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KEY WORDS Abstract Crosstalk between xenobiotic metabolism and energy metabolism in the liver has provided a

. potential opportunity to target xenobiotic receptors to treat metabolic diseases. Activation of constitutive an-
8?:;;1’5 drostane receptor (CAR), a xenobiotic-sensing nuclear receptor, has been shown to inhibit obesity, suppress
CAR: ’ hepatic gluconeogenesis, and ameliorate hyperglycemia in rodent models of obesity and type 2 diabetes.
Gadd45b: However, the underlying molecular mechanism remains to be defined. The growth arrest and DNA
Glucogenogenesis; damage-inducible gene 45b (Gadd45b), a well-known anti-apoptotic factor, has been shown to be an induc-
Lipogenesis; ible coactivator of CAR in promoting rapid liver growth. It is unknown whether the effect of CAR on energy
Xenobiotics; metabolism depends on GADD45B. In the present study and by using a high fat diet (HFD)-induced obesity
Nuclear receptor model, we show that reduced body weight gain and improved insulin sensitivity by the CAR agonist 1,4-bis

[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) were markedly blunted in Gadd45b knockout mice.
Mechanistically, the TCPOBOP-responsive inhibition of hepatic lipogenesis, gluconeogenesis, and adipose
inflammation observed in wild type mice were largely abolished in Gadd45b knockout mice. We conclude
that Gadd45b is required in part for the metabolic benefits of CAR activation.
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1. Introduction

Constitutive androstane receptor (CAR) was initially character-
ized as a xenobiotic receptor in response to chemical exposures.
The xenobiotic function of CAR was achieved through its tran-
scriptional activation of drug metabolizing enzymes and trans-
porters in liver and intestinal tracks' .

The endobiotic function of CAR was subsequently appreciated,
including its function in energy metabolism. For instance, CAR
agonist phenobarbital has been anecdotally shown to have anti-
obesity effects in humans”, suggesting that CAR may play a role
in energy metabolism. Several in vitro cell culture studies reported
that activation of CAR decreased the mRNA expression of glu-
cogenic enzyme genes G6pase and Pepck’ °. Finally, several
in vivo studies have demonstrated the role of CAR in obesity and
diabetes in mice”'’. Our group previously reported that activation
of CAR improves insulin sensitivity in mice fed with high-fat diet
(HFD), which was reasoned to be due to inhibition of lipogenesis,
increased very low density lipoprotein (VLDL) secretion and
energy expenditure'’. Improved insulin sensitivity by CAR acti-
vation was also demonstrated by others using the leptin-deficient
(oblob) mice’. At the mechanistic level, we recently reported
that activation of CAR inhibits gluconeogenesis through acceler-
ating degradation of peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGCl-a), which is an essential co-
activator in controlling glucose metabolism’. Dong et al.’
showed that CAR activation attenuates hyperglycemia by sup-
pressing glucose production and facilitating glucose uptake in the
liver. A better understanding of the mechanisms underlying the
metabolic benefits of CAR activation will help to harness the
therapeutic potential of this “xenobiotic receptor”.

The growth arrest and DNA damage-inducible gene 45b
(GADD45B) is an anti-apoptotic factor that can bind to mitogen-
activated protein kinase kinase 7 (MKK7) and repress c-Jun N-
terminal kinase (JNK) phosphorylation. Interestingly, GADD45B
was later found to function as a coactivator for CAR'"'%. Specif-
ically, the hepatic expression of Gadd45b was found to be induced
in the livers of mice treated with the CAR agonist TCPOBOP in a
CAR-dependent and TNF-independent manner'*. At the functional
level, loss of Gadd45b impaired the early transcriptional stimula-
tion caused by CAR activation, and Gadd45b is required to facil-
itate rapid liver growth'”. However, whether Gadd45b is required
for CAR-mediated improvement of insulin sensitivity and inhibi-
tion of lipogenesis and gluconeogenesis is yet to know.

In this study, we uncovered that Gadd45b is necessary for the
metabolic benefits of CAR in inhibiting obesity and improving
insulin sensitivity in mice.

2. Materials and methods

2.1. Animals

Wild type (WT) and Gadd45b™'~ mice'" in the C57BL/6J back-
ground were purchased from the Jackson Laboratory (Bar Harbor,
ME, USA). Gadd45b™'~ knockout (KO) mice were generated by
crossbreeding Gadd45b™~ mice (stock number: 013101). Geno-
typing primers for KO mice are 10936: GCAACCCCAG-
TAACTTTGGA; 10937: CCTGCAGGAGAGAAGGAGTG;
0oIMR7996: CTTCCATTTGTCACGTCCTG, provided by the
Jackson Laboratory. Eight-week-old male WT and KO mice were

subjected to 60% calories high fat diet (ENVIGO #TD.06414,
containing 23.5% protein, 27.3% carbohydrate, and 34.3% fat,
Harlan Laboratories, Madison, MI, USA) for 17 weeks. Mice
received once per week intraperitoneal injections of 1,4-bis[2-
(3,5-dichloropyridyloxy)] benzene (TCPOBOP, 0.5 mg/kg) or
vehicle (DMSO) as we have previously described'’. Body
composition was analyzed in live animals using EchoMRI-100TM
from Echo Medical Systems (Houston, TX, USA). Mice were
sacrificed 24 h after the last dose of drug. The use of animals in
the study was approved by the Institutional Animal Care and Use
Committee at the University of Pittsburgh (Pittsburgh, PA, USA).

2.2.  Glucose tolerance test (GTT) and insulin tolerance test
(ITT)

For GTT, mice were fasted for 16 h before receiving an intra-
peritoneal injection of p-glucose at 1.75 g/kg body weight. For
ITT, mice were fasted for 6 h before receiving an intraperitoneal
injection of human insulin (Novo Nordisk, Bagsvaerd, Denmark)
at 1 unit/kg body weight. Blood samples were taken at different
time points, and the concentrations of glucose were measured with
a glucometer (OneTouch, Malvern, PA, USA). GTT and ITT were
performed five days after the last TCPOBOP injection.

2.3.  Liver triglyceride and cholesterol extraction and analysis

Liver lipids were extracted using chloroform—methanol method
reported by Folch et al.””. Briefly, liver samples were homoge-
nized in methanol first and chloroform was added to the sample.
The whole mixture was agitated for 2 h at room temperature. Extra
methanol was added, and the mixture was centrifuged at 1734x g
for 5 min. Supernatant was collected and chloroform was added to
the supernatant. After washing, the mixture was centrifuged at
771xg for 20 min and the bottom phase was collected and
evaporated under nitrogen at 60 °C. The organic layer was
reconstituted in a mixture of fert-butyl alcohol:Triton-
114:methanol (4.5:2:1, v/v/v). Commercial assay kits from Stan-
bio (Boerne, TX, USA) were used to measure triglyceride and
cholesterol levels.

2.4.  Gene expression analysis

Total RNA was isolated using the TRIZOL (Invitrogen, Carlsbad,
CA, USA) and treated with DNase I to remove genomic DNA.
cDNA was synthesized using reverse-transcription kit (Thermo
Fisher, Waltham, MA, USA). SYBR Green real time PCR was
performed with the ABI 7500 real time PCR system (Waltham,
MA, USA).

2.5.  Histology

For H&E staining, tissues were harvested and fixed in 10%
formalin overnight. After a dehydration process, tissues were
embedded in paraffin, sectioned at 4 pm and stained with hema-
toxylin and eosin. For oil red O staining, tissues were fixed in 1%
paraformaldehyde for 3 h, dehydrated in 30% sucrose overnight at
4 °C and embedded in Tissue-Tek OCT compound (Fisher Sci-
entific, Houston, TX, USA). Frozen liver tissues were cut at 8 um
and stained with oil red O solution (0.5% in isopropanol).
Adipocyte size was quantified using Fiji Adiposoft software'®
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(Bethesda, MD, USA). Crown-like structures in white adipose
tissue (WAT) were quantified using Image J software.

2.6. Measurements of serum chemistry

Serum levels of total triglyceride, cholesterol (Stanbio Laboratory,
Boerne, TX, USA) and insulin (Crystal Chem, Downers Grove,
IL, USA) were measured using commercial kits according to
manufacturers’ instructions.

2.7.  Statistical analysis

Results are presented as means =+ standard deviation (SD). Stu-
dent’s r-test was used for comparison between two groups.
Analysis of variance (ANOVA) was used for the comparison
among the means of three or more groups, followed by Tukey’s
post-test, using GraphPad PRISM software (GraphPad Software,
San Diego, CA, USA). Differences were considered statistically
significant at P < 0.05.

3. Results

3.1.  Gadd45b is required for the anti-obesity effect of CAR
activation

We have previously reported that treatment of mice with CAR
agonist TCPOBOP alleviated HFD-induced obesity'®. To deter-
mine whether the anti-obesity effect of CAR depends on
Gadd45b, 8-week-old male WT and Gadd45b KO mice were fed
with HFD for 17 weeks and weekly treated with TCPOBOP or
vehicle. TCPOBOP significantly inhibited the gain of body weight
as early as one week after the drug treatment in WT mice
(Fig. 1A), but the inhibitory effect of TCPOBOP on body weight
gain was largely abolished in KO mice (Fig. 1B). Body compo-
sition analysis by MRI show that after one week of TCPOBOP
treatment in WT mice, the fat mass to body weight percentage was
significantly higher in the vehicle group compared to the TCPO-
BOP group (Fig. 1C, top). Meanwhile, the lean mass to body
weight percentage was decreased in the vehicle group, but they
were steady in the TCPOBOP group (Fig. 1C, bottom). In
contrast, neither the fat mass to body weight percentage (Fig. 1D,
top) nor the lean mass to body weight percentage (Fig. 1D, bot-
tom) was significantly different between the vehicle- and
TCPOBOP-treated KO mice. The effect of Gadd45b on obesity
was independent of changes in the food intake (Fig. 1E). At the
end of week 17 treatment, the body weight gain (Fig. 1F) and fat
mass to body weight percentage (Fig. 1G) of WT mice were
significantly lower in the TCPOBOP group, while they were not
significantly different between the vehicle and TCPOBOP groups
in KO mice. The lean mass to body weight percentage was
significantly higher in WT mice treated with TCPOBOP, but there
was no difference between two groups in KO mice (Fig. 1H).
Taken together, these results demonstrat that the anti-obesity ef-
fect by CAR activation was abolished in the Gadd45b knockout
mice.

3.2.  Gadd45b is required for the insulin sensitizing effect of
CAR activation

Insulin resistance, or type 2 diabetes is one of the most prevalently
metabolic complications closely associated with obesity'’.

Compared to lean subjects, the obese population is more likely to
develop insulin resistance'®, which can be attenuated and even
reversed by weight loss'® ', Consistent with our previous
report'®, insulin sensitivity was significantly improved in WT
mice treated with TCPOBOP, as shown by both the glucose
tolerance test (Fig. 2A) and insulin tolerance test (Fig. 2B).
However, TCPOBOP treatment was no longer effective in
improving GTT (Fig. 2C) or ITT (Fig. 2D) performances in KO
mice. Areas under the curve of GTT (Fig. 2E) and ITT (Fig. 2F)
were significantly lower in TCPOBOP-treated WT mice, but not
in TCPOBOP-treated KO mice. These results demonstrate that the
insulin-sensitizing effect of CAR activation was also Gadd45b
dependent.

At the biochemical level, analysis of serum biochemistry re-
veals that insulin level and fasting glucose level were significantly
lower in TCPOBOP-treated WT mice but there is no difference
between the vehicle group and the TCPOBOP treatment group in
KO mice (Table 1). Interestingly, the serum triglyceride level was
not affected by TCPOBOP in either WT or KO mice (Table 1).
The serum cholesterol level was comparable between WT mice
treated with or without TCPOBOP, but it was decreased by
TCPOBOP in KO mice (Table 1).

3.3.  Gadd45b deficiency impairs TCPOBOP-responsive
suppression of hepatic lipogenesis and lipogenesis, but has little
effect on fatty acid (3-oxidation

As expected, the CAR target gene Cyp2bI0 was robustly induced
by TCPOBOP in WT mice, and a similar degree of Cyp2b10 in-
duction was observed in KO mice (Fig. 3A). The intact induction
of Cyp2b10 by TCPOBOP in KO mice was consistent with the
report that the attenuation of Cyp2b10 induction by TCPOBOP in
KO hepatocytes was early and transient'”. Meanwhile, the mRNA
expression of Car was reduced in TCPOBOP-treated WT mice but
not in KO mice (Fig. 3B). Consistent with results published by
others and us'%??, treatment of WT mice with TCPOBOP allevi-
ated HFD-induced hepatic steatosis as shown by oil red O staining
of lipid droplets (Fig. 3C), or biochemical measurement of the
liver triglyceride level (Fig. 3D). In HFD-fed KO mice, the basal
oil red O staining (Fig. 3C) and liver triglyceride content (Fig. 3D)
were significantly lower than their WT counterparts, and TCPO-
BOP was no longer effective in ameliorating hepatic steatosis. The
liver cholesterol levels were not affected regardless of the
Gadd45b genotype or the TCPOBOP treatment (Fig. 3E). The
acetyl-coenzyme A carboxylase (ACC-1), the fatty acid synthase
(FAS)*, and the stearoyl-CoA desaturase (SCD-1)** are three key
enzymes in the de novo lipogenesis in the liver. Treatment with
TCPOBOP suppressed the expression of Acc-1, Fas, and Scd-1 in
WT mice, but not in KO mice (Fig. 3F). We next examined
whether the expression of two upstream regulators of lipogenesis
insulin-induced gene 1 protein (/nsigl) and sterol regulatory
element-binding protein 1 (Srebpl-c) was affected or not. The
results show that Insig/ mRNA expression was not changed in
either WT or KO mice, whereas TCPOBOP treatment decreased
Srebpl-c mRNA expression in both genotypes (Fig. 3G).
Furthermore, the suppression of phosphoenolpyruvate carbox-
ykinase (Pepck) and peroxisome proliferator-activated receptor
gamma coactivator-1 alpha (Pgcl-a) observed in TCPOBOP-
treated WT mice was abolished in TCPOBOP-treated KO mice,
but TCPOBOP remained effective in suppressing glucose-6-
phosphatase (G6Pase) gene expression in KO mice (Fig. 3H).
The suppression of peroxisome proliferator-activated receptor
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alpha (Ppara) and its target genes involved in B-oxidation and
fatty acid influx by TCPOBOP in WT mice was similarly
observed in TCPOBOP-treated KO mice (Fig. 3I), suggesting that
Gadd45b was not required for the suppression of fatty acid 8-
oxidation by CAR activation.

3.4.  Gadd45b deficiency abolishes the alleviation of
inflammation in white adipose tissue (WAT) by TCPOBOP, but has
little effect on the adipose lipogenesis and lipolysis

Obesity is commonly associated with a state of chronic and low-
grade inflammation that contributes to insulin resistance and type
2 diabetes®>”°. Treatment of WT mice with TCPOBOP reduced
adiposity in epididymal WAT, and this effect was abolished in
TCPOBOP-treated KO mice, as shown by H&E staining (Fig. 4A)
and quantification of adipocyte size (Fig. 4B). Adipose

macrophage accumulation is higher in obesity, which is tightly
related to insulin resistance®”*®. Additionally, macrophage infil-
tration in the adipose tissue and liver also plays an important role
in the pathogenesis of nonalcoholic fatty liver disease (NAFLD)>.
TCPOBOP-treated WT mice showed a decreased number of
macrophage-enriched crown-like structures (CLS) in their WAT,
compared with vehicle-treated WT mice. In vehicle-treated KO
mice, the basal density of CLS was decreased, and TCPOBOP was
no longer effective in reducing the CLS density (Fig. 4A and C).
The same pattern of Gadd45b knockout effect was observed when
the adipose expression of macrophage marker genes Cd68 and
F4/80 was measured (Fig. 4D). These results suggest that
Gadd45b was essential for the effects of CAR activation on HFD-
induced adipose tissue inflammation. The adipose expression of
genes involved in lipogenesis (Fig. 4E) and lipolysis (Fig. 4F) was
not affected by Gadd45b ablation.
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Figure 1

Gadd45b is required for the anti-obesity effect of CAR activation. Growth curve of male WT C57BL/6 mice (A) or Gadd45b KO

mice (B) fed with HFD for 8 weeks, in the absence or presence of TCPOBOP treatment (0.5 mg/kg, intraperitoneal, once per week). Fat mass to
body weight percentage (top) and lean mass to body weight percentage (bottom) in male WT C57BL/6 mice (C) or Gadd45b KO mice (D) fed
with HFD for 8 weeks, in the absence or presence of TCPOBOP treatment (0.5 mg/kg, intraperitoneal, once per week). Fat mass and lean mass
were determined by MRI, n = 6 for each group. (E) Food consumption of WT and KO mice fed with HFD treated with vehicle or TCPOBOP for
8 weeks. Body weight change (F), fat mass to body weight percentage (G), and lean mass to body weight (H) in male WT and KO C57BL/6 mice
fed with HFD for 17 weeks. Results are presented as mean + SD, n = 6 for each group. *P < 0.05; **P < 0.01 compared with the vehicle group.
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Figure 2

Gadd45b is required for the insulin sensitizing effect of CAR activation. Mice were fed with HFD for 8 weeks in the presence or

absence of TCPOBOP (0.5 mg/kg, once per week) before glucose tolerance test (GTT, A) and insulin tolerance test (ITT). GTT (A) and ITT (B) in
male WT C57BL/6J mice. GTT (C) and ITT (D) in male KO mice. Area under curve (AUC) of GTT (E) and ITT (F) in male WT and KO mice
before GTT or ITT. Results are presented as mean £+ SD, n = 6 for each group. *P < 0.05; **P < 0.01 compared with the vehicle group.

3.5.  Gadd45b ablation has little effect on TCPOBOP-responsive
attenuation of HFD-induced brown adipose tissue (BAT)
whitening

Brown adipose tissue contains a large number of mitochondria,
where fatty acid oxidation and heat emission take place. The
whitening of brown adipose tissue was evident in obese animals™.
We show that TCPOBOP treatment decreased the whitening of
BAT in both WT and KO mice at the histological level (Fig. 5A),
which indicated that Gadd45b may not be required for the effects
of CAR activation on BAT. The Gadd45b genotype and HFD had
little effect on the BAT expression of genes involved in lipogenesis

(Fig. 5B) and @-oxidation (Fig. 5C).

4. Discussion

Gadd45b was originally known to be involved in cell death and
plroliferation3 '. Gadd45b was later found to be a gene inducible by
CAR activation and was established as a co-activator of CAR.
Activation of CAR is known to promote hepatocyte proliferation
and cause hepatomegaly. It was found that loss of Gadd45b im-
pairs the early transcriptional stimulation caused by CAR activa-
tion after partial hepatectomy, and Gadd45b is required to
facilitate rapid liver growth'""'>. CAR and its agonists such as
TCPOBOP and phenobarbital are known to be potent tumor

initiation®>>’. Besides being a tumor promoter in rodents,
TCPOBOP has also been shown to be a non-genotoxic hep-
atocarcinogen®. However, it has not been reported whether
Gadd45b is required for the tumor promoting effect of CAR and
its agonists. It is recognized that phenobarbital was not shown as a
tumor promoter in humanized CAR mice™. It appeared that CAR-
mediated liver carcinogenesis is rodent specific and upon dieth-
ylnitrosamine initiation, but it does not seem to be relevant for
humans®°. Phenobarbital was even reported to suppresses some
liver tumors in certain context®***,

CAR is more recently known for its endobiotic functions,
including its activity in attenuating obesity and type 2 diabetes.
Several in vitro studies suggested that the inhibitory activities of
CAR on lipogenesis and gluconeogenesis may have been due to
the competitive binding of CAR to several transcription factors
such as FOXO1, HNF4a, and PGC1a’ 3940 onto the promoter re-
gions of gluconeogenic or lipogenic genes. However, the in vivo
significance of these transcriptional factors in mediating the
metabolic benefits of CAR remains unclear. In this study, we
demonstrated that as a CAR coactivator, Gadd45b is required for
the anti-obesity and anti-diabetic effects of CAR in vivo. The
improved systemic insulin sensitivity by CAR activation was
abolished in KO mice. The serum insulin lowering effect of
TCPOBOP was also abolished in Gadd45b KO mice. Loss of
CAR-responsive suppression of hepatic lipogenesis and gluco-
neogenesis may have accounted for the loss of metabolic benefits

promoters in rodents and upon the diethylnitrosamine of CAR activation in Gadd45b KO mice. Another interesting
Table 1  Serum chemistry in WT and KO mice fed with HFD for 17 weeks.
Index WT KO
Vehicle TCPOBOP Vehicle TCPOBOP
Insulin (ng/mL) 4.088 £+ 2.613 0.1454 £ 0.0528%** 3.46 £+ 2.031 2.075 +£ 1.37
Triglyceride (mg/dL) 119.7 + 22.06 111.6 + 17.93 1322 + 35.88 99.85 + 18.1
Cholesterol (mg/dL) 131.2 + 16.09 117.4 + 10.81 172.7 + 43.11 118.9 & 23.52*
Fasting glucose (mg/dL) 153.8 £ 17.63 126.0 £ 12.88** 114.5 + 21.24 107.4 £ 21.88

Data are mean + SD, n = 6. *P < 0.05, **P < 0.01 vs. Vehicle.
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Gadd45b deficiency abolishes the alleviation of inflammation in white adipose tissue (WAT) by TCPOBOP, but has little effect on the

adipose lipogenesis and lipolysis. Mice were the same as described in Fig. 1. (A) H&E staining of white adipose tissue (WAT). Scale
bar = 100 pm. (B) Quantification of adipocyte size, and (C) quantification of crown-like structures (CLS). (D) The mRNA expression of
macrophage marker genes and genes involved in (E) gluconeogenesis and (F) lipolysis in WAT was measured by real-time PCR. Results are
presented as means £+ SD, n = 6 for each group. *P < 0.05; **P < 0.01 compared with the vehicle group.
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Figure 5
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Gadd45b ablation has little effect on TCPOBOP-responsive attenuation of HFD-induced brown adipose tissue (BAT) whitening. Mice

were the same as described in Fig. 1. (A) H&E staining of BAT. Scale bar, 50 pm. The mRNA expression of genes involved in lipogenesis (B) and
energy expenditure and thermogenesis (C) was determined by real-time PCR. Results are presented as means + SD, n = 6 for each group.

*P < 0.05; **P < 0.01 compared with the vehicle group.

finding is that Gadd45b ablation abolished the alleviation of
inflammation in WAT by TCPOBOP, which may have also
contributed to the loss of metabolic benefits in KO mice. We have
previously reported that WAT does not have appreciable expres-
sion of CAR'®. As such, the WAT phenotype in TCPOBOP-treated
KO mice was probably secondary to the loss of metabolic benefits
in tissues outside of the adipose tissues.

Besides Gadd45b’s role in mediating the metabolic benefits
TCPOBOP, we found that the vehicle-treated KO mice exhibited
reduced liver triglyceride levels and decreased expression of
lipogenic genes compared to their WT counterparts. The density
of the CLS structure and the expression of adipose macrophage
marker gene were also significantly decreased in vehicle-treated
KO mice. These results suggested that Gadd45b may have CAR
independent effects on energy metabolism. Since intestinal
microbiota has been shown to play a vital role in HFD-induced
obesity*', we cannot exclude the possibility that changes in in-
testinal microbiota may have also contributed to the phenotypic
exhibition.

Besides GADDA45B, several other CAR coactivators of CAR,
such as SRC1, SRC2, and PGCIa“’“, have also been identified
based on mammalian two-hybrid experiment and reporter gene
assays. However, whether these coactivators contribute to the anti-
obesity effects of CAR in vivo is not known. Meanwhile, we
recently reported that Gadd45b can also function as a coactivator
for another xenobiotic receptor aryl hydrocarbon receptor (AHR).
Interestingly, Gadd45b was not required for the promotion of liver
carcinogenesis by AHR activation™*.

There are several limitations of our study: 1) Mice of the
C57BL background were used. It remains unclear whether the
phenotype was strain dependent; 2) Only male mice were used.
Although we have previously reported that the anti-obesity effect
of TCPOBOP was not sex-speciﬁcm, we cannot exclude the
possibility that the phenotype of Gadd45b ablation was sex spe-
cific; and 3) The mechanism by which Gadd45b contributes to the
metabolic benefits of CAR activation is yet to be defined. Previous
reports have shown that CAR could compete with HNF4a for
binding to the promoters of gluconeogenic genes”, or facilitate the
degradation of PGCla’. It will be interesting to investigate
whether Gadd45b affects the interaction between CAR and
HNF4a or PGCla, and thus conveying metabolic benefits.

In summary, we demonstrated that Gadd45b as a coactivator of
CAR is required in part for the metabolic benefits of CAR acti-
vation in vivo.
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