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Graphical abstract
Public summary

- The state of the art for nanotechnology-enabled cancer immunotherapy and the emerging concepts in nano-based

immunomodulation are summarized

- The cutting-edge trends in nano-immunoengineering for metastatic cancers with an emphasis on different nano-
immunotherapeutic strategies are highlighted

- Benefits, challenges, and opportunities of nanoscale immunomodulators and a forward-looking perspective on the
innovative nanotechnology-based tools that may ultimately prove effective at eradicating metastatic diseases are
presented
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A vast majority of cancer deaths occur as a result of metastasis. Unfor-
tunately, effective treatments formetastases are currently lacking due to
the difficulty of selectively targeting these small, delocalized tumors
distributed across a variety of organs. However, nanotechnology holds
tremendous promise for improving immunotherapeutic outcomes in pa-
tients with metastatic cancer. In contrast to conventional cancer immu-
notherapies, rationally designed nanomaterials can trigger specific tu-
moricidal effects, thereby improving immune cell access to major
sites ofmetastasis such as bone, lungs, and lymph nodes, optimizing an-
tigen presentation, and inducing a persistent immune response. This pa-
per reviews the cutting-edge trends in nano-immunoengineering formet-
astatic cancers with an emphasis on different nano-immunotherapeutic
strategies. Specifically, it discusses directly reversing the immunolog-
ical status of the primary tumor, harnessing the potential of peripheral
immune cells, preventing the formation of a pre-metastatic niche, and in-
hibiting the tumor recurrence through postoperative immunotherapy.
Finally, we describe the challenges facing the integration of nanoscale
immunomodulators and provide a forward-looking perspective on the
innovative nanotechnology-based tools that may ultimately prove effec-
tive at eradicating metastatic diseases.

Keywords:metastatic cancer; nanomaterials; immunotherapy; tumormi-
croenvironments; immunomodulators

INTRODUCTION
Despite substantial efforts to develop superior therapies for malignant

tumors, cancer remains the second leading cause of death worldwide. Elim-
inating distal tumors is particularly challenging, leading to high rates of recur-
rence.1–6 Although surgical intervention, radiation therapy, and chemo-
therapy are frequently effective at prolonging the survival of patients with
localized tumors, the prognosis for non-localized tumors is often poor. As
a result, cancers that have spread to distal organs account for over 90% of
cancer-related deaths.7 Two of the biggest challenges in clinical cancer
care are preventing metastasis from spreading in patients treated for local-
ized disease and avoiding recurrence.8 To overcome these challenges, we
must develop better methods to kill tumor cells both broadly and
completely.9,10

Unfortunately, the molecular and cellular mechanisms regulating metas-
tasis remain elusive. It has been recognized that metastasis involves a com-
plex interplay between cancer cells, immune cells, and stromal cells at both
the primary tumor site and sites of metastases.11 From an immunological
perspective, immune evasion is the pivotal step in tumor progression,
enabling tumor cells to escape typical immune surveillance using a diverse
set of strategies.

In particular, intratumoral inflammation and the infiltration of several host
immune cell types,mainly including tumor-associatedmacrophages (TAMs),
ll
regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs),
together with various cytokines and growth factors secreted by cancer cells
or immune cells, are known to promote tumor growth andmetastasis. These
immune characteristics assimilated by tumors jointly promote the dissemi-
nation and colonization of tumor cells from the primary site to the pre-meta-
static niche (PMN), as shown in Figure 1.12–15 Accordingly, with a focus on
counteracting the harmful immunomodulatory effects that solid tumors
exert, immunotherapy for solid tumors aims to stimulate the innate immune
system to generate systemic antitumor immunity that eliminates the primary
tumor, destroys distant metastases, and prevents recurrence.16–21 This ther-
apeutic paradigm has experienced great success in the clinic. In particular,
chimeric antigen receptor (CAR) T cell therapies22,23 and immune checkpoint
blockade, which blocks immune-inhibitory receptors, such as programmed
cell death protein 1 (PD-1) or cytotoxic T lymphocyte antigen-4 (CTLA-
4),24–26 have been the most widely used. However, current clinical immuno-
therapies have not been effective for all patients or all types of cancer due, in
large part, to insufficient immune responses, especially when immunologi-
cally “cold” solid tumors create an immunosuppressive microenvironment
that prevents the host immune system from attacking cancer cells.27,28

Among various attempts to enhance the immune response resulting from
cancer immunotherapies, nanomaterials with unique immunogenicity and
multiple immunomodulatory functions have achieved preliminary suc-
cess.29–39 With the potential to trigger different immune pathways, nanoma-
terials can be used to explore more aspects of tumor immunology, offering
insights on how the immune system recognizes specific markers on tumor
cells and on how immune cells interact with one another.40–50 Compared
with low-molecular-weight immunomodulators, nanoscale immunomodula-
tors exhibit controllable pharmacokinetic behavior and the potential for
enhanced immune activation through synergistic effects due to their unique
size effects and co-loading capabilities resulting from the presence of multi-
ple functional domains, which may be able to overcome barriers to effective
immunotherapy for solid tumors.29,30,51 A diverse set of nanomaterial-assis-
ted tumor treatment strategies have been developed to amplify the benefits
of cancer immunotherapy, which have not only boosted the response at the
primary tumor site at the time of treatment but also elicited systemic and pro-
longed protective effects that prevent tumor metastasis and recur-
rence.3,34,52,53 These successes signal the potential for the expanded use
of nanotechnology in tumor treatment, especially for refractory and recurrent
cancers.

In this review, we discuss the state-of-art and future prospects for nano-
material-assisted immunotherapy in inhibiting tumor metastasis and recur-
rence, including changing immune activity within the primary tumor, acti-
vating the peripheral immune system, interrupting the PMN, and inhibiting
recurrence in situ after surgical resection (Figure 2). The overarching goal
of this review is to convey a comprehensive understanding of the latest
achievements in nano-enabled cancer immunotherapy to deal with tumor
The Innovation 2, 100174, November 28, 2021 1
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Figure 1. The microenvironment promotes metastasis Host immune cells, together with various cytokines and growth factors secreted by tumor cells, immune cells, and
stromal cells, support the dissemination and colonization of tumor cells in the pre-metastatic niche. Note: this figure is modified from Quail and Joyce.15
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metastasis and recurrence, which shows great promise for improving can-
cer survival.

REVERSING THE IMMUNE STATUSOF THE PRIMARY TUMOR
Tumor development is a process that occurs due to a defect in host im-

munosurveillance caused by a series of cancerous escape mechanisms. In
primary solid tumors, the immunogenicity of cancer cell neoantigens is too
weak to effectively stimulate the immune response due to the immunosup-
pressed state of the tumor microenvironment.54–57 Nanomaterials provide
a new way to overcome this barrier to therapeutic efficacy. The accumula-
tion of customized nanomaterials in primary tumors has been shown to alle-
viate the immunosuppressive effect by neutralizing the stealth properties of
cancer cells, thereby enabling the immune system to recognize tumor neo-
antigens and kill tumor cells.30 Furthermore, the activated immune system
may also be able to continue to track and suppress the formation and
growth of distant metastases.

Remodeling the immunosuppressed tumor microenvironment
The characteristics of the tumor microenvironment play a major role in

determining the success of cancer immunotherapies.58,59 It is known that
solid tumors can progressively develop several specific pathways to evade
immuneclearance, including throughamicroenvironmental remodeling pro-
cess known as “cancer immunoediting”. This process imposes selective
pressures within the tumor microenvironment, promoting the aggravation
of cancer. Within this immunoedited environment, a variety of immune
and non-immune cell types cause long-term inflammation and localized im-
mune suppression, enabling malignant cells to split and mutate without
detection and elimination by the host’s immune system.60,61 Specifically,
the intrinsic hyporesponsiveness or anergy of cytotoxic T lymphocytes
(CTLs) impairs their ability to kill tumor cells while extrinsic immunosuppres-
sive cell populations, such as Tregs and TAMs, simultaneously weaken the
immune response. In addition, various inhibitory ligands, such as PD-L1,
further depress immune function. Transforming growth factor b (TGF-b)
2 The Innovation 2, 100174, November 28, 2021
can promote immature T cells to differentiate into Tregs and facilitate the
spreading of tumor cells in advanced stages of cancer. Besides, the
nutrient-catabolizing enzymes, such as indoleamine 2,3-dioxygenase (IDO)
and stimulator of interferon genes (STING) agonist, interfere with the prolif-
eration of effect T cells and help tumor evasion.

To break this rigid condition, nano-immunomodulators have been de-
signed to directly target the immunosuppressive microenvironment, which
can re-open the immune system in situ and inhibit tumor growth. Based
on the migratory capacity of re-activated immune cells, the primary micro-
environment-targeting nano-immunomodulators are also expected to pre-
vent metastasis.

Macrophages represent one of themost abundant populations of immune
cells in the tumor microenvironment, accounting for nearly half of tumor
mass.40,62–65 Although M1 macrophages can inhibit the growth of tumor
cells by secreting NO and other cytotoxic factors, TAMs are mainly, unfortu-
nately, M2 phenotype, which can promote tumorigenesis and malig-
nancy.44,63,64,66–70 Accordingly, repolarizing TAMs from M2 to M1 has
been one of immunotherapeutic strategy. Very recently, Chen and coworkers
constructed a programmable cellular vesicle to combat tumor recurrence
and metastasis after surgery. The hybrid cell membrane nanovesicles
(hNVs) can interact with circulating tumor cells (CTCs) in vascular lumens
and accumulate at the resection site where they block the CD47-SIRPa inter-
actions and repolarize TAMs fromM2 to M1 to kill cancer cells. These nano-
vesicles can also promote the lethality of T cells against malignant cells
through antigen presentation, significantly improving the survival rate of
mice in a malignant melanomamodel by reducing both locoregional relapse
and distal spreading after surgery. In addition, when combined with a STING
agonist, cGAMP-loaded hNVs successfully inhibited relapse after surgery in a
poorly immunogenic triple-negative breast cancer model (Figure 3).71

In addition to TAMs, MDSCs are also involved in generating an immuno-
suppressive microenvironment. These cells can disable the immune func-
tion of T cells and natural killer (NK) cells. To reverse these effects, Shuai
and coworkers designed a nanoregulator with MnO2 particles and PI3Kg
www.cell.com/the-innovation
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Figure 2. Overview of this article Nano-enabled immunotherapy for inhibiting tumor metastasis and recurrence, including changing immune activity within the primary
tumor, activating the peripheral immune system, interrupting the pre-metastasis niche, and conferring immunity to tumor cells to inhibit recurrence after surgery.
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inhibitor IPI549 toalleviatehypoxiawhiledownregulating theexpression level
of immunosuppressive PD-L1 molecules. In parallel, the nanoregulator can
activateMDSCstoaccelerate thepolarizationofTAMstoward theM1pheno-
type and re-activated cytotoxic T cells to halt the proliferation of tumor cells,
which further delayed recurrence and reduced the opportunity of CTCs to
take root in the liver and lung due to the enhanced generation of cancer-sup-
pressive memory T cells.72 Chen et al. reported an anti-inflammatory nano-
fiber hydrogel through the self-assembly of steroid drugs for the local long-
term delivery of anti-PD-L1, which inhibited both primary and distal tumors
by activated T cells.73

Apart from influencing TAMs and MDSCs, NK cell activation is another
strategy being explored to alleviate the immunosuppressive microenviron-
ment. The immune function of NK cells as a specialized innate lymphoid
cell population is independent of major histocompatibility complex (MHC)-
mediated antigenpresentation.74–77 On the one hand, they can exert a natural
cytotoxic function to fight both primary cancer cells and metastases by pre-
venting cell proliferation, migration, and metastatic colonization.78,79 On the
other hand, NK cells can secrete a large number of cytokines to regulate
the immune response and participate in a variety of downstream immune
pathways, such as tumor necrosis factor alpha (TNF-a), interferon-g (IFN-
g), and various interleukins.80,81 Most importantly, compared with other im-
mune cells, NK cells can differentiate abnormal cells from healthy cells and
thus produce more specific antitumor cytotoxicity, which has been reported
in many tumor models and experiments.75 Therefore, NK cells have been
recognized as an appealing target for cancer immunotherapy.82–84

Nano-assisted immunotherapy using several cytokines, such as inter-
leukin-2 (IL-2) and IL-12, has been explored to prevent the progression
and metastasis upon the activation of NK cells.85,86 Irvine and coworkers
developed a combination therapy system with agonistic anti-CD137 and
IL-2 on the surface of PEGylated liposomes.35 Through this liposome-based
therapy, immune stimulators can quickly accumulate in tumors, thereby
inducing the potent activation of NK cells and T cells, which in turn sup-
presses tumor progression in both the primary tumor site andmetastatic le-
sions in the lungs inmice. Similar approaches of nanomaterials-assisted NK
cell activation by cytokines have been extensively developed to treat meta-
static cancers.87–89 Apart from the cytokine-triggered NK cell activation,
ll
some engineered nanomaterials can also activate NK cells through their
intrinsic properties, which can increase the efficiency and reduce the costs
of NK cell activation.90,91 Apart from the direct activation of NK cells, nano-
particles can be also designed to improve the accumulation of NK cells in
tumor sites to increase the therapeutic effect.92

In addition to eliminating tumor cells through utilizing the exogenous
nanomaterials to promote host NK cells, more sophisticated nanoparticles
that can mimic the biological nature of NK have been also developed.93–96

Aryal and coworkers designed a nanomaterial based on an NK cell mem-
brane camouflage-fusion liposome, abbreviated as NKsome, which was
used for targeted tumor immunotherapy to inhibit metastasis.97 In compar-
ison with the conventional nanomaterials, the biomimetic strategy signifi-
cantly decreases the toxicity and thereby improves the safety of nano-assis-
ted immunotherapy.

Overall, remodeling the immune status of the tumor microenvironment
provides a feasible approach for locoregional cancer immunotherapy by alle-
viating the immunosuppressive effects on tumor-associated immune cells.
More importantly, this strategy has the great potential to prevent distant tu-
mormetastasis and recurrence via a systemic anticancer immune response.

Activating immune cells through ICD
In recent years, research has revealed that conventional local therapeutic

approaches, including locoregional thermal therapy, radiotherapy, or chemo-
therapy, not only destroy the primary tumor cells but induce the tumor immu-
nogenic cell death (ICD).98,99 As opposed to the traditional apoptosis, ICD in-
volves a series of special stresses before cell death that can change the state
of tumor cells from non-immunogenic to immunogenic. For example, calre-
ticulin will be exposed on the surface of tumor cells, which can specifically
bind with the CD91 receptor on dendritic cells (DCs) and promote the uptake
of antigens. ATP released as a solublemediator helps recruit monocytes and
activatesDCs. The release of high-mobility group box 1, which combineswith
antigen presenting cells (APCs) through various receptors, such as TLR 4,
and facilitates antigen processing and presentation.99 These molecular
events consequently activate the antitumor immune responses, even exhib-
iting the ability to kill distant tumor cells out of the direct reach of treat-
ment,100 as shown in Figure 4. However, the immune responses stimulated
The Innovation 2, 100174, November 28, 2021 3
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Figure 3. Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis (A) Schematic displaying hNVs
consisting of engineered SaV-C-NVs, M1-NVs, and P-NVs. (B) Schematic displaying the interaction between hNVs and CTCs in the blood, accumulation in the postsurgical
tumor bed, repolarization of TAMs toward an M1 phenotype, and blockage of the CD47-SIRPa “don’t eat me” pathway, which promotes the phagocytosis of cancer cells by
macrophages and boosts antitumor T cell immunity. (C) Schematic displaying the treatment implemented in a mouse model of cancer recurrence after incomplete
resection. (D) In vivo bioluminescence imaging of B16F10 tumor recurrence in different treatment groups. Reproduced with permission from Rao et al.71 Copyright 2020
Nature Publishing Group.
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by ICDare not usually strong enough to evoke a potent systemic effect inme-
tastases or prevent tumor recurrence. Thus, nanomaterials have been de-
signed to amplify the immune responses to conventional cancer
therapeutics.32

Locoregional thermal treatment is the most commonly used approach to
induce ICD.101,102 For example, an artificial enzyme, i.e., Cu2-xTe that could
resemble the similar catalysis function as glutathione oxidase (GSHOx) and
peroxidase, and were used to catalyze immunotherapy. Owing to the NIR-II
photothermal effect, the Cu2-xTe artificial enzyme catalyzed the cascade of
4 The Innovation 2, 100174, November 28, 2021
reactions that continuously elevated intratumoral oxidative stress and
induced ICD, thereby eradicating the primary tumor. More importantly, this
artificial enzyme continuously reversed the immunosuppressive state of
the tumor microenvironment to stimulate systematic antitumor immunity,
combat distal metastasis, and prevent recurrence. Moreover, effector mem-
ory T cells were largely generated after treatment to suppress tumor
relapse.103 In another study, Wang and coworkers employed systemically
administered, erythrocyte membrane-coated 2D polypyrrole nanosheets as
an NIR-II photothermal transducer, which resulted in synergistic
www.cell.com/the-innovation
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Figure 4. Tumor ICD As a result of endoplasmic reticulum
(ER) stress and autophagy, dying cancer cells respond to
therapeutic stress by exposing calreticulin (CRT) on their
outer membrane at the pre-apoptotic stage and releasing
ATP and the nuclear protein high-mobility group box 1
(HMGB1) during apoptosis. CRT, ATP, and HMGB1 bind to
the receptor of immature dendritic cells (iDC), which facili-
tates the recruitment of iDCs into the tumor bed (stimulated
by ATP), the engulfment of tumor antigens by iDCs (stimu-
lated by CRT), and antigen presentation to T cells (stimulated
by HMGB1). Activated CTLs will secret IFN-g, which even-
tually leads to the inhibition of therapy-resistant tumor cells
and distal tumor cells that therapeutics have not directly
reached.
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photothermal and immunological responses, favorable for preventingmetas-
tasis and prolonged survival in mice.104 In addition to photothermal therapy,
magnetothermal therapy is another feasible approach to induce ICD. Liang
and coworkers designed novel ferrimagnetic iron oxide nanorings with a vor-
tex domain that showed the ability to mediate mild magnetic hyperthermia
leading to calreticulin expression in 4T1 breast tumor cells and promoting
phagocytic uptake of tumor cells by immune cells. This mild thermotherapy
can elicit large increases in CTLs infiltration in distal tumors and trigger
immunotherapeutic effects by sensitizing tumor cells to PD-L1 blockade.105

In addition to local thermal treatment, nano-assisted radiotherapy is
another therapeutic strategy that can cause tumor ICD and potentially inhibit
distal metastases. In fact, the abscopal effect of radiotherapy has already
been observed in some clinical cases.106,107 That is, radiotherapy cannot
only kill the irradiated tumor cells but also the surrounding non-irradiated tu-
mor cells, more formally known as the radiation-induced bystander effect
(RIBE), which is triggered by the immune response to dead tumor cells.108

However, this immune response may be insufficient to elicit an attack on
distal metastases due to the immunosuppressive microenvironment in the
primary tumor. Fortunately, the RIBE can be significantly amplified by the
combination of nano-assisted immunotherapy. For example, Liu and co-
workers developed a new radioisotope therapy through the combination of
131I-Cat, a natural polysaccharide alginate, and synthetic cytosine phospho-
guanosine (CpG). After intratumoral injection, the polysaccharide quickly
formed hydrogels due to the presence of endogenous Ca2+, fixing 131I-Cat
at the tumor site, which enabled the complete elimination of the primary tu-
morwith low-dose radiotherapy. Importantly, with the help of CpG, an immu-
nostimulatory oligonucleotide, the systemic antitumor immune response
was effectively triggered by the generation of tumor-associated antigens
(TAAs)after locoregional radiotherapyofprimary tumors,whichsuccessfully
prevented metastasis and recurrence when combined with checkpoint
blockade therapy.109 Similarly, they designed core shell-structured nanopar-
ticles based on poly(lactic-co-glycolic) acid (PLGA) shell encapsulating awa-
ter-soluble catalase that catalyzes the production of O2 from H2O2. These
nanoparticles significantly improved radiotherapy by mitigating hypoxia to
provide amore hospitable environment to immune cells that can then detect
TAAs that are present following radiotherapy-induced ICD. By loading Imiqui-
mod (R837), an adjuvant, in the PLGA shell, a strong antitumor immune
responsewas achieved, effectively inhibiting tumormetastasis and prolong-
ing the survival ofmicewhencombinedwithCTLA-4 (Figure 5).110 In another
ll
work, Lin and coworkers combined radiodynamic therapy with checkpoint
blockade immunotherapy based on a nanoscale metal-organic framework.
It cannot only kill primary tumor cells through X-rays but also trigger an ab-
scopal effect to kill distal tumors in a mouse model of colorectal cancer.111

Several nano-assisted chemotherapeutic approaches can also induce a
systemic immune response through thegenerationofTAAswhenkillingcan-
cer cells,which can beemployed topreventmetastasiswhencombinedwith
immunotherapy. In previous studies, lots of conventional or clinically used
chemotherapeutic drugs such as doxycycline (DOX), docetaxel, paclitaxel,
and several mAb have been proven to elicit ICD process,112 which has large
potential to trigger a strong systemic immune response if combined with
nanotechnology.113–115 Recently, Chen and coworkers introduced a cocktail
therapy including an extracellularmatrix (ECM) destroyer as a component to
improve immunecheckblockade (ICB) therapyandchemotherapy.This ther-
apy strategywas realized by utilizing two different nanomaterial—DOXnano-
particles and nanoparticles containing plasmidsencoding shPD-L1 and ahy-
aluronidase generator. These two nanoparticles could be stimulated by the
acidic conditions at the tumor site. Through this nano-assisted cocktail
immunotherapy, T cells were activated through DOX-triggered tumor ICD,
while the immunosuppressive tumor microenvironment was remodeled to
attain an immune-active phenotype. After treatment, the number of CD8+

T cells was increased in the peripheral system, thus maintaining long-term
immunological memory that inhibited cancer recurrence.116 This cocktail
strategy integrating multiple therapies may be an emerging trend because
theantitumor immune response isacoherentprocessconsistingofcomplex
immunoreactions.

Interestingly, without the chemotherapeutic drugs, some nanomaterials
can also achieve similar therapeutic effects owing to their intrinsic physical
and chemical characteristics. For example, Zhang and coworkers developed
phospholipid-coated Na2S2O8 nanoparticles. Upon the decomposition trig-
gered by the tumormicroenvironment, these nanoparticles can produce toxic
reactive oxygen species to kill cancer cells through inducing the ICD process
and in turn trigger the systemic antitumor immunity, which can be potentially
employed to inhibit tumor metastasis and recurrence.117

Nanomaterials can be designed to have the ability to not only remodel the
immunosuppressive state in solid tumors but also directly kill tumors through
ICD. Chen andTao jointly synthesized triangular Te nanostars, knownasGTe-
RGD, which exhibited excellent radiotherapy-enhanced anti-PD-1 ICB thera-
peutic effects. In mouse breast cancer models, GTe-RGD nanostars not
The Innovation 2, 100174, November 28, 2021 5



Figure 5. Nanoparticle-enhanced radiotherapy to trigger robust cancer immunotherapy for metastasis prevention (A) Antitumor immune response induced by PLGA-
R837@Cat radiotherapy and checkpoint blockade to inhibit metastasis and recurrence. (B) Inhibition of tumor metastasis by radiotherapy with PLGA-R837@Cat plus
aCTLA4 therapy in a 4T1 orthotopic breast tumor metastasis model. (C) Morbidity-free survival of different groups of mice with metastatic 4T1 tumors after various
treatments. (* P < 0.05). (D) In vivo bioluminescence images showing the spreading and growth of firefly luciferase-4T1 (fLuc-4T1) cancer cells in different groups of mice
after eliminating their primary orthotopic tumors. Reproduced with permission from Chen et al.110 Copyright 2019, Wiley-VCH.
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only eliminated the in situ malignant tumors cells in combination with X-ray
irradiation but also initiated a strong antitumor immune response by
activating T cells with anti-PD-1, thereby successfully inhibiting the formation
of distant tumors. This strategy improved the anticancer efficacy owing
to the synergy between radiotherapy and nanomaterial-enhanced
immunotherapy.118

These studies help to illustrate the enormous potential of combining tu-
mor ICD with nano-assisted immunotherapy for the prevention of tumor
growth and metastasis. In fact, this tumor-killing strategy is one of the
most common paradigms exploited when combining immunotherapy with
other antitumor approaches because it can overcome the weakness of indi-
vidual immunotherapies. As a result, combination therapy presents a great
opportunity for the clinical translation of nanomaterial-assisted
immunotherapies.

HARNESSING PERIPHERAL IMMUNE CELLS
Immune cells are located in peripheral immune organs, including lymph

nodes, spleen, skin, and the vascular system.119 Immune cells in peripheral
immune organs often consist ofmature lymphocytes, APCs, andmonocytes,
which play important roles in producing immune responses under the stim-
ulation of foreign antigens.120

Cancer vaccines targeting DCs
Among peripheral immune cells, DCs are the most potent APCs and can

induce powerful antigen-specific CTL responses. Cancer vaccines based
on DCs hold great potential for tumor prophylaxis and treatment,121–123

which have been proven to effectively inhibit tumor metastasis and recur-
rence. Traditionally, the preparation of DC vaccines is a complicated process.
DC precursors have to be isolated from patients, loaded with TAAs in vitro,
and re-administered to the recipient. This technique has been used in the
clinic to prevent metastasis of malignant tumors alone or in combination
with other treatment methods. However, DC-based immunotherapy is still
limited by an insufficient immune response, which makes it difficult to fully
eradicate established solid tumors.124–127

Due to recent advances in nanotechnology, structures, such as liposomes,
polymer nanoparticles, and inorganic nanoparticles, are able to be loaded
with different components including small molecules, peptides, nucleic acids,
and cell membranes. This enables the co-loading of antigen and adjuvant in
nanovaccines, which ensures that these active ingredients are delivered
simultaneously to the same APC. Furthermore, nanovaccines also prevent
the rapid dissemination of components, such as antigen and adjuvant, into
circulation and facilitate their efficient accumulation in draining lymph no-
des.29,33 Thus, vaccines based on nanoparticles may be valuable tools for
augmenting the immune response and preventing tumor metastasis.33 For
example, Zhou et al. constructed an adjuvant/antigen co-delivery nanoplat-
form by coating PLGA nanoparticles with phospholipid membranes. This
nanovaccine can efficiently accumulate in lymph nodes and elicit an anti-
gen-specific adaptive T cell response, which inhibited the metastasis of
B16-OVAmelanomacells as demonstrated by the large reduction in the num-
ber of metastatic nodules.128 In another example, an anti-metastatic nano-
vaccine was developed based on PLGA nanoparticles by encapsulating a
novel TLR 7/8 bispecific agonists, denoted as 522NP. After intravenous
administration, 522NPs entered the draining lymph node and activated
DCs, which significantly enhanced subsequent CTL responses. The lungmet-
astatic nodules in mice immunized with OVA+522NP decreased by approx-
imately 75% more than control groups.50

Apart from classic polymer and liposome nanoplatforms, inorganic nano-
particles are promising as vaccine delivery systems owing to their unique
chemical and physical properties.129,130 For example, Li et al. designed a
nanovaccine with magnetic targeting capabilities by coating CpG-modified
Fe3O4 magnetic nanoclusters (MNCs) with anti-CD205-modified cancer
cell membranes, denoted as A/M/C-MNCs (Figure 6).131 This study took
advantage of the superparamagnetism and magnetization of MNCs to
achieve magnetic enrichment of vaccine in lymph nodes, which prolongs
retention time to increase antigen captured by DCs. At the same time, the
ll
camouflaged cancer cellmembrane on the nanovaccine provided a reservoir
of multiple neoantigens, enabling multi-antigenic immune responses. This
combination of cell membrane-based nanovaccine with ICB may be a highly
effective personalized antitumor therapy for inhibiting metastasis.131 Luo
et al. used Fe3O4 nanoparticles as carriers for the antigen to inhibit metas-
tasis of malignant melanoma. In this study, Fe3O4 nanoparticles were able
to serve as not only carriers but also immunopotentiators that synergistically
stimulated DCs and activated macrophages (Figure 7).132

Due to the promising prospects of nanotechnology and immunotherapy
for treating cancer metastasis, several novel and smart nanomaterials
have been designed to enhance therapeutic efficacy, such as nanorobots.
In 2018, Zhao and coworkers designed a DNA nanorobot to transport pay-
loads and present them precisely in tumors through DNA origami. These
nanorobots possessed the capability to serve as smart drug delivery systems
that are responsive tomolecular triggers and deliver thrombin precisely to the
blood vessels of solid tumors, leading to intravascular thrombosis and conse-
quently tumor necrosis.133 The DNA origami scaffolds formed through com-
plementary base pairing provided an elegant drug delivery platform to accu-
rately control the number and the position of functional moieties and, in turn,
impact both drug loading and stimulus-responsive behavior. Very recently,
Ding and coworkers134 developed aDNA-based cancer vaccine thatwas suc-
cessfully transported to the tumor-draining lymph nodes and delivered tumor
antigens to APCs to stimulate antitumor immune responses. The vaccine
was designed by assembling an antigen peptide and two kinds of molecular
adjuvants within a tubular DNA nanostructure. The pH-responsive DNA
origami was unlocked within acidic endosomes, exposing the previously en-
trapped antigens and adjuvants that then bound to their receptors and pro-
moted DC activation to initiate antigen presentation, thereby triggering
T cell activation and cancer cell cytotoxicity. The strong, tumor-specific
T cell immune response elicited by this DNA nanodevice vaccine subse-
quently led to the regression of tumors in mice and induced a long-term
T cell immune memory response that strongly protected mice from tumor
metastasis (Figure 8).134,135

Artificial immune cells mimics
Although autologous DC-based cancer vaccines were widely investigated

by back-transfusing antigen-pulsed DCs into patients, this technology is
costly and time-consuming. Micro- and nanomaterial-based artificial APCs
(aAPCs) are designed to mimic the natural APCs by presenting important
signal antigens to T cells and activate them for cancer inhibition.136,137 To
realize these antigen-presenting effects, aAPCs should include two parts
on their surface: MHC-peptide complexes that can present cognate antigenic
peptide to T cell receptors and co-stimulatory molecules that can bind to co-
stimulatory receptors and activate T cells. Compared with natural DCs,
aAPCs have a relatively defined composition and controllable biological
behavior. Moreover, aAPCs can be applied for mass production, which could
enable off-the-shelf vaccines.138

For example, Lu et al. developed an aAPC vaccine, in which microscale la-
tex beads were coated with H-2Kb-Ig/pTRP2 dimeric complexes, anti-CD28
antibody, 4-1BB ligand, and CD83 molecules to expand CTLs from C57BL/
6 splenocytes for adoptive cell transfer into a murinemelanoma lungmetas-
tasis model. To assess the therapeutic efficacy against B16 pulmonary
metastases, mice bearing B16 melanoma were intravenously injected with
melanoma-specific CTLs stimulated by H-2Kb-Ig/pTRP2-aAPCs ex vivo.
The results showed that H-2Kb-Ig/pTRP2-aAPC therapy achieved a signifi-
cant reduction in pulmonary metastasis with only about 36 metastatic nod-
ules in the lungs after treatment, whereas mice in the control groups devel-
oped approximately 330 pulmonary metastatic nodules.139

APCmimics are not the only immune cells that have been explored using
nanomaterials. Neutrophils or Tregs, which also play crucial roles in the
innate immune response to tumors, are two other types of immune cells
that nanomaterials have been used tomimicwith the goal of inhibiting tumor
growth.140–142 It can be expected that the novel biomimetic nanomaterials
that can simulate more other types of tumor-related immune cells will be
developed in future research.
The Innovation 2, 100174, November 28, 2021 7
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Figure 6. Engineering magnetosomes for high-performance cancer vaccination (A) Fabrication process of A/M/C-MNC. (B) Schematic illustration of A/M/C-MNC-
mediated cellular immune responses to elicit CTLs andmemory T cells (TM cells) for cancer immunotherapy. (C) Bioluminescence images of hematogenousmetastasis in
lungs after intravenous inoculation of luciferase-expressing 4T1 (Luc-4T1) cells with different pretreatments: (I) PBS; (II) MF; (III) M-MNC; (IV) M/C-MNC; (V) A/M/
C-MNC; (VI) A/M/C-MNC with magnetic retention; (VII) A/M/C-MNC with magnetic retention and anti-PD-1. (D) MFI statistics of lung metastasis in (C). (mean ± SD, n = 6,
***P < 0.01) (E) Survival rate of mice in (C). Reproduced with permission from Li et al.131 Copyright 2019, American Chemical Society.
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Adoptive cell therapy
Adoptive cell therapy (ACT) has emerged as a promising technology for

the treatment of cancer. ACT is a highly personalized therapy involving the
administration of immune cells with direct anticancer bioactivity to the tu-
mor-bearing host.143–145 In both clinical practice and laboratory studies,
ACT employing naturally generated tumor-active lymphocytes mediates du-
rable tumor elimination by targeting somatic mutations characteristic to an
individual’s cancer.146–148

Adoptive T cell transfer is one of the major ACT approaches for cancer. In
this strategy, separated autologous tumor-specific T cells are stimulated and
expanded ex vivo and reinfused into the patient to elicit potent antigen-spe-
cific antitumor CTL responses.149 Adoptive T cells are also an effective
approach to inhibit tumor metastasis since the transferred cells can actively
target the secondary tumor sites and kill metastatic tumor cells.150 The use
of nanotechnology to effectively engineer lymphocytes to express T cell re-
ceptors or chimeric antigen receptors has further expanded the successful
use of ACT for cancer therapy.151–153 For example, Irvine and coworkers
demonstrated that decorating the surface of T cells with cytokine- or drug-
loaded nanoparticles can significantly improve the efficacy of ACT.153,154

They also used nanogel backpacks to load the protein drugs on the T cells.
This strategy disproportionately increased the number of T cells present in
8 The Innovation 2, 100174, November 28, 2021
tumors, which improved the safety of their ACT treatment.155 Very recently,
Cao and coworkers employed PEGylated dendrimer-entrapped gold nano-
particles (Au DENPs) as non-viral vectors for delivering CpG to mature
bone marrow derived cells (BMDCs) to stimulate T cells for adoptive cancer
immunotherapy. This strategy using genetically engineeredBMDCsbased on
nanotechnology induced an adaptive immune response and immune mem-
ory of T cells, inhibiting tumor metastasis and preventing recurrence.156

In addition to T cells, platelets also have been employed in ACT. They can
spontaneously accumulate in thewound area due to their intrinsic properties.
Inspired by this ability, Gu and coworkers conjugated anti-PD-L1 on the sur-
face of platelets. These adoptive platelets can successfully target the surgical
wound after tumor resection and release anti-PD-L1 through platelet-derived
microparticles following platelet activation in situ. This strategywas shown to
successfully eliminate residual tumor cells and also prevent cancer
recurrence.157

INTERFERING WITH THE FORMATION OF THE PMN
The primary tumors need to transform the microenvironment of distant

organs to create a favorable condition for CTCs, known as the PMN. In this
phenomenon, primary tumor cells first secrete soluble components, such
as extracellular vesicles (EVs), at a potential site of metastasis and mediate
www.cell.com/the-innovation
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Figure 7. Nano-immunopotentiators Fe3O4-OVA promote
cancer immunotherapy for preventing lung metastasis of
melanoma (A) Schematic illustration of the Fe3O4-OVA
vaccination strategy. The Fe3O4-OVA vaccine composed of
ultra-small Fe3O4 nanoparticles and OVA not only improved
DC maturation and T cell activation but also showed a pos-
itive effect on macrophage activation, resulting in improved
outcomes.
(B) In vivo bioluminescence imaging of the B16-OVA-luc lung
metastasis in control and treated groups after 13 days of
treatment (left), together with the representative images of
lungs stained with H&E from mice intravenously injected
with B16-OVA tumor cells and different treatments (right).
Green arrows indicate the tumor areas. Scale bars, 500 mm.
Inset: representative photographs of lungs from each group
after 13 days of treatment.
Reproduced with permission from Luo et al.132 Copyright
2019, Elsevier.
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the microenvironment of this region by transferring small nucleic acid frag-
ments to the normal cells. The primary tumor-derived inflammatory factors
can simultaneously recruit the suppressive immune cells including MDSCs,
TAMs, or Tregs, which further secrete chemokines and cytokines to support
PMN formation.158 Accordingly, interfering with the formation of PMN rep-
resents an opportunity to prevent the colonization of tumor cells. Neverthe-
less, there is still a clear lack of effective strategies for nano-immunothera-
peutic targeting of cells involved in PMN formation process. Further
exploration and development are still required for the biochemical charac-
terization of PMN formation and the design of PMN-targeted nanomedi-
cines as well.

Remodeling the molecular components of the PMN
The PMNcan support the extravasation, anchorage, survival, proliferation,

and immune evasion of CTC through changing the vascular state of
tissues.159–162Moreover,PMNalsoshows inflammationandstromal reprog-
ramming,which is alsoacrucial process forCTCcolonizationandsurvival.158

To prevent these processes, researchers have found molecules that can
remodel the PMN components to inhibit metastasis.163,164 Lysyl oxidase is
an enzyme overexpressed in tumors and the PMN to help tumor cell coloni-
zation by remodeling the ECM.165–167 In addition to isolated smallmolecules,
nanodrug formulations againstmolecular components in the PMNhave also
begun toemerge. Jiangetal. designedmetforminanddocosahexaenoicacid
hybridmicelles asananti-inflammatory treatment for thePMN.Micelleswere
coated with fucoidan to target the P-selectin-rich lung PMN for better PMN
targeting ability. These nanodrugs reduced the adhesion between CTCs
and endothelial cells and reversed the abnormal expression of inflammatory
molecules, including fibronectin, matrix metalloproteinase-9 (MMP-9), and
S100A9 in thePMN, therefore exhibiting an inhibitory effect onmetastasis.168
ll
Inhibiting MDSCs
Among the immunosuppressive cells in the PMN, MDSCs play a key role

in the formation of the PMN, which can suppress the activity of CD8+

T cells.169–172 Therefore, inhibiting MDSC recruitment is an effective way
to prevent metastasis.173 Nanotechnology has been applied to interfere
with the early recruitment of MDSCs as well. Low-molecular-weight heparin
and tocopherol succinatewere used to self-assemble intomicellar nanopar-
ticles (LT NPs). The former inhibited P-selectin/PSGL-1-mediated granulo-
cytic myeloid-derived suppressor cell (g-MDSCs) extravasation through
competitive binding, while the latter impaired the expression of MMP-9 in
g-MDSCs. Furthermore, by loading a chemotherapeutic drug and an immu-
nopotentiator, themicellar nanoparticles enhanced the nonspecific immune
response, activated the specific immune response of invariant NK T cells,
and inhibited postoperative metastasis and recurrence (Figure 9).174 In
addition, the depletion of MDSCs in PMN is another approach to inhibit
metastasis. Ni et al. reported that hafnium-DBP (5,15-di(p-benzoato)
porphyrin), a nanoscale metal-organic layer, in combination with aPD-L1 ex-
hibited outstanding antitumor activity and anti-metastatic effects in an
orthotopic breast cancer lung metastasis model. Further investigation
indicated that the anti-metastatic effect came from a reduction of both
monocytic MDSCs (mMDSCs) and granulocytic MDSCs in the lungs, as
well as mMDSC reduction in the primary tumor.175

There aremany other cells involved in the formation of the PMN in addition
toMDSCs. For example, stromal cells, such as fibroblasts,macrophages, and
leukocytes, can remodel the ECM, thereby promoting the adhesion of bone
marrow-derived cells or tumor cells.176 There are four reviews recommended
for readers who would like more information about the cell types involved in
PMN formation.12,158,177,178However, there has yet to be an effective strategy
employing nano-immunotherapy against these cells. Nano-immunotherapy
The Innovation 2, 100174, November 28, 2021 9
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Figure 8. DNA nanodevice-based vaccine for cancer metastasis immunotherapy (A) Schematic illustration of the construction of the tumor antigen peptide/CpG loop/
dsRNA-co-loaded robotic nanostructure by DNA origami. Images of the DNA origami rectangles with capture strands, robotic structures in the open state, and robotic
structures in the locked state are shown. Scale bars, 200 nm. (B) Utilization of the DNA nanodevices for efficient cancer immunotherapy. (C) Mice were intravenously
inoculated with B16-OVA tumor cells on day 0 and immunized on days 1 and 7 with the DNA nanodevice vaccine or given control formulations. The lungs were harvested on
day 18 post-inoculation and imaged to count the metastatic nodules. (D) H&E staining of lungs collected from the treated mice. Scale bars, 3 mm. Reproduced with
permission from Liu et al.134 Copyright 2021, Nature Publishing Group.
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strategies can be further explored for these cells to better interfere with the
formation of the PMN in future studies.

Blocking oncogenic EVs
EVs are important messengers for primary tumor cells and stromal cells

that remodel the microenvironment of remote organs. Interfering with EVs
can block the signals conveyedby the primary tumor, potentially for therapeu-
tic gain. Tumor EVs are divided into four categories according to different di-
ameters: exosomes, microvesicles, apoptotic bodies, and oncosomes,
among which exosomes have been the most widely studied.179 Exosomes
can transport proteins, nucleic acids, and lipids to distal organs, resulting in
immunosuppression, vascular leakiness, and ECM remodeling of the
PMN.180,181 A promising strategy to interfere with exosomes is the direct
elimination of exosomes in circulation. Xie et al. innovatively proposed to
tow exosomes into the small intestine through the hepatobiliary metabolic
pathway of nanoparticles. Specifically, they designed epidermal growth fac-
tor receptor-targeting aptamers functionalized on positively charged meso-
porous silica nanoparticles to recognize and bind negatively charged exo-
somes in the blood. In vivo experiments demonstrated that these
nanomaterials effectively increased the distribution of exosomes in the liver
and small intestine.182

Overall, small-molecule drugs have been the major focus of immunother-
apies that aim to inhibit the formation of the PMN to date. However, there are
several examples of nano-immunotherapy aimed at PMN inhibition. The ad-
vantagesof nanomaterials, such as long blood circulation time, customizable
response release, and the ability to integrate PMN inhibition and other thera-
pies, make nanomaterials potentially useful across a broad range of applica-
tions. As the formation mechanism of the PMN has not been extensively
studied, the further development of nano-immunodrugs for PMN inhibition
10 The Innovation 2, 100174, November 28, 2021
will benefit greatly from the discovery of new components and pathways
in PMN formation.

POSTOPERATIVE IMMUNOTHERAPY FOR RECURRENCE
INHIBITION

In the clinic, surgery remains the preferred treatment formany early-stage
solid tumors. Even though advanced imaging technologies have been devel-
oped for distinguishing the boundary of the tumor to make resection more
precise, the complete removal of the solid tumor is often still exceptionally
challenging.183–188 Infiltrating carcinoma cells that are difficult to clean up
by resection may cause the regrowth of a tumor at the resection site or a
distant site. Therefore, postoperative neoadjuvant therapy is regarded as
an indispensable part of cancer treatment. To address recurrence, various
nano-immunoregulators have been developed for use after surgical resec-
tion. Nanomaterials that can be administered directly on surgical wounds
are preferable due to their safety and ease of use. The Gu group developed
anano-formulation thatcanbesprayed into the tumor resectioncavity,which
represents a good approach for nanomaterial-assisted postoperative immu-
notherapy. After spraying, the immunotherapeutic fibrin gel can be formed in
situ and gradually release anti-CD47 antibody to inducemacrophage phago-
cytosis of tumor cells through blockade of the CD47 and SIRPa interaction.
This nano-formulation can effectively inhibit tumor recurrence both locally
and distantly after surgery (Figure 10).189 In another work, Wang and co-
workers developed a nanomedicine-assembled hydrogel for postsurgical
tumor treatment. Their system, composed of a hydrogel loaded with ther-
mal-responsive curcumin-loaded polymer nanoparticles, covered the entire
surgical bed at the primary tumor site and displayed spatiotemporal control
over the delivery of cognate nanomedicines and encapsulated nanovac-
cines. This nanomaterial successfully boosted the ICD of the residual tumor
www.cell.com/the-innovation
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Figure 9. Self-delivery of micellar nanoparticles prevent the PMN formation (A) Schematic illustration of PLT/DOX/aGC nanoparticles and the mechanism of LT NPs
interference of g-MDSCs recruitment. (B) The percent of g-MDSCs (CD11b+ ly6g+ cells) in the lungs of healthy mice and B16F10 melanoma-bearing mice after different
treatments (PBS, LMWH, LT, PLT). (means ± SD, n = 3, ***P < 0.001) (C) The percentage of cytotoxic T lymphocytes (CD8+ T cells) and CD4+ T helper cells in the lungs of
healthy mice and B16F10 melanoma-bearing mice after different treatments. (means ± SD, n = 3, *P < 0.05, **P < 0.01) (D) Schematic diagram of the establishment of
tumors and treatment process. (E) Photographs of the harvested lungs (left) and numbers of pulmonary nodules (right) from B16F10 melanoma-bearing mice receiving
different treatments. PLT, phenylboronic acid (PBA)-low-molecular-weight heparin (LMWH)-tocopherol succinate (TOS); DOX, doxorubicin; a-GC, a-galactosylceramide; LT
NPs, LMWH-TOS nanoparticles. (means ± SD, n = 4, ***P < 0.001) Reproduced with permission from Long et al.174 Copyright 2020, American Chemical Society.
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cells and led to an enhancement of tumor immunogenicity through the gen-
eration of neoantigen-specific T cells.190 Similarly, Lim and coworkers de-
signedanengineered3Dscaffold immuneniche loadedwithan immunosup-
pressive drug, gemcitabine, and an immunostimulatory cancer vaccine to
prevent tumor relapse after surgery. The local peritumoral implantation of
this immune niche served as a postsurgical treatment that stimulated sys-
temic antitumor immunity, inhibited tumor recurrence at the surgical site,
ll
and prevented distant lung metastases in an advanced-stage primary 4T1
breast tumor murine model.191

Nanomaterial-assisted postoperative immunotherapy possesses a
greater advantage for preventing long-term recurrence in tumors growing
in special locations where resecting additional tissue is highly undesirable,
such as brain tumors that possess poor prognosis and high recurrence rates
owing to residual cancer cells in the brain.192 Jiang and coworkers presented
The Innovation 2, 100174, November 28, 2021 11



Figure 10. In situ sprayed bioresponsive immunotherapeutic gel for postsurgical cancer treatment (A) Schematic of in situ sprayed bioresponsive immunotherapeutic gel
containing aCD47@CaCO3 NPs within the post-surgery tumor bed. (B) Flow cytometric analysis gating on CD3+ cells (left) and absolute quantification (right) of CD8+ and
CD4+ T cells in the tumor (*P < 0.05, ***P < 0.001). (C) Individual tumor growth kinetics in different groups. Reproducedwith permission fromChen et al.189 Copyright 2019,
Nature Publishing Group.
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an injectable self-fabricating oligopeptide hydrogel system that promotes the
tumor-specific immune response after glioblastoma surgical resection,
which effectively prevents the recurrence of the brain tumors inmice. The hy-
drogel serves as the drug reservoir for the co-delivery of CXC chemokine
ligand 10 (CXCL10) and tumor-homing immune nanoregulator (THINR). After
being administered in the surgical cavity, the precursor solution formed a hy-
drogel and released its cargo, which consisted of mitoxantrone and small
interfering RNA-targeting IDO (siIDO1), over time. The liberalized THINR tar-
geted residual tumor cells remaining after primary tumor resection that infil-
trated the brain parenchyma. Mitoxantrone and siIDO1 were released after
the acidic decomposition of internalized nanocarriers and exerted an immu-
nomodulatory effect on tumor cells, which in turn activated circulating T cells
and relieved the immunosuppression of Tregs. Activated T cells were then
recruited to the brain by CXCL10 to attack residual tumor cells.193

In comparison with systemic administration, the locoregional administra-
tion of nanomaterials has the potential to reduce adverse effects by limiting
organ exposure while serving to enhance the drug concentration within the
12 The Innovation 2, 100174, November 28, 2021
affected area.188 Due to the activation of tumor-specific immunity and the for-
mation of long-term immune memory, locoregional nanomaterial-assisted
postoperative immunotherapy is a feasible strategy to prevent tumor recur-
rence after surgical resection, which can compensate for incomplete
resection.

SUMMARY AND FUTURE PERSPECTIVES
In this review, we have summarized the emerging concepts in nanomate-

rial-enabled immunomodulation, including changing the immunosuppres-
sive state of the primary tumor, activating the peripheral immune system,
preventing the formation of the PMN, and the in situ suppression of tumor
recurrence after surgery. Nano-immunomodulators cannot only effectively
eliminate the primary tumor but also exhibit superior inhibitory effects on
distal metastases and prevent recurrence. For the first strategy, altering
the immunosuppressive state of the primary tumor with the aid of nanoma-
terials by either relieving the immunosuppressive microenvironment or
inducing ICD of cancer cells, could effectively expose the body’s immune
www.cell.com/the-innovation
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systemtotumorneoantigens, resulting inasystemic tumor-specific immune
response initiating anabscopal effect on tumormetastases. Basedon the re-
sults of preclinical trials, current immunotherapies are most effective when
treatingsmall, premalignant lesions in thebodyor tumors that retain immune
activity, rather than directly attacking solid tumors that have established a
protective immunosuppressive microenvironment. Therefore, for solid tu-
mors, it may be a more reasonable and promising strategy to first use con-
ventional therapies such as thermal therapy, chemotherapy, or radiotherapy
toeliminate the vastmajority of cancer cells and induce ICD.This canbe then
combined with nanomaterial-assist immunotherapy to further eliminate re-
sidual cancer cells andpreventmetastasis and recurrence. As for the second
strategy—activating cells of the peripheral immune system to promote their
migration to both the primary tumor and distal metastasis—nanovaccines
appear to be useful tools that can ensure a highly specific tumor immune
response and potentially lead to the eradication of cancer cells from the
body. However, due to the complexmechanismsbywhichcancer cells avoid
immune surveillance, it is difficult to completely eradicate solid tumors by
only partially activating the body’s immune system. Instead, combining
this strategy with ICB therapy may be able to reverse the immunosuppres-
sive microenvironment to further amplify the antitumor immune response.
With respect to the third strategy—remodeling the immune microenviron-
ment of the PMN—nano-immunomodulators can suppress tumor-associ-
ated immunosuppressive cells and reduce the likelihood of tumor metas-
tasis. However, a deep understanding of the PMN is still lacking, which
limits the field’s ability to create nanodrugs that leverage the biological and
biochemicalmechanisms thatmight otherwiseprovidegood therapeutic tar-
gets. In addition, it is difficult for this strategy to cover all potential sites of tu-
mormetastasis. With the cultivation of additional understanding, preventing
the development of the pre-migration niche may become a viable clinical
strategy for preventing tumor metastasis. In the final approach, postopera-
tive immunotherapy is introduced for long-term inhibition of tumor recur-
rence. Considering the advantages of in situ administered nanomaterials
(i.e., low toxicity and ease of application), postsurgical adjuvant immuno-
therapy is highly clinically relevant in the field of oncology. Although several
immunomodulatorshavebeenshowntocauseadverseeffects, suchasane-
mia and thrombocytopenia, when delivered systemically in clinical trials, the
locoregional administration of these agents may be a feasible alternative to
reduce toxicity.

Due to the poor response rates of single cancer immunotherapies, it
stands to reason that immunotherapy regimens will continue to evolve
from monotherapies to combination therapies that include multiple agents,
such as immune checkpoint inhibitors, such as anti-PD-1 or anti-CTLA-4,
chemotherapy, anti-angiogenic agents, and kinase inhibitors.194 Nanomateri-
als can be employed as a multi-functional platform to complement the defi-
ciency of immunotherapies in various pathways. More immunotherapy com-
binations, artificial immune cells, and rapidly emerging nanomaterials, such
as nanorobots, will continue to be developed with the goal of improving can-
cer treatment. Ultimately, their clinical impact will be determined by their abil-
ity to treat metastatic disease, as borne out in ongoing and future preclinical
and clinical studies. Through the synergistic combination of therapeutic ef-
fects, multi-agent immunotherapies will effectively amplify the potency and
duration of immune responses against cancer.

Although great progress has been made in nanomaterial-assisted tumor
immunotherapy, several challenges remain to be solved before these ap-
proaches can be translated to the clinic. First, the large-scale, reproducible
production of nano-immunomodulators suitable for in vivo applications re-
mains difficult. The synthesis of nanomaterials, loading with immunoactive
substances, and the purification of the final synthetic nano-immunomodula-
torsmake reproducibilityandquality control very challenging, especially at an
industrial production scale. Second, the limited biocompatibility of some
nanomaterials, which has already hindered the clinical translation of nano-
medicines, must be overcome. To facilitate clinical translation, both maxi-
mizing therapeutic efficacy and minimizing adverse side effects should be
considered. According to previous studies, the findings in relation to the
nano-bio interface and the studies on protein corona have greatly promoted
ll
the clinical translation of nanomedicine.195–197 In future research, themech-
anisms of interaction between nanomaterials and in vivo biomolecules
should be further revealed, thereby proposing more strategies for nano-im-
munomodulatorswith reliable safety profiles. Third, themurine immune sys-
tem is obviously different from that of humans; thus, more complex animal
models, such as non-human primate models, are needed to evaluate
whether the significant effects achieved in rodent models are likely to be re-
produced inhumans,whichwill alsohelp todeterminepreciseadministration
regimens. Nevertheless, there is still reason to expect that nanomaterial-as-
sisted immunotherapies may one day serve as effective treatments for pa-
tients with metastatic tumors.
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