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The role of natural killer cells in liver inflammation
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Abstract
The liver is an important immunological site that can promote immune tolerance or activation. Natural killer (NK) cells are a
major immune subset within the liver, and therefore understanding their role in liver homeostasis and inflammation is crucial.
Due to their cytotoxic function, NK cells are important in the immune response against hepatotropic viral infections but are also
involved in the inflammatory processes of autoimmune liver diseases and fatty liver disease.Whether NK cells primarily promote
pro-inflammatory or tolerogenic responses is not known for many liver diseases. Understanding the involvement of NK cells in
liver inflammation will be crucial in effective treatment and future immunotherapeutic targeting of NK cells in these disease
settings. Here, we explore the role that NK cells play in inflammation of the liver in the context of viral infection, autoimmunity
and fatty liver disease.
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Introduction

The liver is a central organ involved in digestion, metabolism
and detoxification of blood. The majority of blood entering
the liver comes via the hepatic portal vein from the spleen and
gastrointestinal tract. This venous blood carries antigens,
which are subsequently exposed to the liver immune reper-
toire, positioning the liver as an important immunological site
for both immune tolerance and activation. Dysregulation of
these immunological processes can affect both liver and

systemic immune responses. The liver is home to a variety
of immune cells including Kupffer cells, MAIT cells, γδ T
cells, αβ T cells, B cells, NKT cells, ILCs and NK cells [1].
Among these, NK cells make up 40% of total lymphocytes in
the liver of humans [2], indicating the potential for an impor-
tant role for NK cells in regulating liver immunity. NK cells
are important in early innate immune responses but can also
regulate other innate and adaptive immune responses [3] and
have been suggested to play an important role in the patho-
genesis of several liver diseases, including autoimmune dis-
eases of the liver and hepatotropic viral infections [4]. The
involvement of NK cells in hepatocellular carcinoma (HCC)
(reviewed in [5, 6]), though important, is beyond the scope of
this review and not discussed.

NK cells can both lyse infected or cancerous cells and also
produce pro-inflammatory cytokines such as interferon gam-
ma (IFNγ). The function of NK cells is tightly regulated via
signalling through both activating and inhibitory receptors
expressed on their surface. In humans, inhibitory killer Ig-
like receptors (KIRs) primarily bind to human leukocyte anti-
gen (HLA)-B and HLA-C molecules, while the inhibitory
receptor NKG2A binds to HLA-E [7–10] (Fig. 1). The inter-
actions with these inhibitory NK cell receptors ensure that
healthy cells expressing HLA class I molecules are not inap-
propriately targeted by NK cells. Activating receptors such as
NKp30, NKp44, NKp46 and NKG2D and activatingKIRs are
also expressed by NK cells and promote NK cell activation
upon binding to their ligands, which include stress molecules
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and molecules upregulated in response to inflammation [11].
A combination of loss of binding of inhibitory receptors and
engagement of activating receptors results in NK cell activa-
tion and can facilitate killing of virally infected cells, cancer-
ous cells or inappropriately activated cells.

Tissue-resident populations of NK cells have been de-
scribed in multiple organs with distinct phenotype and func-
tion, indicating specific interactions between these tissues and
NK cells [12]. Indeed, the liver possesses a distinct population
of liver-resident NK cells (lrNKs) important for the immune
function of this organ, along with conventional NK cells
(cNKs) (Fig. 2). While cNKs circulate through the liver and
vasculature, lrNKs are believed to remain in the liver [13].
cNKs are broadly categorised based on expression of the ad-
hesion molecule CD56 as CD56bright or CD56dim NK cells,

with the latter subset being the most numerous in peripheral
blood [14]. In contrast, CD56bright NK cells are largely
enriched in the liver compared to the blood, with almost equal
frequencies of CD56bright compared to CD56dim NK cells
[15]. These CD56bright lrNKs can be further defined based
on their expression of CD69, CD49a, CCR5 and CXCR6
[13]. CD69 suppresses tissue egress through association with
sphingosine-1-phosphate receptor 1, and CD49a is a collagen-
binding integrin, thus promoting tissue retention [16, 17]. The
presence of CCL3, CCL5 and CXCL16 in liver sinusoids
further promotes the retention of NK cells expressing the cog-
nate receptors CCR5 and CXCR6 [13]. lrNKs have been
shown to be not only phenotypically different from their
CD56bright cNK brethren but also transcriptionally distinct
[18], and as with other tissues [19], these resident NK cells

Fig. 1 Activating and inhibitory receptors expressed onNK cells. NK cell-activating receptors binding to their respective ligands promote activation and
subsequent cytotoxicity and cytokine production, while inhibitory receptors oppose this response. Created with BioRender.com

Fig. 2 Subsets of NK cells
present within the liver and
vasculature. CD56bright cNK cells
are located primarily within the
vasculature. CD56dim cNK cells
can be found within the
vasculature and also in the liver
parenchyma. Resident within the
liver are lrNK cells expressing
CCR5, CXCR3, CXCR6, CD69,
CD49a and CD56. Created with
BioRender.com
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appear to be specifically suited to function in the liver envi-
ronment and integral to the regulation of immune function in
this organ. Here, we discuss liver NK cells and their involve-
ment in the pathogenesis of liver inflammation and diseases
following dysregulation.

NK cells in the liver

Liver-resident NK-like cells (NK1.1+ CD3-) were first de-
scribed in the mouse and were initially distinguished from
cNK cells by the absence of the mature NK cell marker
CD49b and high TRAIL expression at steady state [20]. The
identification of an increasing number of tissue-resident NK-
like cells, not only in the liver but also in other non-lymphoid
tissues, led to the introduction of a new nomenclature, which
classifies most tissue-resident NK-like cells as innate lymphoid
cells type 1 (ILC1) in the mouse (reviewed in Vivier et al. 2018
[21]). Although ILC1s have also been described in humans,
NK cells and ILC1s are difficult to distinguish due to the lack
of specific markers. For the purpose of this review, we will
therefore refer to human liver-resident NK cells and ILC1s as
lrNK cells. The transcription factors required for mouse liver
ILC1 cell development are distinct from their cNK counter-
parts: murine ILC1s depend on T-bet and Hobit, while cNK
cells require Eomes for their development [22–24]. Liver ILC1s
have recently been reported to develop locally, with IFNγ pro-
duction by liver ILC1s promoting their development from
IFNγR+ liver progenitors [25]. Transfer and parabiosis studies
have confirmed that hepatic ILC1s home back to the liver
where they are maintained without recirculating, thus identify-
ing them as bona fide tissue-resident cells [26, 27]. Further
investigations revealed extensive phenotypic differences be-
tween ILC1 and cNK populations [21, 26, 27]. Figure 3 pro-
vides an overview of murine liver cNK cells and ILC1s at
steady state. Unsupervised dimensional reduction analysis of
NKp46+ cells in the liver (Fig. 3A) shows distinct clustering
of ILC1s and cNK cells (Fig. 3B). ILC1s are distinguished as
CD49a+ CD49b- cells (Fig. 3C), which lack the expression of
Eomes, CD11b, CD62L and KLRG1 but express CD200R,
CXCR6, CD69 and CD103, while cNK cells present with the
reverse phenotype at steady state (Fig. 3D). Furthermore, unlike
cNK cells, ILC1s have limited cytotoxic potential but are capa-
ble of mounting a strong cytokine response [21].

Subsequent to the characterisation in the mouse, human
CD56bright CD16- lrNK cells were distinguished from hepatic
cNK cells based on the expression of CD69 and the chemokine
receptors CXCR6 and CCR5 [13, 18]. Expression of these
receptors specifically occurs on lrNK cells, but not on cNK
cells, and the chemokine receptors CCR5 and CXCR6 are
thought to mediate localisation to liver sinusoids, a compart-
ment rich in the expression of the respective ligands CCL3,
CCL5 and CXCL16 [13]. CXCR6+ lrNK cells express Eomes

but lack T-bet along with a number of KIR molecules [13, 18].
Functionally, CXCR6+ lrNK cells produce less IFNγ, tumour
necrosis factor (TNF) and macrophage inflammatory protein
(MIP)-1β in response to stimulation than hepatic cNK cells.
They also express less perforin and Granzyme B but show
enhanced Granzyme K expression and are capable of degranu-
lation [28]. Finally, a study investigating hepatic NK cells in
liver transplants ascertained that, although CXCR6+ lrNK cells
are long-lived and do not recirculate, they could still be
replenished from the circulation [28]. In addition to CXCR6+

CD56bright CD16- lrNK cells, a second liver-resident NK cell
population has been described [29]. These cells are CD56bright

CD16-, lack CXCR6 expression and instead are identified by
expression of CD49a—similar to mouse ILC1s [26, 29].
CD49a+ lrNK were present in approximately 40% of tested
individuals with a frequency of approximately 2.3% of hepatic
CD56bright cells. CD56bright CD49a+ NK cells specifically local-
ised to the liver parenchyma and, unlike CXCR6+ lrNKs,
expressed T-bet but not Eomes. They also exhibited a pattern
of KIR and NKG2C expression indicative of clonal-like expan-
sion, although they did not express CD57, a marker expressed
on differentiated cNK cells. Furthermore, CD56bright CD49a+

lrNK cells had reduced capacity to degranulate compared to
hepatic CD49a- NK cells but were potent producers of cyto-
kines such as IFNγ, TNF and GM-CSF.

Overall, there is compelling evidence to support that the liver
harbours multiple distinct subsets of resident as well as circu-
lating NK cells at steady state. We are only beginning to under-
stand the roles that these NK cell subsets play in response to
immunological challenges, with many questions still unan-
swered, such as their roles in maintaining liver homeostasis or
during hepatic insults. In this regard, the phenotype, function
and anatomical localisation of lrNK and hepatic cNK may pro-
vide insights about their specific roles in maintaining overall
liver health. For instance, it is highly plausible that sinusoidal
lrNK cells may play a role in shaping the responsiveness of
other sinusoidal cells, such as Kupffer cells. Interestingly, it
has been reported that murine liver ILC1s can generate
antigen-specific recall responses in a model of contact hyper-
sensitivity [26, 30]. By extension, human CD49a+ lrNK cells
may therefore represent an analogous memory-like population,
as they are characterised by the expression of a receptor reper-
toire consistent with clonal expansion [29]. However, how
tissue-resident cells can induce antigen-specific responses in
distal sites remains to be understood. Below, we review the
roles of hepatic NK cell populations in liver homeostasis and
in the context of different inflammatory settings.

NK cells in liver homeostasis and tolerance

The liver is continuously exposed to microorganisms, micro-
bial products and food antigens delivered through the portal
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vein from the intestine. This necessitates an increased level of
immune tolerance to avoid excessive inflammation, tissue
damage and loss of liver function. This immunological status
is mediated by a complex interplay of hepatic cells and im-
mune cells, including NK cells. NK cells can shape, and in
turn are shaped, by the hepatic microenvironment via both
direct cell-to-cell contact and the production of soluble factors.
Kupffer cells are liver sinusoid-resident macrophages that
play an important role in activating NK cells via the expres-
sion of interleukin (IL)-18 following the detection of microbi-
al products [31]. Simultaneously, Kupffer cells can also sup-
press NK cell activity through the production of IL-10 that
leads to inhibition of IFNγ expression and renders NK cells
hyporesponsive [31, 32]. In addition, the exposure of hepatic
NK cells to apoptotic cells has been shown to induce

transforming growth factor beta (TGF-β) expression by NK
cells, which acts in an autocrine manner to reduce NK cell
IFNγ production [33]. The roles of hepatic lrNK and cNK cell
populations in regulating liver homeostasis and tolerance are
not well delineated and thus require further investigation to
dissect their specific contributions. Transcriptional profile
analyses of murine hepatic NK cells and ILC1s revealed in-
creased expression of genes associated with immune regula-
tion in resident ILC1s and an increase in genes associated with
cytotoxic function in cNK cells [34]. Consistent with this,
hepatic ILC1s are capable of providing protection against
acute liver injury [35]. Following the initiation of liver dam-
age, murine ILC1s are activated via IL-12 to produce IFNγ,
which induces the upregulation of the antiapoptotic factor Bcl-
xL in hepatocytes. These findings stand in contrast to previous

Fig. 3 Distinct phenotypes characterise mouse liver cNK cells and ILC1s
at steady state. Liver leukocytes from naïve BALB/c mice were prepared
for flow cytometric analysis. A Single live CD45+ cells were gated for
CD3- TCRβ- CD19- NKp46+ cells, and B unsupervised nonlinear
dimensional reduction using t-distributed stochastic neighbourhood
embedding (tSNE) analysis was performed. Distinct clustering of cNK

cells (blue population) and ILC1s (pink population) is shown. C Total
NKp46+ cells analysed for CD49a and CD49b expression to distinguish
ILC1s and cNK cells. D Histogram overlays for the indicated marker
expression in ILC1s and cNK cells are shown. Data are concatenated
from 3 mice and are representative of 3 independent experiments
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reports linking NK cell IFNγ production to increased liver
damage and impaired regeneration in models of partial hepa-
tectomy with concomitant viral infection or toll-like receptor
(TLR) 3 ligand administration [36, 37]. It is important to note
that these studies did not dissect the respective roles of lrNK
and cNK cells. A possible explanation for the disparate find-
ings on the role of NK cell IFNγ production may thus be due
to cytokine release by cNK cells in distinct niches within the
liver, as well as concentration dependent effects of IFNγ.

NK cells in a diseased liver

NK cells can play a role in multiple liver diseases, including
autoimmune diseases of the liver, cancer, fatty liver disease

and viral diseases. The impact of NK cells on liver diseases is
mediated through their direct cytotoxic function against hepa-
tocytes, cholangiocytes or other immune cells in the liver,
including T cells and antigen-presenting cells, and the secre-
tion of cytokines, including IFNγ (Fig. 4). NK cells can there-
by either promote or reduce liver inflammation. Under normal
circumstances, cytotoxic and inflammatory functions of NK
cells aid in the clearance of acute disease, thus facilitating a
return to homeostasis. However, persistent insults without res-
olution can lead to chronic liver inflammation due to dysreg-
ulation of inflammatory processes. Persistent inflammation
can lead to liver fibrosis, which can ultimately progress to
cirrhosis and permanent liver damage. Although acute inflam-
mation can be helpful in restoring health, chronic inflamma-
tion is a common hallmark of multiple liver diseases

Fig. 4 Potential role of NK cells in promoting and reducing liver
inflammation. NK cells can promote liver inflammation through the
secretion of pro-inflammatory cytokines and the killing of hepatocytes

and cholangiocytes. On the other hand, NK cells can reduce liver
inflammation through the killing of activated T cells and other liver-
resident cells. Created with BioRender.com
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facilitated by NK cells, along with other immune cells. The
role of cNK cells in the aetiology of a number of liver diseases
is discussed below.

NK cells in autoimmune liver diseases

Dysregulation of the liver’s immune milieu due to both genet-
ic and environmental factors can lead to autoimmune targeting
of liver-specific compartments. Three main autoimmune dis-
eases have been described in the liver: primary biliary
cholangitis (PBC), primary sclerosing cholangitis (PSC) and
autoimmune hepatitis (AIH) [38].

PBC is most prevalent in women and is typically
characterised by destruction of the small intrahepatic bile ducts
and production of anti-mitochondrial antibodies [40]. Both cir-
culating and liver NK cell frequencies are increased in PBC
patients, as is the cytotoxic function of NK cells [39, 40], sug-
gesting that NK cells may be involved in PBC pathogenesis.
Indeed, biliary epithelial cells (BECs) have been shown to be
destroyed by autologous NK cells at a high NK:BEC ratio [41].
Interestingly, at a low NK:BEC ratio, NK cells protect BECs
from subsequent destruction by NK cells via IFNγ-mediated
upregulation of HLA, though this renders the BECs susceptible
to killing by autoreactive T cells [41], again suggesting that NK
cells can promote or reduce disease progression depending on
the specific circumstances. Circulating NK cells expressing
CXCR6 and CD49a are found in higher frequencies in PBC
patients compared to healthy controls, and low-dose IL-12
stimulation has been shown to preferentially increase expres-
sion of these markers [42], potentially linking monocyte acti-
vation to NK cell dysregulation. Together, these data suggest a
propensity for liver homing of NK cells in PBC and a potential
role for NK cells in lysing BECs.

PSC occurs equally in both males and females but is more
often subclinical in females [43, 44]. PSC is characterised by
destruction of both intra- and extra-hepatic bile ducts leading to
fibrosis and diffuse inflammation [38]. The frequencies of
HLA-Bw4 and HLA-C2, ligands for the inhibitory NK cell
receptors KIR3DL1 and KIR2DL1, respectively, were reduced
in PSC patients compared to healthy controls, indicating a po-
tential role for NK cells in the disease [45]. PSC patients with
less fibrosis were shown to have more hepatic NK cells [46],
potentially due to the reported anti-fibrotic role of NK cells in
the liver via killing of pro-fibrogenic hepatic stellate cells
(HSCs) [47–50]. Increased CCR7 expression has been reported
on circulating and intrahepatic NK cells in PSC patients [51],
and plasma levels and intrahepatic expression of CCL21, the
ligand for CCR7, were increased in PSC patients [51].
Moreover, CCL21 can be produced by CD11c+ cells present
in the portal tracts of PSC livers [52]. Overall, these data sug-
gest that the recruitment of CCR7-expressing NK cells may be
contributing to liver inflammation in PSC patients.

AIH is a chronic liver disease that can present as either type
I or type II disease [53]. These two disease types can be dis-
tinguished based on the presence of circulating autoanti-
bodies. Anti-nuclear antibodies or anti-smooth muscle anti-
bodies define type I disease, and anti-liver kidney microsomal
type-1 or anti-liver cytosol type-1 autoantibodies define type
II disease [54–57]. Type I is the most common form of the
disease and occurs predominantly in females, while type II
is more frequent in girls between the ages of 2 and 14 [56,
58]. In a Japanese cohort, KIR3DL1 and the cognate ligand
HLA-B Bw4-80Ile were associated with AIH, while
KIR3DL1/HLA-B Bw4-80Thr and KIR2DL1/HLC-C2 were
associated with protection from the disease [59]. In a separate
study, KIR2DS1 and HLA-C2were associated with AIH [60].
These associations between KIR/HLA compound genotypes
and AIH suggest a potential role for KIR+ NK cells in AIH
pathogenesis. Furthermore, a recent study showed that a SNP
in the HLA-DP beta chain is associated with the risk of devel-
oping AIH [61]. Interestingly, this susceptibility SNP tracks a
subset of HLA-DP molecules that serve as ligands for the
activating NK cell receptor NKp44 [62], further supporting a
role of NK cells in AIH pathogenesis. PolyI:C treatment in a
mouse model of hepatitis demonstrated recruitment and acti-
vation of NK cells in the liver with partial disease abrogation
following NK cell depletion [63]. The frequency of circulating
CD56bright NK cells was found to be increased in untreated
AIH patients prior to corticosteroid treatment [64], whereas
decreased frequencies of circulating CD56dim NK cells have
been observed in patients with active AIH or while in remis-
sion [65]. Interestingly, in a mouse model of AIH, CXCR3+

NK cells, similar to human CD56dim NK cells, were enriched
in the liver, though both circulating and hepatic NK cells had
increased cytotoxic phenotypes [65]. These data further sug-
gest an important role for NK cells in AIH, including possible
recruitment of destructive NK cells from the periphery.
However, lrNK cells might also modulate the function of
antigen-presenting cells or T cells in the liver and thereby
reduce liver inflammation in AIH (Fig. 4). Overall, further
research is required to understand the precise role of lrNK
cells, and particular subpopulations of lrNK cells, in the path-
ogenesis of autoimmune liver diseases.

Viral infections of the liver

A number of viruses infect the liver; however, the most prev-
alent are the hepatotropic hepatitis viruses. There are 5 types
of hepatitis viruses, classified as Hepatitis A to E despite these
viruses being unrelated to each other [66]. Hepatitis A (HAV)
and E (HEV) cause only acute infection, while hepatitis B
(HBV), C (HCV) and D (HDV) can establish long-lasting
chronic infections. In addition, chronic HBV and HCV infec-
tion can lead to the development of life-threatening liver
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diseases, such as cirrhosis and HCC. Although vaccines are
available for HAV, HBV and HDV, and HCV is treatable by
direct acting anti-virals (DAA), these viral infections continue
to cause considerable morbidity and mortality and carry a
significant burden of disease globally [67].

In patients with acute HBV infection, NK cells are highly
activated as characterised by elevated expression of activating
receptors, reduced expression of inhibitory receptors, increased
IFNγ expression and enhanced ability to degranulate compared
to NK cells from healthy controls [68, 69]. Importantly, this
increased activation state was shown to correlate with the se-
verity of liver damage (likely promoted by the cytolytic capac-
ity of NK cells) as well as improved HBV control (likely via
IFNγ production by NK cells) [68]. A more recent study
outlined a role for activation of antibody-dependent cellular
cytotoxicity (ADCC) by NK cells in responses to acute HBV
infection and the generation of both cytotoxic and cytokine
responses [70]. In addition to acting as direct effectors, NK cells
can promote adaptive responses in a mouse model of acute
HBV infection [71]. IFNγ production by hepatic CD49a-

CD49b+ cNK cells improves anti-viral CD8+ T cells responses,
leading to enhanced viral clearance [71]. By contrast, during
chronic HBV (CHB) infection, NK cells display fewer activat-
ing and more inhibitory receptors and lose effector functions,
particularly the capacity to secrete cytokines [72, 73]. These
findings are consistent with recent studies describing the expan-
sion of dysfunctional CD56- CD16+ NK cells and a transcrip-
tional NK cell profile similar to that of exhausted T cells in
CHB patients [74, 76]. NK cell dysfunction in CHB patients
is mediated by elevated expression of immunosuppressive cy-
tokines such as IL-10 and TGF-β [75, 76]. Blocking these
cytokines increased the expression of activating receptors and
improvedNK cell effector function. AlthoughCHB significant-
ly decreases the functionality of NK cells, numerous studies
have reported increased TRAIL expression on both circulating
and hepatic NK cells [77–79]. CD56bright TRAIL+ NK cells can
kill hepatocytes in vitro, and their presence has been associated
with the severity of liver damage in patients with CHB-related
liver cirrhosis [77, 78]. Furthermore, TRAIL+ NK cells have
been shown to induce apoptosis of HBV-specific CD8+ T cells,
which would thereby lead to impaired virus control and in-
creased immunopathology. Thus, TRAIL+ NK cells can medi-
ate both liver damage (by killing hepatocytes) and impair anti-
viral responses (by killing anti-viral T cells) [79].

Similar to HBV, NK cells are involved in the response to
HCV infection. Although the availability of DAAs has signif-
icantly improved the outcome of HCV infection, HCV-
induced pathologies still pose a major health burden [67],
and understanding the role of the immune response to HCV
remains highly relevant. Genetic analyses have provided evi-
dence for associations between the expression of specific
KIRs and their HLA ligands and the outcome of HVC infec-
tion. This is best exemplified by the finding that the

KIR2DL3/HLA-C1/C1 genotype is associated with spontane-
ous resolution of HCV infection [80]. Furthermore, in culture
systems, KIR3DS1+ NK cells have been shown to recognise
and lyse HCV-infected hepatocytes expressing HLA-F and
have therefore been postulated to assist in controlling HCV
infection [81]. The role of NK cells during acute HCV infec-
tion is clear, but the relevant mechanisms remain largely un-
known. Although NK cells from infected subjects have been
reported to have an enhanced capacity to secrete IFNγ and
degranulate compared to those from uninfected controls, these
activities do not appear to correlate with the outcome of infec-
tion [82]. Interestingly, a recent study has shown that NK cells
activated by cytokines present during HCV infection can kill
CD4+ T cells and has proposed that this may actually promote
progression to chronicity [83]. In patients with chronic HCV
(CHC) infection, the distribution of NK cell subsets is altered,
and there is a relative increase in CD56bright NK cells com-
pared with healthy controls [84, 85]. Furthermore, NK cells
display both phenotypic and functional changes. Despite
some inconsistencies between different studies, increased ex-
pression of activating receptors, such as NKG2D and NKp44,
has been reported in NK cells from CHC patients compared to
those from healthy controls [73, 86]. A polarisation in NK cell
functionality, manifesting as reduced capacity to express
IFNγ and TNF but increased degranulation, indicative of
greater cytotoxic potential, was noted in CHC patients [86].
This phenotype was attributed to exposure to IFNα as reca-
pitulated by exposingNK cells to this cytokine in vitro [86]. In
separate studies, CHC infection was associated with a de-
crease in NK cell effector function, a phenotype linked to
increased express ion of the inhibi tory receptor
CD94/NKG2A [87, 88]. NK cells from CHC patients exhib-
ited higher CD94/NKG2A expression and produced elevated
levels of IL-10 and TGF-β when cultured with hepatocytes
expressing HLA-E, the CD94/NKG2A cognate ligand [87].
Blocking NKG2A signalling resulted in reduced IL-10 and
TGF-β production by NK cells and restored the ability of
NK cells to participate in the activation of DC required to
prime anti-viral T cell responses [87]. A more recent study,
using a humanised mouse model, confirmed that impaired NK
cell function contributes to HCV persistence and that blocking
NKG2A signalling can revive NK cell IFNγ secretion and
improve NK cell cytotoxicity [88]. This increase in IFNγ
production led to improved anti-viral CD8+ T cell responses
and reduced HCV loads. Importantly, chronic HCV infection
appears to permanently affect the functionality of NK cells, as
the NK cell repertoire remained altered even after successful
DAA treatment [89]. How this may affect NK cell responses
to other immunological challenges is unknown. The respec-
tive roles of lrNK versus circulating NK cells in the response
to CHC infection are not well understood. Some insight has
been provided by a recent study reporting that CHC patients
with lower liver disease scores showed an expansion of
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hepatic CD56bright CD16- NK cells, a population thought to be
resident in the liver [28, 90]. Expansion of CD56bright CD16-

lrNK cells also correlated with increased levels of IL-10 in
portal vein blood and reduced responsiveness of hepatic lym-
phocytes to TLR stimulation, compared to circulating lym-
phocytes [90]. These findings suggest that lrNK cells may
be involved in maintaining liver homeostasis in CHC.
Overall, it is evident that NK cells play an important role in
the immune response to both acute and chronic HBV and
HCV infection. Activated NK cells can participate in elimina-
tion of virally infected cells and regulation of anti-viral re-
sponses, as well as maintenance of liver homeostasis, partic-
ularly in the acute stages of infection. Thus, dysregulated NK
cell responses are often characterised by diminished effector
responses and an inhibitory phenotype allowing for viral per-
sistence and enhance tissue damage. Further studies are re-
quired to determine not only which type of NK cell responses
are required for optimal viral control at different stages of
infection but also the distinct roles that tissue-resident and
circulating NK cells play in these processes.

In some instances, viral hepatitis can be caused by mem-
bers of the herpesviridae family, such as cytomegalovirus
(CMV) [91]. Although CMV hepatitis is rare in immunocom-
petent hosts, the virus can cause severe disease in immuno-
compromised individuals. Acute CMV infection is usually
controlled without causing disease, but the virus remains life-
long in a state of latency, and intermittent CMV reactivation
occurs but is controlled by the immune system [91]. Immune
responses to CMV have been widely studied using mouse
models of infection with murine CMV (MCMV). These
models have provided extensive insight into the role of NK
cells in the immune response to MCMV infection in the liver.
Following acute infection, NK cells are recruited into the liver
where they contribute to the control of MCMV through cyto-
toxic and cytokine (mainly IFNγ) responses [92, 93]. During
infection, NK cells also play a critical role in regulating mac-
rophage activation in a perforin-dependent manner [94]. In the
absence of NK cell-mediated regulation, excessive TNF pro-
duction by macrophages leads to severe liver damage [94].
During acute MCMV infection, NK cells in the liver also
produce IL-10 [95]. Although this cytokine does not contrib-
ute to viral control or the initiation of adaptive anti-viral im-
munity, it limits the magnitude of CD8 T cell responses and
consequent pathology in mice lacking perforin [96]. In
humans, expansion of CD56dim CD16+ NK cells expressing
NKG2C has been noted in individuals with active CMV in-
fection [97, 98]; these cells are maintained long term and can
expand following exposure to CMV antigen, as noted in allo-
geneic stem cell transplantation [99]. The role of these NK
cells, referred to as “adaptive or memory-like” NK cells, re-
mains largely unknown, and further investigation is required
to determine howmemory-like NK cells affect CMV infection
and reactivation in organs like the liver.

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the recently emerged virus at the centre of a global
pandemic. SARS-CoV-2 infection primarily targets cells of the
respiratory tract but virus has been detected in multiple organs,
including the liver [100]. Furthermore, SARS-CoV-2 infection
can have a series of extrapulmonary manifestations, including
hepatobiliary damage (reviewed in [101]). Acute hepatitis has
been reported [102, 103], and increased concentrations of en-
zymes associated with liver damage (AST, ALT) were found to
correlate with the severity of COVID-19 disease [103–105].
COVID-19-associated complications have also been reported
in a liver transplant patient, where infection appeared related to
the virus being passed by a SARS-CoV-2-positive donor [106].
Enormous efforts have been directed to unravel the complexi-
ties of protective versus pathogenic immune responses in the
context of SARS-CoV-2 infection. However, current under-
standing of tissue-specific immunity in tissues such as the liver
is still limited. Although tissue inflammation and increased fre-
quencies of immune cells have been observed in livers of
COVID patients, the potential contribution of lrNK or cNK
cells to SARS-CoV-2 control and/or COVID-19 pathology re-
mains unknown [107]. Analyses of circulating NK cells have
revealed a reduction in both CD56bright and CD56dim NK cells
in COVID-19 patients compared to healthy controls [108]. The
remaining NK cells displayed a more activated phenotype but
also appeared to upregulate markers associated with limiting
NK cell function (NKG2A), and indeed NK cell effector func-
tions were compromised in severely ill COVID-19 patients
[108–110]. Interestingly, an enrichment of “adaptive”NK cells
was also observed [108]. A reduction in circulating NK cells
has also been reported in children infected by SARS-CoV-2
prompting investigators to suggest that NK cells might have
been recruited to sites of infection to provide protective immu-
nity [111]. Overall, NK cells clearly mount a response to
SARS-CoV-2 infection, but similar to hepatitis virus infections,
they might become dysfunctional during severe disease, and
their role in organs like the liver requires further investigation.

In sum, the available evidence demonstrates that during
viral infections, populations of NK cells that reside in or are
recruited to the liver mediate a plethora of activities. These
activities range from those that clearly favour health by pro-
viding either anti-viral protective immunity or limiting overt
inflammation, to those that are highly pathogenic and contrib-
ute to tissue disruption, either directly or by favouring the
pathological activities of other cell types. For these reasons,
it is imperative to define the role of NK cells in viral infections
so that appropriate interventions can be utilised.

Fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) is the most com-
mon chronic liver disease and is characterised by steatosis, the
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accumulation of lipids, within hepatocytes. Progression of the
disease can lead to non-alcoholic steatohepatitis (NASH) in-
volving inflammation and fibrosis. Risk of liver cirrhosis and
progression to HCC is increased following transition to
NASH. Additionally, NAFLD is often associated with meta-
bolic syndrome along with obesity, high blood pressure and
type II diabetes. NAFLD can be controlled early through
weight loss and lifestyle changes, but no other treatment is
currently available, and the associated co-morbidities compli-
cate treatment if disease progresses further to HCC.
Alarmingly, as obesity increases in western nations, so does
the frequency of NAFLD and NASH. Evidence from murine
models of liver disease have implicated NK cells in disease
progression to NASH. In these models, NK cell ligand expres-
sion is increased in the liver, thus promoting accumulation of
NK cells [112, 113]. IL-15-based activation of NK cells has
been shown to lead to NASH in the murine setting [114], but
interestingly, NK cells have also been shown to prevent liver
fibrosis [50, 115]. This is achieved both through NK cell in-
fluence on macrophage polarisation in the liver in an NKp46-
dependent manner and via killing of HSCs by NK cells in an
NKG2D-dependent manner [50, 115]. In humans, NKp46-
based protection against fibrosis has also been described,
though in the setting of HCV [116]. Increased expression of
the activating receptor NKG2D by circulating NK cells has
been observed in NASH patients [117], and it is possible that
this results in increased HSC killing as seen in the mouse
model. Diedrich et al observed a negative correlation between
fibrosis and NK cell frequency in the liver, indicating an in-
volvement of NK cells in preventing fibrosis [118].

Interestingly, lower NKG2D expression was observed in cir-
culating NK cells of NAFLD patients compared to healthy
individuals, and a similar trend was seen in NK cells within
the liver [118]. The downregulation of NKG2D in the context
of NAFLD may give rise to a more pro-fibrotic NK cell pop-
ulation, thus contributing to worsening liver disease and fibro-
sis. It is possible that changes such as this are mediated by
metabolic changes. Indeed, the function of NK cells has been
shown to be reduced in obese patients due to excessive lipid
uptake [119]. NK cells are also known to produce IL-22 fol-
lowing activation [58]. In mice, IL-22 has been shown to have
an anti-fibrotic effect [120]; however, IL-22 has also been
demonstrated to have a pro-fibrogenic role in a chronic
HBV model [121], further confusing matters. Altogether,
these data indicate that NK cells have a complex role in the
pathogenesis of NAFLD.While NK cells appear to have a role
in preventing fibrosis, changes in NKG2D-expression by NK
cells accompany increasing fibrosis. Furthermore, pro-
inflammatory NK cell signalling may promote NAFLD pro-
gression to NASH, and the role of IL-22 in fibrosis is still not
fully understood.

NK cell based/targeted therapies for liver
disease

As NK cells play an important role in liver disease, they also
have the potential to serve as a therapeutic target for these
diseases. Modulation of existing NK cells can be achieved
through cytokine stimulation or antibody treatment targeting

Fig. 5 NK cell targeted therapies. A virally infected cell A inhibiting an
NK cell via signalling through NKG2A orB being killed due to blockade
of inhibition with anti-NKG2A monoclonal antibody. C A CAR NK cell

recognising an overexpressed surface protein on an infected cell via an
engineered CAR receptor causing activation and subsequent killing.
Created with BioRender.com
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either inhibiting or activating NK cell receptors. Indeed, NK
cells respond to a wide array of cytokines including type I
IFNs, IFNγ, IL-2, IL-12, IL-15 and IL-18. NK cells from
IFNα-treated HCV patients have been shown to have in-
creased killing of HSCs in vitro, which has been linked to a
reduction in liver fibrosis [49]. IFNα treatment was shown in
early studies to reduce fibrosis in HCV patients [122, 123]
though more recent data indicates that it provides no benefit
[124]. Of note, treatment of HCV with direct DAAs shows
long-term decrease in liver fibrosis, indicating that viral clear-
ance is sufficient for improvement [125]. Although DAAs
now offer effective treatment against HCV, the same is not
true for HBV. Treatment with a TLR8 agonist can indirectly
activate NK cells via dendritic cell-produced cytokines, and
this may prove to be an effective way to combat HBV [126].

Checkpoint blockade has transformed the treatment of mel-
anoma by reversing exhaustion and restoring effective anti-
cancer activity of T cells. As with T cells, NK cells also ex-
press inhibitory receptors such as KIRs, NKG2A and TIGIT
on their cell surface to quell unwanted activation. NK cells
expressing inhibitory NKG2A have been shown to be in-
creased in chronic HBV infection [127]. Interestingly,
ex vivo blockade of NKG2A increased NK cell cytotoxicity,
and blockade in a mouse HBV model improved viral clear-
ance [127]. NKG2A blockade in a mouse HCV model was
also shown to improve NK cell cytotoxicity [88]. These re-
sults indicate that checkpoint blockade of NK cells may be a
viable anti-viral treatment in chronic liver infection (Fig. 5).
Blockade of TIGIT [128] and TIM3 [129], inhibitory mole-
cules expressed by NK cells, is known to improve NK cell
cytotoxicity against tumours. These molecules are also highly
expressed on NK cells in HCV patients with advanced liver
fibrosis, indicating that blockade, in this instance, may restore
NK cell functionality and protection [130].

Genetically modified NK cells with chimeric antigen recep-
tors (CAR NK cells) targeting HCC are currently being tested
in multiple clinical trials, as are bi- and tri-specific antibodies
designed to activate NK cells at the same time as targeting them
to tumour cells [131, 132]. CARs are receptors with a specific,
often antibody-derived, binding region with downstream sig-
nalling domains designed to enhance activation in the context
of a specific target ligand [133] (Fig. 5). CAR NK cells and bi-
and tri-specific antibodies all rely on the overexpression of
specific ligands on cancerous cells. Whether these technologies
can be re-purposed in the context of viral infections or liver
fibrosis is yet to be seen and would rely on specific surface
expression of otherwise rare ligands on target cells.

Conclusion

NK cells are present in high abundance in the liver and thus
have a large impact on the immune environment in the organ.

They provide potent pro-inflammatory and cytotoxic defence
against viral challenge, but dysregulation of the NK-cell re-
sponse can lead to chronic inflammation and disease. Despite
the importance of NK cells in the liver, much is still unknown
about the exact mechanisms by which they contribute to dif-
ferent liver diseases, and more study is needed to understand
under which circumstances NK cell subpopulations can pro-
mote or reduce liver inflammation. Discovery of distinct pop-
ulations of NK cells within the liver furthermore suggests a
heterogeneity in their roles. Better understanding of the spe-
cific function of different lrNK cells and cNK cells present in
the liver may help to elucidate the importance of these subsets
in different disease settings. Indeed, the more is known about
the role of NK cells in liver disease, the more opportunity
there is for targeted manipulation of these cells to ultimately
improve patient outcomes.
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