strategies appeared to
strongly influence the results, complicating inferences about network density.

Introduction

Although major depressive disorder (MDD) is predicted to become one of the most important
contributors to the global burden of disease [1], the condition remains poorly understood. De-
spite many research efforts, the etiological mechanisms underlying depression are still unclear
and accurate prediction of outcome and course in MDD patients has proven difficult. An impor-
tant reason for this may lie in the heterogeneity of MDD, both in terms of the possible variations
in patients’ symptom patterns and in course trajectories [2,3]. Furthermore, the definition of
MDD as formulated in the Diagnostic and Statistical Manual (DSM) is based on clinical consen-
sus rather than empirical research, limiting its validity and usefulness in scientific research [4, 5].

Researchers have attempted to develop alternative, data-driven diagnostic systems focusing
either on the identification of symptom dimensions or discrete sub/prototypes to provide
more homogeneous descriptions of psychopathology, in particular MDD [6]. Most researchers
have used latent variable models (LVM) to identify such symptom dimensions (e.g. [7, 8]) or
subtypes (e.g. [9, 10]). However, it has been argued that, like DSM classifications, the diagnos-
tic entities resulting from LVMs do insufficient justice to the dynamic nature of psychopathol-
ogy because they assume that all observed symptoms are manifestations of a single underlying
disorder or severity construct (e.g. [11]). Because of this, these diagnostic descriptions provide
no insight into temporal relationships and interactions between individual symptoms. This is
unfortunate, because in real life symptoms may develop consecutively, with the onset of one
symptom influencing the onset and/or persistence of other symptoms [12]. It has been sug-
gested that such dynamic processes could be captured using techniques from network analysis,
which could provide deeper insights into the dynamic phenomenology of psychopathology
and the underlying mechanisms (e.g. [11, 12, 13]).

In the network framework, psychopathology is represented as a network, in which nodes
that represent symptoms or emotions are connected to each other by edges that represent
some measure of association (e.g. correlations or regression coefficients). This approach can
be used to visualize and analyze the relationships between responses on questionnaires or
symptoms reported in clinical interviews. For instance, a simple matrix of (partial) correlations
between symptoms can be visualized as a network, enabling subsequent analyses with dedi-
cated techniques from graphical modeling/network analysis (e.g. centrality indices, connectiv-
ity indices, clustering algorithms). Network analyses can both be used to investigate the cross-
sectional correlations between symptoms at a specific point in time and to investigate temporal
associations between symptoms or emotions in longitudinal studies. Most studies have thus
far used the former approach to get some insight into the cross-sectional correlation networks
and, for instance, the centrality or clustering of certain symptoms within these networks (e.g.
(11, 14]).
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Interestingly, the longitudinal network approach, which allows for the investigation of how
symptoms or emotions influence each other over time, has been used less often, although a few
studies have used networks to analyze the structure of longitudinal associations in a multilevel
data analysis framework [15-18]. The relative scarcity of longitudinal network models may lie
in the associated analytical difficulties. A key challenge lies in distinguishing the relevant, lon-
gitudinal within-person correlations between emotions over time from the contemporaneous
correlations at each time point. In addition, the question has remained unanswered whether
longitudinal emotion networks are best studied at the population level or by generating a sepa-
rate network for each individual member of the population. This latter approach might be
optimal to gain insight into the actual temporal dynamics between emotions as they occur in
individuals, because it would prevent the observed effects from being obscured by averaging
across a heterogeneous pool of individuals. When using large numbers of repeated measures,
the data of a single individual can be treated as a time series, allowing for data analysis at the
person level and generation of person-specific networks. However, estimation of such person-
specific longitudinal networks is not a trivial matter.

Fortunately, analytical methods have recently been developed that are specifically aimed at
analyzing individual time-series data using network techniques. Abegaz and Wit [19] intro-
duced a method that uses a penalized vector autoregression (VAR) model to estimate both
contemporaneous and temporal associations in time-series data and demonstrated the use of
this method in gene expression data. Using this approach, the contemporaneous and temporal
associations can be investigated separately. In addition, the penalized approach has the advan-
tage of reducing the number of spurious associations included in each of the networks.

The present study was aimed to apply the sparse longitudinal network approach to time
series of affective states (further called ‘emotions’) (90 measurements; 3 times per day), col-
lected in a group of 27 MDD patients and a group of 27 pair-matched healthy subjects. Both
population-level and individual-level analyses were performed. First, network analyses were
performed on the pooled time-series data of the MDD group and on those of the healthy
group. The resulting networks were compared in terms of overall connectivity and the nodes
with the largest in- and out-strength. To investigate how the sparse VAR results compare to
results obtained with the previously used multilevel approach [15-18], the population-level
networks were also estimated with the multilevel approach and compared to the sparse VAR-
based networks. In addition, because different data pre-processing steps can be used (i.e.
detrending or not; transformation or not; group-wise vs. individual-wise preprocessing), the
effects of different preprocessing choices were evaluated. Next, network analyses were con-
ducted on each subject’s individual data, and it was evaluated whether the connectivity of indi-
vidual networks was associated with depression status (MDD vs. healthy) and other clinical
and personality factors, in order to gain insight into the possible determinants of inter-individ-
ual differences in emotion dynamics. In line with the network perspective of psychopathology
as a dynamic network of interacting symptoms [13, 16], this study focused on the temporal
associations.

Materials and methods

Participants and procedures

Data were collected as part of the Mood and Movement in Daily Life (MOOVD) study [20].
The study included 27 MDD patients and 27 healthy persons, pair-matched by age, gender,
smoking behavior, and BMI. During a period of 30 consecutive days, participants filled in a
questionnaire thrice per day using an electronic diary. This procedure led to a dataset with

up to 90 repeated assessments per subject. The study protocol was approved by the Medical
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Ethical Committee of the University Medical Center Groningen and conducted in accordance
with the Declaration of Helsinki. All participants provided written informed consent.

Measures

A list of self-report items was administered at each time point with an electronic device (Psy-
Mate, PsyMate BV, Maastricht, the Netherlands). Seven positive affect (PA) items (feeling talk-
ative, enthusiastic, confident, cheerful, energetic, satisfied, and happy) and seven negative
affect (NA) items (feeling tense, anxious, distracted, restless, irritated, depressed, and guilty)
were used. These items were adapted from a previous study [21] where they had proven to

be very useful for experience sampling research. The items were rated on a 7-point Likert
response scale. The affect items are further called ‘emotions’, in line with previous studies on
this topic (e.g. [16, 17]). At baseline, the BDI [22] was used to assess depression severity in the
MDD and control group. A person was placed in the control group if the BDI score was less
than 9 and placed in the MDD group if the BDI score was over 14. Next, the Composite Inter-
national Diagnostic Interview (CIDI [23]) was administered to verify the presence (MDD
group) or absence (control group) of a current or recent (<2 months) diagnosis of MDD
according to DSM-IV criteria. The Eysenck Personality Questionnaire [24] was used to assess
baseline neuroticism in all subjects.

Statistical analyses

Data preprocessing. The percentage of missing observations was 8.2% and 6.8% in the
MDD and control group, respectively. Length of the time series was 83.2 on average (sd = 7.4).
Missing data points were imputed with multiple imputation using R-package ‘Amelia’ [25].
The length of the time series after imputation was 90. All analyses were performed in ten im-
puted datasets and results were subsequently averaged. Because VAR models assume sta-
tionary data, we detrended the data by (i) fitting a nonparametric smoothing spline to the
univariate time series of each item (using R’s smooth.spline function, choosing degree of free-
dom = 2), and by (ii) subtracting this curve from the original time series. Since the data con-
sisted of Likert-style responses with skewed distributions, we relaxed the assumption of
normality by transforming each item using the normal quantile transformation described in
[26]. This transformation is similar to a Gaussian copula in the sense that the marginals are
non-parametrically estimated empirical cumulative density functions; see also [27]. Both pre-
processing steps (detrending and quantile transformation) were done per item and pooled
over all individuals of the group for the population-level analyses; and per item per individual
for the individual-level analyses. Other preprocessing steps have been previously used in longi-
tudinal network studies. For instance, Bringmann et al. [16] used person-mean centering with-
out detrending and did not transform the data. To investigate the effect of our preprocessing
choices on the network results, the multilevel analyses were run multiple times with different
sets of preprocessing steps.

Network estimation. A modified VAR model was used for the current analyses [19]. This
model is different from a standard VAR model in that the estimation of the contemporaneous
and temporal associations is performed using a regularized estimation approach [28]. In a
standard approach, the parameters of a model may be estimated by maximizing the (log-)like-
lihood of the model. However, with a regularization approach this likelihood is modified to
include a penalty function, which grows with the number and/or size of the model parameters,
resulting in a sparser model compared to the model that would be estimated with a standard
likelihood. In some situations, regularization allows one to estimate a model when there are
more variables than sample points (e.g. in genetic datasets), but more generally, facilitates the
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interpretability of model results. Because the population-level networks were devoid of edges
when using an information-criterion-type selection method, the regularization hyper-parame-
ters A; and A, were set to 0.38 and 0.05, respectively, for all network analyses. These values
were chosen because the regularization values provided by the default optimality criterion
resulted in a network structure that was nearly empty and not useful for our purposes. Instead,
we picked a value for A; from a range of possible values by refitting the population level models
to 100 simulated dataset using a block-bootstrap and selecting a value for A; from the inter-
quartile range. In addition, we set A, at 0.05, to achieve a suitable sparsity. See [28] for more on
the role of hyper-parameters in regularization.

The connection between VAR models and networks has been described previously [29, 30].
When a VAR model is operationalized as a network model, the regression coefficients corre-
spond to the edge weights in the network. If A represents the matrix of regression coefficients
between the outcomes at time ¢ versus the outcomes at time #-1, then the entry a of A at place
(j,k) represents the association between item j at time -1 and item k at time ¢. Because the
regression coefficients in a VAR model represent relations over time, the edges are arrows
instead of lines, giving a directed (longitudinal) network. The other main parameters of the
VAR model, i.e. the covariance matrix of the noise at time ¢ representing the contemporaneous
associations can also be visualized in a network. The entries of this matrix represent the esti-
mated covariance between item j and k. These can be converted into a partial correlation
matrix and visualized in an undirected contemporaneous network. To gain insight into the
group- and individual differences in emotion dynamics over time, the main focus of this study
was on the regression coefficients and the associated directed network. In addition, the covari-
ance matrix was estimated and the associated undirected network inspected. To calculate the
partial correlation matrix, the inverse of the covariance matrix was taken, resulting in the so
called precision matrix (see [19]), which was rescaled to a partial correlation matrix [31]. All
VAR models were run with time lag 1. In the population-level analysis, data from persons are
treated as replications from the same population (i.e. the model is a constant coefficient model
(32]).

In addition to the sparse VAR-based models, population-level networks were also estimated
with the multilevel approach presented by Bringmann et al. [16]. In this multilevel approach,
univariate multilevel regression models are fitted to each emotion variable, using the lagged
values of all other emotion variables as predictors. The models were estimated using the Ime
function of the R package nlme. Emotion scores were person-mean centered in advance. Ran-
dom slopes were included for each variable in the model. The need to include a time trend was
tested by comparing models with and without time trend (average BIC across univariate mod-
els). Models without time trend were favored by the BIC comparisons. Mimicking the Bring-
mann et al. [16] code was not completely possible, as having 14 items meant that we had to
specify a parsimonious random effect covariance structure to get the Ime function to run at all
(independent vs. unstructured covariance structure).

All above described analyses were run treating the overnight lag similarly to the other time
lags in the dataset. By using this approach, one assumes that the overnight lag is comparable to
the in-day time lags (e.g. morning-afternoon), which may not be the case. Therefore, we also
reran the multilevel analyses with the overnight lag set to missing, to investigate the effect of
including vs. excluding the overnight lag. This was only done with the multilevel approach
because this approach has been most widely used to previously analyze diary data and is capa-
ble of handling missing data points.

Analyses of the population networks. After network estimation in the healthy and MDD
groups, the resulting networks were compared on several aspects. First, incoming and outgo-
ing edges were investigated by looking at the in- and out-strength of each node. The in- and
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out-strength of a node is computed by summing the absolute values of in- and outgoing edge
weights, respectively. The nodes (emotions) with the highest in- and out-strength were then
compared between groups by means of visual inspection. Third, the degree of connectivity was
compared between the healthy and MDD groups. This was done by considering network den-
sity, which is defined as E/(V* (V- 1)) where E is the number of edges and V'is the number of
nodes [33]. Autoregressive effects were not included in this density measure, but a variant that
does include autoregressive effects was also computed. Using a Monte Carlo permutation test
[34] it was investigated whether the two group networks differed significantly in terms of net-
work density. In this test, the original group members were repeatedly reshuffled (30,000
times) into two new groups, after which the network density was recomputed. Plotting the his-
togram of the resulting differences indicates how ‘extreme’ the density difference in the origi-
nal data is compared to what would be expected based on random variation alone. This
permutation test was performed in each imputed dataset and the results were averaged.
Analyses of the individual networks. Individual networks were estimated using the
same procedures as above, but now separately for each individual. After fitting the individual
networks, it was investigated if and to what extent variations in network density across individ-
uals were related to having an MDD diagnosis, as previous studies suggested that a depressed
state may be characterized by more highly connected emotion networks than a healthy state
[15, 17, 18]. In addition, to gain more insight into other possible determinants of inter-indi-
vidual network differences, the associations between subjects’ network densities and baseline
neuroticism, BDI scores, and mean NA levels were analyzed with univariate linear regression
analyses. The association between network density and BDI score was analyzed per group,
because the BDI score was also used as an inclusion criterion, leading to a clear design-based
distinction in BDI sum score between the groups. Regression models with NA and neuroti-
cism, respectively, as the independent variables were run in both groups combined. All prepro-
cessing, missing data imputation and statistical analyses were performed in R (version 3.2.0.)
All used scripts are available from the first author.

Results
Sample descriptive information

Demographic information about the MDD and healthy groups is shown in Table 1. The
groups did not differ on any of the baseline characteristics except the BDI score and medica-
tion use. The mean level and standard deviations of each item per group is shown in the sup-
plementary S1 Table. The healthy group scored significantly lower on the negative emotions
and higher on the positive emotions compared to the depressed group. Within-person stan-
dard deviations of almost all negative emotions were significantly smaller in the healthy group
compared to the depressed group (see S2 Table). As regards the positive emotions only one
item had a significantly smaller within-person standard deviation in the healthy group.

Population networks

The results of the sparse VAR analyses in the MDD and healthy groups are shown as longitudi-
nal networks in Fig 1. The MDD group network was characterized by a lower mean in- and
out-strength across nodes than the control group network (see Table 2) and also showed less
variability in in- and out-strength across nodes (lower standard deviations).

The item-specific in- and out-strengths for both population networks are shown in Fig 2.
Inspection of Fig 2 shows that, overall, the in- and out-strength were larger for the control net-
work nodes. The four nodes that had the highest out-strength in the control network were
’Anxious’, Irritated’, ’Guilty’ and "Happy’. In the MDD group, the four nodes with the highest
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Table 1. Demographic and clinical characteristics of MOOVD participants.

Depressed (n = 27) Non-depressed (n = 27)
Age, years (sd) 34.7 (9.9) 34.0(9.0)
Female, n 20 20
BMI, kg/m? (sd) 24.2 (6.0) 22.5(2.6)
Smoker, n 7 6
Level of education, n
Low 0 0
Middle 14 13
High 11 13
Missing 2 1
Employment, n
Employed 8 14
Student 6 8
Unemployed 8 3
Other 4 2
Missing 1 0
BDI score (baseline) (sd) 31.3(10.0) 2.3(2.7)
Medication use, n 17 3
Antidepressants use, n 14 1

Note: BMI = Body Mass Index, BDI = Beck Depression Index.

https://doi.org/10.1371/journal.pone.0178586.t001

MDD

S O &
©

()
@eé

Healthy control

Fig 1. Population networks for the MDD group (left) and control group (right). The networks show longitudinal associations between 14
emotion items. Green and red arrows correspond to positive and negative regression coefficients, respectively. An arrow being more opaque
means a stronger connection, i.e. representing a larger regression coefficient.

https://doi.org/10.1371/journal.pone.0178586.9001
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Table 2. Mean in- and out-strength for the population networks.

MDD network Control network

In-strength Out-strength In-strength Out-strength
Mean 0.11 0.11 0.27 0.27
Standard deviation 0.07 0.12 0.12 0.32
Median 0.09 0.07 0.24 0.13
Min 0.03 0.00 0.09 0.00
Max 0.28 0.41 0.47 0.80

https://doi.org/10.1371/journal.pone.0178586.t002

out-strength were ’Cheerful’, 'Restless’, 'Happy and ’Anxious’. The four affective items with
the highest in-strength in the MDD network were "Enthusiastic’, Confident’, “Tense’ and ’Satis-
fied’. In the control network, "Tense’, and "Depressed” had the highest in-strength. Taken
together, these results show that the nodes in the control network had a stronger average tem-
poral association with their neighboring nodes compared to the nodes in the MDD network.

InStrength

OutStrength

Tense 1
Talkative -
Satisfied 4
Restless -

Irritated 4
Happy 7
Guilty 1
Enthousiastic -
Energetic 1
Distracted -
Depressed A
Confident 1
Cheerful 4

Anxious

type
—o— Control

—e— MDD

00 01 02 03 04 0500 0.3
Fig 2. ltem-specific in- and out-strengths for the population networks in the MDD and control groups.
X-axis values indicate the mean item-specific in-strength and out-strength for the MDD group (blue) and the

control group (red).

06 09 1.2

https://doi.org/10.1371/journal.pone.0178586.9002
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Table 3. Population-level density values for the MDD and Control group networks, from different model procedures.

Method Preprocessing Density definition MDD Control
Original analyses

Sparse VAR Detrending + Transformation (group-wise) #Edges (without ar) 0.28 0.40
Sparse VAR Detrending + Transformation (group-wise) #Edges (including ar) 0.28 0.38
Sparse VAR Detrending + Transformation (group-wise) Average 0.02 0.03
Comparison with the multilevel approach

Multilevel Person-mean centering #Edges 0.21 0.15
Multilevel Person-mean centering Average 0.04 0.03
Multilevel Person-mean centering + Night lag excluded #Edges 0.15 0.10
Multilevel Person-mean centering + Night lag excluded Average 0.02 0.01
Multilevel with our preprocessing steps

Multilevel Detrending + Transformation (group-wise) #Edges 0.24 0.31
Multilevel Detrending + Transformation (group-wise) Average 0.05 0.05
Multilevel Detrending + Transformation (per individual) #Edges 0.14 0.11
Multilevel Detrending + Transformation (per individual) Average 0.03 0.03

Note. Sparse VAR: Sparse vector autoregressive approach as described by Abegaz and Wit, 2013.

Multilevel: Univariate multilevel regression approach as described by Bringmann et al., 2013.

Detrending: subtracting a smoothing spline from each series.

Transformation: normal quantile transformation as described in Bogner et al., 2012.

Detrending and transformation were done on imputed series, because of estimation difficulties with missing data.
#Edges in sparse VAR approach: network density = (# remaining edges)/(# possible edges)

#Edges in multilevel approach: network density = (# significant edges)/(# possible edges)

Average density in sparse VAR approach: network density = average of absolute edge weights of remaining edges.
Average density in multilevel approach: network density = average of all absolute edge weights.

All density measures include autoregressive (ar) effects, unless otherwise indicated.

In bold: highest densities of the two groups, for ease of comparison.

https://doi.org/10.1371/journal.pone.0178586.t003

Comparing network density across groups

The difference in network density between the two groups in the original data configuration
was -0.12 (MDD group: 0.28, healthy group: 0.40), meaning that the network density was
higher in the healthy group than in the MDD group (see Table 3). Averaging over the imputed
datasets, the graph density difference was found to be in the bottom 3% of all graph density dif-
ferences found in the permutation test. This indicated that the observed difference in density
between the networks of the MDD and healthy groups was statistically significant. When auto-
regressive effects were included, the densities were 0.28 for the MDD group and 0.38 for the
healthy group. The undirected networks of partial correlations between the residuals of the
VAR models, reflecting the contemporaneous associations between the emotions, are shown
in S1 Fig. Inspection of these figures shows that there was a higher number of connections in
the MDD group than in the healthy control group.

Individual networks

In Fig 3, within-individual longitudinal networks are shown for 4 randomly selected persons
from each group. Visual inspection of the network figures revealed strong heterogeneity in
network characteristics across subjects. Next, the mean in-strength and out-strength were cal-
culated for each subject’s network nodes. In the complete sample, the mean in-strength ranged
from 1.13 to 1.97 and the mean out-strength ranged from 1.21 to 2.85 across subjects. In the
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MDD Healthy Control

Fig 3. Individual networks for MDD patients and controls. Networks of 4 individuals from the MDD group (left) and 4 individuals from the control
group (right). Tlk = Feeling talkative; Nrg = Feeling energetic; Tse = Feeling tense; Anx = Feeling anxious; Ent = Feeling enthusiastic; Cnf = Feeling
confident; Dst = Feeling distracted; Rst = Feeling restless; Irr = Feeling irritated; Stf = Feeling satisfied; Hpp = Feeling happy; Dpr = Feeling
depressed; Chr = Feeling cheerful; Glt = Feeling guilty.

https://doi.org/10.1371/journal.pone.0178586.9003

MDD group, the mean in-strength ranged from 1.14 to 1.97 and the mean out-strength ranged
from 1.21 to 2.85. In the healthy group, the mean in-strength ranged from 1.13 to 1.81 and the
mean out-strength ranged from 1.21 to 2.11. This suggested that network connectivity differed
strongly across individuals and that these differences were not explained by top-down defined
diagnostic group (MDD or control); regressing graph density on the group label revealed no
statistically significant difference between the groups (with an estimate of -0.005, s.e. = 0.023,

p = 0.81). In- and out-strength of individual networks was on average four times higher com-
pared to the population networks.

Determinants of network density

In the pooled data, univariate regression analyses with each individual’s graph density as
dependent variable and neuroticism as independent variable showed no significant associa-
tions (coefficient = -0.003, s.e. = 0.009, p = 0.30, 95% CI = -0.009 to 0.002). Also, NA score was
not significantly associated with network density (coefficient = 0.003, s.e. = 0.003, p = 0.30,
95% CI = -0.002 to 0.01). The association between baseline BDI score and graph density was
analyzed in the two groups separately, and was non-significant in both cases (in the MDD
group: coefficient = -0.0006, s.e. = 0.002, p = 0.743, 95% CI = -0.004 to 0.003; in the control
group: coefficient = 0.002, s.e. = 0.006, p = 0.723, 95% CI = -0.004 to 0.003).

Comparison with the multilevel approach to dynamic networks

The population-level results of this paper are in striking contrast with previously published
work on this topic [15, 17, 18], which could be due to the different analytic approach. We
addressed this by comparing the results of the abovementioned population-level analysis with
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results from a multilevel approach as used in these previous papers and described by Bring-
mann et al. [16]. Previous studies using the multilevel approach also used a different definition
of network density than the one used in the current paper, namely, the average absolute edge
strength of the network (using all edges, also the non-significant ones). Applying this density
definition to the results from the multilevel models, we obtained a graph density of 0.04 for the
MDD network and 0.03 for the control network. Applying our own definition of network den-
sity (the number of edges in the network divided by the number of possible edges) to the mul-
tilevel data, we obtained a graph density of 0.21 for the MDD network and 0.15 for the control
network (see Table 3). So, both density measures indicated that the MDD network was denser
than the control network when we used the multilevel approach. Applying Bringmann’s defini-
tion of network density to the networks obtained from our sparse approach, we got a lower den-
sity for the MDD network (0.02 for MDD vs 0.03 for control), in line with our original results
(#edges: 0.28 for MDD and 0.38 for control). So, both density measures indicated that the con-
trol network was denser than the MDD network if we used the sparse VAR approach. When we
used our preprocessing method together with the multilevel approach, the network density was
also higher in the control group (#edges: 0.24 for MDD and 0.31 for control); while average den-
sities were equal (0.05 and 0.05, respectively). This suggests that the discrepancy in the results
from the two approaches was due to differences in preprocessing rather than to differences in
modeling strategy. Further analyses showed that an important part of the discrepancy could be
explained by the fact that we preprocessed the data at the level of the groups in our population-
level analyses. When we applied our preprocessing method at the level of the individual and
used the multilevel approach, a slightly higher density in the MDD group (#edges: 0.14 for
MDD and 0.11 for control) or equal densities (average: 0.03 for MDD and 0.03 for control)
were found, depending on the density definition. This suggests that our normal quantile trans-
formation and detrending strategy also explained part of the discrepancy.

The effect dropping the overnight lags

The multilevel analyses were also run with the overnight lag set to missing (see Table 3), using
person-mean centering as preprocessing step. The density measures were lower than for the
networks estimated in the full data, with higher density in the control group than in the MDD
network.

Discussion

The current study used a VAR-based regularized network method to enable an investigation
of how emotions are associated with each other over time within persons. Population-level
analyses indicated that the temporal emotion network of the healthy group was significantly
more strongly connected (higher density) than the network of the MDD group. This difference
was also evident from the mean in- and out-strengths that were calculated for both population
networks: nodes in the healthy group networks had stronger temporal associations with their
neighbors than their counterparts in the MDD group network. The individual-level network
analyses suggested that there was a very high level of heterogeneity across subjects in the char-
acteristics of their networks. Importantly, variability in individual network density was not
explained by group membership (MDD vs. healthy). Moreover, network density was not asso-
ciated with baseline BDI, NA or neuroticism scores. Furthermore, another difference between
the individual and population networks was the fact that in- and out-strength tended to be on
average four times larger in the individual network. The reason for this finding is as of yet
unknown to us. Interestingly, the sparse VAR-based results differed from results obtained with
the multilevel approach that has been used previously to estimate longitudinal networks [16].
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Networks based on the latter approach showed higher density in the MDD group than in the
healthy group. Furthermore, estimated network densities differed considerably depending on
the used preprocessing steps. These results are discussed in more detail below.

The results of the current study have important methodological implications. First, the
apparent discrepancy between the population-level and individual-level results implies that at
least one of the two is not accurate. The used sparse VAR approach is a constant coefficient
approach, which relies on the assumption that individuals are similar to each other as regards
the studied parameters, but the individual-level analyses suggest the opposite. The individual-
level results may reflect true heterogeneity, but may also reflect noise. It has been suggested
that a unit-by-unit approach is a preferable when between-subjects heterogeneity is large and
the number of time points is high, but that a population-level approach (with either constant,
fixed or random effects) is more accurate in case of homogeneity and short or noisy time series
[32], but it is hard to tell whether there is true heterogeneity or not, and whether fluctuations
are real variations or just noise. However, based on the fact that individual differences are
ubiquitous in the literature, we are inclined to think that the constant coefficient approach of
the sparse VAR approach is too limited.

The question may then arise why we did not simply use a random effects multilevel
approach, as was done in previous studies on dynamic networks [15-18]. The main reason
was that the sparse VAR approach allows for estimation of networks with multiple nodes. In a
multilevel model with random effect variances and covariances for all parameters, the number
of parameters grows rapidly with increasing number of nodes, leading to estimation problems.
Indeed, when we tried to apply the multilevel approach to our data we had to use a very parsi-
monious random effect structure to get the model running at all. Another advantage of the
sparse VAR approach is that it is a vector model, meaning that dependencies in the error struc-
ture due to contemporaneous associations across the variables can be estimated directly during
the estimation process. The multilevel approach consists of separate univariate regression
equations, which implies that the dependencies between the error terms of the different equa-
tions cannot be estimated directly. This potentially leads to bias in the estimated coefficients
(see also the appendix of [16]). Our results showed that the contemporaneous associations
were many, especially in the MDD group, so it is not unlikely that the fact that these are not
directly estimated in the multilevel models will bias the results. Nevertheless, univariate regres-
sion equations can, under certain circumstances, produce a network with a correct structure,
even though the regression weights will be biased [35]. This would imply that, when investigat-
ing the characteristics of a network derived from multilevel analyses, it is safer to focus on the
absence/presence of edges rather than the edge weights (see also below).

The obvious advantage of the multilevel approach is that random effects can be included in
the model, so potential heterogeneity in the effects can be accounted for. Population-level find-
ings from our sparse VAR approach were in striking contrast with previous findings from a
multilevel approach [15, 17, 18]. These previous studies reported that higher connectivity in
emotion networks was related to higher disorder severity, and this was explained with the
notion that higher connectivity leads to positive feedback loops and thus increasing and/or
persisting emotions. The sparse VAR results did not align with this theory: network connectiv-
ity was higher in the healthy group and no associations between the individual network densi-
ties and severity indicators were found. When we repeated our analysis using the multilevel
approach, this yielded opposite results: now network density was higher in the depressed
group, replicating the previous multilevel studies.

Thus, it seems that methodology plays a big role in determining what kind of conclusion
we draw about the density of population networks. Applied to the same data, the two ap-
proaches yielded opposite conclusions. Our additional analyses showed that the discrepancy in
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the results was most likely due to differences in preprocessing methods, rather than to differ-
ences in modeling strategy. Higher density in the control group was also found with a multi-
level approach, when we used our original preprocessing method. However, applying our
preprocessing method at the level of the individual instead of pooled over individuals of the
groups, the multilevel approach showed an equal density or a slightly higher density in the
MDD group, depending on the density definition. This shows the importance of preprocessing
at the proper level when groups are heterogeneous, and thus should probably be seen as a
further invalidation of our population-level results. Other aspects of our preprocessing also
seemed to explain some part of the discrepancy, for example whether or not the data were
transformed. Some previous studies applied linear regression techniques to variables that were
probably rather skewed. Especially in ESM data of healthy participants, floor and ceiling effects
are often present. This may bias the results; a recent study showed that the higher density in
the MDD group reported in a previous study was eliminated if a generalized approach was
used to deal with the skewness of the data [36]. Our variables were also skewed, especially

the negative items in the healthy group. Our normal quantile transformation was an attempt
at alleviating this problem. Indeed, the multilevel models without this transformation step
returned skewed distributions for the residuals of several of the emotions, especially in the
healthy group. The distribution of the residuals of the sparse VAR models better resembled the
normal distribution, although distributions were still not optimal for some items. Future work
may help to find still better ways to deal with non-normal data. Another preprocessing aspect
is if and how the data are detrended. We subtracted a smoothing spline from each of the series
to ensure stationarity, whereas in the multilevel approach, models with and without a trend
variable were compared using the BIC. All in all, it seems that more work is needed to deter-
mine the optimal way of preprocessing network data, especially when they are skewed. Until
that time, inferences about the link between increased emotion-network connectivity and
increased severity should be made with caution, as the methods used have varied considerably
and appear to have great influence on the outcomes.

In this study also a different definition of graph density was used. Previous studies used the
average of the absolute values of all edges, whereas we used the number of remaining edges in
the penalized models divided by the number of possible edges. This difference, however, did
not explain the discrepancy in the results from the sparse VAR approach and the multilevel
approach, although the values were of a different order of magnitude. We chose the latter defi-
nition because it is a common definition of graph density in a directed network in the field
of applied mathematics (e.g., [33]). Obviously this does not make our choice of density mea-
sure correct in itself and we think it is still a matter of debate which definition of density is the
most appropriate for our field. We think both definitions have their advantages and disadvan-
tages. Averaging the absolute values has the disadvantage that also non-significant values are
included while such edges may merely represent noise/spurious associations. Averaging only
the significant values would resolve that problem but would lead to other peculiarities: if only
one edge with a large estimate would be significant, average density would be very large. Our
own density measure has the advantage that non-significant (and thus potential spurious)
associations are not included, but has the disadvantage that the size of the associations is not
accounted for. Moreover, the penalized approach may eliminate many small-sized edges,
which may be relevant from a substantive point of view. It is still unclear what is most impor-
tant as regards density: the number of connected nodes, the size of the connections, or both.
One could argue that using a density measure based on the number of edges is less affected by
biased coefficient estimations. Therefore, from a pragmatic perspective, using such a density
measure could be particularly useful when a network is estimated based on the multilevel
approach, which can have biased edge weights, as discussed above.
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The obvious problem of our sparse approach is that it is a constant coefficient model, in
which homogeneity in the effects across individuals is assumed. This is probably not very real-
istic, as also our individual-level analyses suggest. The possibility to include random effects to
account for such heterogeneity is the great advantage of the multilevel approach. The problem
with the multilevel approach, however, is that models become easily overparameterized with
higher number of nodes. Thus, it seems that a combination of the two approaches is needed:
an approach that includes both a regularization method and a method to account for heteroge-
neity in the effects. A Bayesian approach, as has recently been advanced [37] may also be a
fruitful road to explore. Hopefully, future research can yield such improved methods.

The current study also illustrated the possibility to generate longitudinal emotion networks
for individual subjects using VAR-model estimations. Because the sparse VAR model uses reg-
ularization, this approach can also work with short time series (i.e. little data per model param-
eter) and many nodes. The networks varied strongly across individuals. If these results truly
reflect reality, this has clear implications for the generalizability of population-level networks
to individuals within these populations. For instance, based on the population-level networks
in this study, one could have expected the healthy group members to show more highly con-
nected individual networks than the MDD group members (or vice versa, when a multilevel
approach was used). However, no such relationship between individual network characteris-
tics and group membership was seen. Thus, generalizability of population-level network mod-
els to individuals is likely to be limited [38]. From an application perspective, the possibility
to correctly estimate n = 1 networks opens up a whole range of new possibilities. In research,
estimation of individual networks allows network characteristics (e.g. density, mean in/out-
strength) to be treated as subjects’ attributes that vary within the sample and to be used as vari-
ables in (multivariate) analyses. In applied settings, well-estimated, empirically-based network
models could be of particular interest to those working in e-health and precision medicine.
For instance, the method could be used to estimate a personalized network model based on
diary data collected by a patient using a smartphone app (or similar device). Such a network
can generate feedback for the patient about the influences that particular emotions/feelings
have on each other in his or her daily life. Some preliminary work has already been done on
such automated feedback systems [39, 40] and the presented methods could help to develop
these systems further.

The focus of this study was on the longitudinal (time-lagged) associations between emo-
tions. The advantage of the VAR approach is that it is possible to estimate networks that purely
reflect the dynamic associations between emotions over time. By capturing all contemporane-
ous covariances between the emotions in the error covariance matrix of the VAR model,
observed longitudinal associations between t and t-1 that are actually explained by contempo-
raneous covariances between emotions at t-1 and autocorrelations between t and t-1 are elimi-
nated from the longitudinal network. This is an important feature of the VAR model as it
helps to better distinguish the potential order of effect in the relationships between emotions
[41]. Nevertheless, it can be argued that these models are incomplete. Often, contemporaneous
associations between mental states assessed with diary methods are substantial and this was
also the case in our study, especially in the MDD group. The contemporaneous associations
reflect to what extent emotions tend to be experienced together, which may be due to shared
measurement variance, a common cause, or interactions among the emotions at shorter time
intervals. There are approaches in which the contemporaneous associations are included in
the model, e.g. structural VAR models [42] and uSEM models [43], but these models cannot
be identified unless some a priori restrictions are imposed [41]. If there is a strong theory guid-
ing choices about the ordering of the contemporaneous associations, these approaches may be
preferable.
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Limitations

Although the current study had several strengths, including the penalized approach, the con-
siderable length of the time series, the efforts taken to appropriately handle non-normality and
missing data, and the possibility to relate network characteristics to patient characteristics, the
results should also be interpreted in the light of several limitations. First, the emotion items
were scored on a 7-point scale but the used model could only treat them as continuous, which
could have influenced the results to some degree. Second, only VAR models with time lag 1
were estimated to keep the models as parsimonious as possible. Although the method can also
be used with time lag 2, this would require estimation of numerous additional parameters.
Third, the power to detect meaningful associations between the individual network densities
and severity measures may have been limited due to the rather small sample size. Fourth, the
items used to assess PA and NA are not necessarily comparable to depression symptoms,
because symptoms, as per definition, should persist for more than two weeks, and we did not
assess problems like suicidality, eating problems and sleeping problems, which may play an
important role in MDD. Fifth, the interval between the evening and morning measurements
was longer than the other measurements, which may have introduced additional noise in the
data. Sixth, the coefficients used are raw coefficients. It has been shown that standardizing
coefficients can yield different results [44]. Despite these limitations the current study pro-
vided interesting new starting points for further research in this direction, especially as regards
methodology.

Conclusions

The current study presented a VAR-based method for the estimation of sparse population-
level and individual-level networks of emotion dynamics over time. The population-level
sparse VAR results were in sharp contrast with results obtained from a multilevel approach.
Further, population-level results from both the sparse VAR and the multilevel approach were
in contrast with individual-level results: whereas the population-based analyses indicated that
the within-person emotion dynamics were stronger (sparse VAR) or less strong (multilevel) in
healthy subjects than in MDD patients, the individually estimated emotion networks varied
strongly across persons and showed no association with diagnostic group, severity and person-
ality. This suggests that either the individual networks are unreliable, or that emotion dynam-
ics are highly personal and not related to top-down defined disorder categories and/or severity
constructs. The main conclusion of the study may be that drawing inferences from dynamic
emotion networks should be done with great caution until some consensus is obtained as
regards the preferred methodology.
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