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n aster of microtubules is a set of flexible polar fila-
ments with dynamic plus ends that irradiate from a
common location at which the minus ends of the

filaments are found. Processive soluble oligomeric motor
complexes can bind simultaneously to two microtubules,
and thus exert forces between two asters. Using computer
simulations, I have explored systematically the possible
steady-state regimes reached by two asters under the action
of various kinds of oligomeric motors. As expected, motor

A

 

complexes can induce the asters to fuse, for example when

 

the complexes consist only of minus end–directed motors, or
to fully separate, when the motors are plus end directed.
More surprisingly, complexes made of two motors of opposite
directionalities can also lead to antiparallel interactions
between overlapping microtubules that are stable and
sustained, like those seen in mitotic spindle structures. This
suggests that such heterocomplexes could have a significant
biological role, if they exist in the cell.

 

Introduction

 

In eukaryotic cells, polar filaments and associated proteins
play an essential role in determining intracellular order. Micro-
tubules are often found in highly connected structures,
such as the mitotic spindle in dividing cells (Karsenti and
Vernos, 2001; Wittmann et al., 2001) or complex arrays in
differentiated cells. These cellular assemblies can be observed
and perturbed, and this has yielded invaluable insights into
their modes of organization and their dynamic properties.
Microtubules can be reconstituted from pure tubulin, with
the optional addition of other purified cytoskeletal proteins,
and these in vitro studies have provided quantitative data
about their physical properties. However, although the fila-
ments, many associated proteins, and most of the molecular
motors participating in the spindle have been identified, and
much is known about their individual modes of action, we
still understand poorly how they participate collectively to
the morphogenesis and steady-state dynamics of this structure.
Questions as to how a balance of forces is achieved and what
makes it stable are difficult to address in quantitative terms
in real spindles. It seems that to examine such fundamental
questions, it is desirable to study structures with intermediate
levels of complexity and to develop tools to handle them.

 

Computer simulations are one such tool, and they have been
used before to examine the motility of polar filaments driven

by immobilized motors (Bourdieu et al., 1995; Gibbons et
al., 2001), microtubule dynamic instability (Bayley et al.,
1989; Gliksman et al., 1993; Dogterom et al., 1995), actin
bundle contraction (Nakazawa and Sekimoto, 1996; Kruse and
Julicher, 2000), aster centering inside a box (Holy et al., 1997),
and the formation of microtubule asters by soluble oligomeric
motors (Nédélec et al., 1997, 2001; Surrey et al., 2001).

Here I describe computer simulations that calculate the
evolution of a set of dynamic filaments with motor proteins.
Using these stochastic simulations, I examine how two asters
of dynamic microtubules nucleated by two microtubule
organizing centers can reach a steady-state configuration in
which microtubules overlap fully or partially. Such overlaps
are essential in some spindles to counteract the forces that
pull the chromosomes apart.

 

Results

 

To investigate theoretically whether bifunctional motors can
produce a stable interaction between two microtubule asters,
a simulation was built (see Materials and methods). It includes
asters composed of a variable number of dynamic and flexible
microtubules, and oligomeric motor complexes that can
bind up to two microtubules, ultimately producing forces
between the asters.

Although the situation studied is very simple compared
with that in a cell, its quantitative description already required

 

�

 

27 parameters (Table I), and the first problem was to find
values for all of them. Three parameters are model specific
and do not reflect any real property (e.g., the time step dt);
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their values were chosen to generate sufficient numerical
precision (see Materials and methods). Many of the other
parameters describe known properties of the situation stud-
ied, i.e., temperature, viscosity of the fluid, microtubule ri-
gidity, and dynamic instability, and were set accordingly.
What remained unspecified were the number of microtu-
bules in each aster and the parameters describing the motors.

There are estimates for the values that would be appropriate
for conventional kinesin, and they have been successfully used
to simulate the behavior of synthetic kinesin complexes in in
vitro experiments (Nédélec et al., 2001, Surrey et al., 2001).
However, the motors involved in spindle organization have
not yet been thoroughly biophysically characterized. Most of
their in vivo characteristics, i.e., force, speed, processivity, are
still unknown. To avoid an arbitrary choice, a different ap-
proach was chosen, where these parameters were set randomly
within a reasonable range (Table I). Thus to probe the generic
possibilities of the system, parameter sets were generated to
represent a possible number of microtubules and combina-
tions of motor characteristics: many or few, plus or minus di-
rected, fast or slow, strong or weak, and high or low rates.

In essence, I performed a virtual screen for possible steady-
states for the relative position of two asters exposed to vari-
ous motor complexes. The screen was based on the auto-
matic selection of “persisting interactions” between two
asters among a collection of simulations generated auto-
matically, with “interaction” meaning that the two asters are
linked by motor complexes. Specifically, for each generated
parameter set, a simulation was started from unbound mo-
tors and two randomly positioned asters, and the evolution

 

in time was calculated for 1,000 s of simulated time. A total
of 

 

�

 

50,000 simulations in one dimension (1D)* and

 

�

 

10,000 simulations in two dimensions (2D) were com-
puted. From these, interactions that persisted in time were
selected, and unstable or transient patterns discarded by an
automatic scan that retained only those simulations that had
always at least one motor complex linking the two asters to-
gether, after an initial 500 s, which allowed the system to
equilibrate. The selected simulations fell in one of only four
categories: fusion, separation of the asters, oscillations of the
asters, or stable antiparallel interactions.

Overall, 40% of the simulations were persisting interac-
tions. From the correlations in the corresponding parame-
ters, it was found for example that low off-rate compensates
for low on-rate, or high motor concentration compensates
for low on-rate (unpublished data). Most of these correla-
tions simply show that the motors must have a certain “effi-
ciency” to produce a persisting interaction: the rates and con-
centrations should define an equilibrium in which sufficient
motors can bind two microtubules that are crossing or over-
lapping. This is a basic requirement that does not by itself
guarantee success. Motors with inappropriate speeds, how-
ever efficient they are, never lead to persisting interactions.

Five screens have been performed (Fig. 1) in which two
different motors, u and v, were simulated. By convention, u
and v will also designate the speeds of these motors, with
positive values for plus end–directed motors and negative

 

Table I. 

 

Parameters of the simulation

Parameter description Symbol Value or range of values

Model-specific parameters

 

Time step dt 10

 

�

 

2

 

 s
Filament section R 1.2 

 

�

 

m
Simulation box square, 60 

 

�

 

 60 

 

�

 

m

 

Fixed parameters

 

Total simulated time 1,000 s
Temperature k

 

B

 

T 4.2 

 

�

 

 10

 

�

 

3

 

 pN 

 

�

 

m
Fluid viscosity viscosity 0.05 pN s/

 

�

 

m

 

2

 

Microtubule’s bending modulus E 20 pN 

 

�

 

m

 

2

 

Microtubule dynamic instability: catastrophe and rescue frequencies rescue in s

 

�

 

1

 

, (13 

 

�

 

 L) 

 

�

 

 0.0033; catastrophe in 
s

 

�

 

1

 

, L 

 

�

 

 0.003

 

a

 

Growth and shrinking speeds

 

�

 

10 and 

 

�

 

15 

 

�

 

m/s
Complexes diffusion D 20 

 

�

 

m

 

2

 

/s

 

Independently varied parameters

 

Number of microtubules per aster between 20 and 80, same for both asters
Motor links rigidity K between 5 and 60 pN/

 

�

 

m
Number of complexes: one parameter in screens 3a, b, and c, 
and two parameters in screens 1 and 2

between 500 and 15,000

Motor’s speed (2 parameters) V

 

max

 

between 

 

�

 

1 and 

 

�

 

1 

 

�

 

m/s

 

b

 

 
Motor’s stalling force (2) F

 

max

 

between 0.5 and 2 pN, with F

 

max
2

 

 

 

�

 

 9.dim.K.k

 

B

 

T
Motor’s binding rate (2) P

 

on

 

between 0.04 and 50 s

 

�

 

1

 

Motor’s unbinding rate (2) P

 

off

 

between 0.04 and 50 s

 

�

 

1

 

Motor’s unbinding rate from microtubule end P

 

end

 

P

 

end

 

 

 

�

 

 100 s

 

�

 

1

 

 in screens 1, 2, and 3a, and 0.04 
to 50 s

 

�

 

1

 

 in screens 3b and c
Motor’s force–velocity type (2) one of four models (see Materials and methods)

 

Derived parameters

 

Motor’s reach distance

 

�

 

equals F

 

max

 

/K (see Materials and methods)

 

a

 

L, length of microtubule in 

 

�

 

m.

 

b

 

V

 

max

 

 is rounded to a multiple of 0.01 and V

 

max

 

 

 

�

 

 0 is excluded.

 

*Abbreviations used in this paper: 1D, one dimension; 2D, two dimen-
sions; 3D, three dimensions.
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values for minus end–directed motors. The screens differed
in the way that the motors were assembled into complexes.
Screen 1 considered two kinds of homomotor complexes,
i.e., schematically u–u and v–v. Screen 2 considered homo-
motor complex u–u and MAP motor complex v–z, with z, a
motor of speed zero, in the model. Screens 3a, 3b, and 3c
considered one kind of heteromotor complex (u–v). In all

 

these screens, the number of parameters varied (Table I) and
the number of simulations (

 

�

 

2,000) calculated were similar.

 

Screen 1

 

With two sorts of homocomplexes (u–u and v–v) in all the
combinations of directionality, speed, forces, and rates, all
persisting interactions resulted in the fusion or the full sep-
aration of the two asters. This was usually achieved within
1,000 s, but in rare cases of slow dynamics, the simulations
had to be prolonged in time to reach fusion or full separa-
tion. A persisting interaction with a nonzero distance be-
tween the centers was not found. With only minus end–
directed motors, the fused configuration was globally stable.
In the presence of homocomplexes of plus end–directed
motors only, the fused situation was stable or metastable,
but only arose if the asters were initially very close. When
the asters were initially far enough apart, they separated
further under the action of motors binding antiparallel mi-
crotubules (see Fig. 4).

 

Screen 2

 

The next screen was inspired by a proposed model of the mi-
totic spindle, in which the motors Eg5 and Ncd balance
their forces to determine the overlap zone (Sharp et al.,
1999). Eg5 is a homotetramer and has been proposed to
cross-link two microtubules (Kashina et al., 1996), behaving
essentially like a slow (in vitro, 

 

�

 

0.03 

 

�

 

m/s) double plus
end–directed complex. Ncd has a minus end–directed mo-
tor domain in its COOH terminus (in vitro, 

 

�

 

0.25 

 

�

 

m/s;
McDonald et al., 1990), but also an additional nonmotor
microtubule binding domain (Karabay and Walker, 1999).
Thus Ncd can, in principle, also cross-link microtubules. To
explore this scenario, Ncd was modeled as a heterocomplex
made from a static microtubule binder and a minus end–
directed motor (v–z, with v 

 

	

 

 0 and z 

 

�

 

 0). Eg5 was modeled
as a bifunctional plus end–directed motor (u–u, with u 

 

�

 

0). The speeds and other characteristics of these complexes
were varied randomly within the usual ranges (Table I). As
in the first screen, persisting interactions only resulted in fu-
sion or full separation of the asters.

 

Screen 3a

 

As shown in Fig. 1, when heteromotor complexes (u–v) were
simulated, the speeds of the motors simply determined
which persisting interactions could appear. (1) If u 

 

	

 

 0 and
v 

 

	

 

 0, a persisting interaction always resulted in the fusion
of the asters. (2) If u 

 

�

 

 v 

 

�

 

 0, persisting interaction only
caused full separation of the asters, with the exception of the
metastable situation of initially fused asters. (3) If u 

 

�

 

 v 

 

	

 

0 and u 

 

�

 

 v 

 

	

 

 0, persisting interactions could be of
several kinds. Diverse oscillatory solutions were observed
(unpublished data; see http://www.embl-heidelberg.de/
ExternalInfo/nedelec/asters), provided that the motors unbound
at their maximum force (see Materials and methods). They
were not studied further. More interesting were some per-
sisting interactions, characterized by a complete antiparallel
microtubule overlap in which the distance between the aster
centers was never below 2 

 

�

 

m (Fig. 2). By looking precisely
at the motor complexes in all these simulations, one could

Figure 1. Summary of the screens. Screen 1 was performed with 
two kinds of homocomplexes, with all sorts of configurations of minus 
or plus end–directed motors. It produced fusion of the asters or their 
full separation. Screen 2 is inspired by the putative configuration of 
the biological motors involved in the spindle. Screen 3a was performed 
with one kind of heterocomplex. It produced fusion, full separation, 
oscillations, and one type of nonfused stable interaction, solution 
S1. To achieve S1, the speeds of the motors u and v need to satisfy 
u � v 	 0 and u � v 	 0, as depicted in the diagram. Screen 3b is a 
variation in which the motors could hold on to the microtubule 
ends. Four solutions are found, as discussed in the text.
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see that the balance of forces was always achieved in the
same way. Hence, they all represented the same generic
qualitative solution (S

 

1

 

). S

 

1

 

 was realized in 

 

�

 

10% of the
simulations in this screen, but the sampling was still too
sparse to determine precisely the region in parameter space
associated with S

 

1

 

. However, the speeds of the motors lead-
ing to S

 

1

 

 are found over the entire domain allowed by the
two rules u 

 

�

 

 v 

 

	

 

 0 and u 

 

�

 

 v 

 

	

 

 0 (see Fig. 6). Other pa-
rameters are also important in determining if the motors will
produce S

 

1

 

 or not, but the correlations found are only the
ones expected to be needed to produce efficient motors.

The balance of forces defining S

 

1

 

 can be first described in
1D only, assuming microtubules of equal length. As pictured
in Fig. 3, the antiparallel overlap is always total: some micro-
tubules always reach behind the center of the other aster. The
attractive force between the asters is mostly produced by mo-
tors binding antiparallel microtubules, and the repulsive force

 

is produced by motors bound to parallel microtubules (Fig. 4
A). Both components can be high, typically 100 pN, but can-
cel each other to produce an equilibrium under tension. The
attractive force can be easily understood, as u 

 

�

 

 v 

 

	

 

 0 is suffi-
cient for the antiparallel complex configurations to produce
attraction (Fig. 4 B). The repulsive forces are more surprising,
because one should expect that motors linking two parallel
microtubules exert forces that on average cancel each other
out (Fig. 4 C). A net force arises only if the two possible con-
figurations (u binds to MT

 

1

 

 and v binds to MT

 

2

 

, or v binds
to MT

 

1

 

 and u binds to MT

 

2

 

) are not equally present. As
shown in Fig. 3, this is exactly the case for the motors linking
the parallel overlaps in S

 

1

 

. This asymmetry is a consequence
of the movement of motors, which brings them to the over-
lapping region always in the same configuration.

The equilibrium S

 

1

 

 is stable. Indeed, the forces are ex-
pected to be roughly proportional to the number of doubly

Figure 2. Examples of stable interactions between dynamic asters with heterocomplexes. (Top) Solutions of type S1. The speeds (�m/s) of 
the two motors forming the complex are as follows: left, 0.35 and -0.91; middle, 0.31 and �0.73; and right, 0.6 and �0.83. (Bottom) Example of 
solution S2 speeds are as follows: left, 0.95 and �0.45; middle, 0.47 and �0.45; and right, 0.89 and �0.64. Below each example is plotted 
the distance between the two asters (�m) as a function of time (s). It is not possible to distinguish from these views the different solutions. See 
animations at (http://www.embl-heidelberg.de/ExternalInfo/nedelec/asters).
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bound complexes, which is itself roughly proportional to the
length of the overlap (Fig. 3, S

 

1

 

). So if the asters are pushed
apart from the equilibrium position or if microtubules
shorten, attractive force will rise and repulsing forces will
fall, leading the asters to move back together. The reverse is
true if the asters get too close or if microtubules grow. Al-
though the forces are also proportional to the number of
complexes in solution, the equilibrium is in fact quite insen-
sitive to the concentration of motors (http://www.embl-
heidelberg.de/ExternalInfo/nedelec/asters). This is because
both attractive and repulsive forces are produced by the
same complexes, only in different configurations. The bal-
ance of forces in 2D and 3D (three dimensions) is essentially
the same as described in 1D, but there are additional re-
quirements. For example, to sustain equilibrium, the motors
need to bend the microtubules that extend off axis, and con-
tinuously bring them to overlap with microtubules from the
other aster. The microtubule rigidity should also be able to
sustain their longitudinal load. The simulations show that
all the necessary requirements are indeed met.

To test the uniqueness and accessibility of the equilibrium
position, the simulations leading to S1 were repeated, keeping
the same parameters, but starting from different initial con-
figurations and using different random number sequences.
The average reliability was high (9 reruns failed out of 227),

and many individual S1 solutions had very high reliability.
For example, Fig. 5 shows a simulation in which 100 repeti-
tions never failed to produce the same interaction. All this
suggests that S1 determines a unique equilibrium position
that can be reached from any connected initial configuration.

Screen 3b
The screens described so far considered motors that would
detach immediately when they reached the ends of their
track (high Pends). However, in reality a motor can halt for a
short interval when it reaches the end of a microtubule.
Therefore, the heterocomplex screen 3a was repeated, this
time allowing the motors to stay at the ends of growing mi-
crotubules for variable periods of time (Pend � Pend_growing

varied between 0.04 and 50 s�1), but not at the ends of
shrinking microtubules (Pend_shrinking is fast). Three new
classes of interactions were found, with antiparallel microtu-
bule overlaps: S2, S3, and S4 (Fig. 3). The first one, S2, which
represented �3% of the simulations, is particularly interest-
ing, because it was the only one that led to a partial antipar-
allel microtubule overlap (Fig. 3).

In S2, the balance of forces is between motors that have
reached the end of a microtubule and motors that have not,

Figure 3. The balance of forces in the solutions. Schematic asters 
in 1D only have two opposing microtubules radiating from a common 
center represented by a black diamond. All solutions are built from 
one kind of heterocomplex with two speeds u and v, which must 
satisfy the conditions specified here. Solution S1 is found even when 
motors immediately detach from the end of the microtubules, 
whereas the others are obtained when the motors can stay at the 
end (in this situation, u or v is replaced by e). Pushing or pulling is 
schematically represented here by the tilt of the complex, which is a 
consequence of the relative movement of both motors. The attractive 
or repulsive nature of the forces can be deducted by mentally trying 
to restore the complexes in a vertical position.

Figure 4. Symmetry arguments. (A) Two asters can have antiparallel 
overlaps, but also parallel ones, when they are close. (B) On an 
antiparallel overlap, heterocomplexes of speeds u and v produce 
attractive force if u � v 	 0, or repulsive force if u � v � 0. Both 
possible motor configurations produce forces in the same direction. 
(C) On a parallel overlap, if u ≠ v, the two configurations result in 
opposite forces. If they are equally probable, these forces cancel 
each other. A homocomplex (u � v) does not produce any force on 
parallel microtubules and stabilizes the overlap.
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both acting on antiparallel overlaps (Fig. 3). Hence, the
pushing forces are produced by a population of motors
whose number is roughly proportional to the length of mi-
crotubule overlap, and pulling forces are produced by a pop-
ulation of motors that is proportional to the number of mi-
crotubule ends, i.e., more or less constant. Because pushing
forces decrease directly with aster–aster distance, whereas
pulling forces do not, the asters will be dragged closer or fur-
ther away until they find a distance at which equilibrium is
reached, and this equilibrium will be stable.

A plot shows the requirements on the motor speeds (Fig.
6). S2 only covers part of the domain u � v 	 0 and u �
v � 0. Motors slower than �0.25 �m/s seem to be unable to
achieve S2 equilibrium. Simulations with static microtubules
produced S2 with speeds over the entire domain (unpub-
lished data). Therefore, the apparent additional constraint
is related to the microtubule growth and/or shrinkage
(Vgrowth � 0.16 �m/s; Vshrink � �0.25 �m/s). Indeed, a pre-
requisite for S2 is that motor complexes actually reach the
ends of growing microtubules. This is only possible if the
plus end–directed motor is faster than the growth speed of
the filaments (u � Vgrowth). Furthermore, to be able to pull a
microtubule by its plus end toward the center of the other
aster (Fig. 3, S2), the minus end–directed motor should also
be faster than the growth speed (|v| � Vgrowth). Because these
conditions apply on the effective speed at which motors
move, which is usually only a fraction of Vmax, the slowest
speed found for S2 is not Vgrowth, but a somewhat higher
value, �0.25 �m/s. Further screening should produce a
limit closer to Vgrowth.

Screen 3c
A heteromotor complex screen in which the motors could
stay attached even to shrinking microtubules was performed
(Pend � Pend_growing � Pend_shrinking between 0.04 s�1 and 50 s�1).
With this, a plus end–directed motor who has reached the
plus end of a shrinking microtubule would remain attached,
following the end toward the center of the aster. The solu-
tions S2 are now over all the region u � v 	 0 and u � v �
0 (Fig. 6), meaning that the additional constraints on the
motor speeds were released by allowing them to hold on
shrinking microtubule ends.

The difference between S1 and S2 is revealed by looking
directly at the forces; in S2, motor complexes attached to the
region of antiparallel microtubule overlap are pushing,
whereas in S1, they are pulling (Fig. 3). S3 and S4 are quite
similar to S1, and a portion of the forces in S3 or S4 are al-
ways due to S1 contributions. They are not described here in
detail, but can be understood from Fig. 3, and examples
of simulations can be found online (http://www.embl-
heidelberg.de/ExternalInfo/nedelec/asters). Last, we examined
the distance between the asters in the solutions S1 and S2. Fig. 3
shows that in 1D, with static microtubules, the center to
center distance in the full antiparallel overlap S1 is mostly
determined by the length of the microtubules. Simulations
with dynamic microtubules are more complex, but can be
compared because they all include microtubules following
the same dynamic, which have on average the same length of
�7 �m. The examples in Fig. 2 (top) have aster–aster dis-
tances of 7.4 
 1 �m, 8.2 
 0.24 �m, and 13.9 
 1.1 �m,
respectively, from left to right (average and standard devia-

Figure 5. Reliability of a solution S1. 
Figures produced by 49 simulations, all 
performed with the same parameter set, 
but with different initial configurations and 
random number sequences. The figures 
are all similar, showing the reliability in 
which the parameter set determines the 
evolution of the system toward a unique 
interaction configuration. Each picture 
covers 30 � 30 �m.
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tions from 100 simulations), although they all realize the
same equilibrium S1. Hence the characteristics of the motors
and microtubules contribute together to the equilibrium.
Overall averages show that asters in a partial antiparallel
overlap S2 are 11.4 
 4.2 �m apart, whereas they are distant
by 9.3 
 3.9 �m in a full antiparallel overlap S1. Asters are
further apart in S2 than in S1, but the two distributions
largely overlap; consequently with dynamic microtubules, S1

and S2 are not as easily distinguishable from the aster to aster
distance as Fig. 3 might suggest.

Discussion
Recent progress in light microscope technology has revealed
the dynamic nature of biological organization. Many struc-
tures in the cell are in fact self-organized steady-state assem-
blies resulting from continuous stochastic interactions at the
molecular level. To describe and understand these structures
in quantitative terms, there is a need for new tools allowing
the analysis of the collective behavior of molecules. The mi-
totic spindle is a good example of a self-organizing cellular
structure, whose function is to segregate chromosomes into
the newly forming daughter cells. Spindle morphologies can
vary considerably amongst different cell types; for example,
some spindles have well-focused poles, whereas others do
not. Or some pull on the chromosomes using an antiparallel
microtubule overlap to counterbalance the forces, whereas
others do so by attaching to the cell cortex. The spindle is
host to many interesting phenomena, e.g., the dynamic in-
stability of microtubules, the local stabilization of microtu-
bules by chromatin and by MAPs, or the action of various
molecular motors. Integrating all these to explain the differ-
ent spindle morphologies will most certainly require the use
of computer simulations. Here I have modestly started to in-
tegrate some simple properties into a simulation and I used it
to study a single feature known to occur in spindles: micro-
tubules originating from opposite poles can form stable anti-
parallel overlaps. As a starting point, one can do this while

ignoring many other aspects of spindle assembly by artifi-
cially reducing the spindle to two asters of microtubules,
with which the feature is first tested. It is still unknown if
motors alone can produce stable antiparallel interactions.
This question was addressed here theoretically, ignoring for
example that force production by microtubule assembly/dis-
assembly might be necessary to achieve this feature.

The systematic computer screening shows that hetero-
complexes of plus and minus end–directed motors can pro-
duce stable interaction patterns between microtubule asters.
These figures resemble spindles because they have similar
features: two poles and overlapping antiparallel microtu-
bules between them. On the contrary, the various mixtures
of homocomplexes computed only led to fusion or full sepa-
ration of the two asters. The failure to find stable antiparallel
overlaps with homocomplexes could be attributed to limita-
tions of the screen, e.g., the number of simulations was too
small, but there might be more fundamental reasons. First,
homocomplexes acting on just two microtubules do not pro-
duce antiparallel overlap but instead organize them into a
parallel configuration (Fig. 7). Second, in the simple situa-
tion studied, a partial overlap in which both pulling and
pushing forces are proportional to the amount of microtu-
bule overlap is bound to be unstable.

The screens were computed in 1D and 2D with similar re-
sults (unpublished data), and the solutions also exist in 3D
(http://www.embl-heidelberg.de/ExternalInfo/nedelec/asters).
The solutions S1–4 could uphold static (unpublished data) or
dynamic microtubules, with some differences in their re-
quirements on the motors, as was shown for S2. Because the
simulations are based on discrete stochastic events, the solu-
tions can also tolerate some variation in the parameters that
define these events: e.g., binding rates, unbinding rates, and
the number of motors (http://www.embl-heidelberg.de/
ExternalInfo/nedelec/asters). The different solutions show
us simple ways in which a balance of forces can reliably
be achieved (Fig. 3). Importantly, the simulations showed
that all these situations are stable: if the microtubules disas-

Figure 6. Probing the constraints on the speeds. 
Each symbol represents one simulation and is 
plotted here as a function of the unloaded speeds 
(Vmax) of the two motors in the complex. Dots, S1 
produced in screen 3a; circles, S2 produced in 
screen 3b, in which the motor could stay attached 
only to growing microtubules; pluses, S2 produced 
in screen 3c when the motor could stay attached 
also to shrinking ends.
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semble, or if by chance the asters are displaced too far, the
forces will be modified, and the asters will be dragged back
together. The reverse is true when the microtubules grow or
if the asters get too close. The mechanical stability of the
equilibrium is a simple but essential property realized in
each solution. Surprisingly, the simulations suggest that the
solutions are unique stable equilibria, which can be reached
from any initial configuration, and this makes them quite
interesting from a cell biological point of view.

The simulation was initially developed to study an in vitro
mixture of pure proteins, and its first validation came from
comparison with experiments (Nédélec and Surrey, 2001;
Surrey et al., 2001). The model for the motors is inspired
from the measured behavior of kinesin, which is a processive
motor whose speed varies almost linearly with the load (Hunt
et al., 1994; Svoboda and Block, 1994). This is not intended
to be realistic in every detail, but could represent other pro-
cessive motors or regulated processive assemblies of nonproc-
essive motors. However, a limitation is that the model might
not correspond to isolated nonprocessive motors.

Inside the cell, many effects could allow more elaborate
types of equilibria. For example, microtubules can produce
forces without motors (Holy et al., 1997), and some motors
might influence microtubule stability (Hunter and Worde-
man, 2000). Mechanisms of biological regulation or the
presence of chromosomes could change the composition or
properties of some molecules in time or space, or as a feed-
back of the present organization. Some key elements of the
spindle, such as the proposed “matrix” (Kapoor and Mitchi-
son, 2001), might still be missing. Clearly, cells have many
other ways to realize a stable balance of force. Yet, the solu-
tions described in this paper are simple and emerge from
core properties of microtubules and motors. They represent
conceptual solutions that could be generated in vivo by vari-
ous molecular mechanisms.

The solutions point to two interesting possibilities that
can be tested. The first one is that a pause of the motors at
microtubule ends gives them additional morphogenetic
properties, confirming previous proposals (Hyman and
Karsenti, 1996; Kruse and Julicher, 2000; Nédélec and Sur-
rey, 2001). The second, and new, possibility is that hetero-
complexes with both plus and minus end–directed motor
activities have the capacity to produce antiparallel overlaps,
from which stable interactions can be made. Such complexes
could easily be built in the cell. This might not necessarily be
by direct and stable interactions between different motor
proteins, but rather by transient association, allowing its reg-
ulation both in space and time during mitosis. There is some
evidence for interaction between motors of opposite direc-
tionality (Blangy et al., 1997), but, to my knowledge, direct
physical association between motors of opposite polarity in
vivo has not been proven so far. It is worth pointing out that
in the spindle of some organisms, there is a microtubule flux
toward the poles (Waterman-Storer and Salmon, 1997). In
the model, this flux would be integrated in first approxima-
tion by subtracting the flux speed from the speed of all mo-
tors. The putative plus and minus end–directed motor com-
plexes could be built from the association of a static
microtubule binding protein with a plus end–directed mo-
tor, which would need to be faster than the microtubule
flux. In this situation, one can even imagine that two plus
end–directed motors of very different speeds would make an
effective plus–minus complex.

In summary, computer simulations have been described
and used to systematically explore how a stable balance of
forces can be achieved between two asters and soluble motor
complexes. Four solutions were found (Fig. 3) that achieve
stable equilibrium by combining simple properties of polar
filaments and directed motors. The different qualitative re-
quirements on the motors for each of these solutions were
expressed simply and should be testable experimentally. All
the solutions rely ultimately on a common “frustration”
principle: by their movement, the heterocomplexes place the
motors on the opposite side from where they would natu-
rally go; a minus end–directed motor near the plus ends of a
microtubule, or vice versa. With this simple rule, we can al-
ready imagine other solutions. For example any mechanism
that leads to the localization of a plus end–directed motor to
the center of asters or a minus end–directed one near the
plus ends of microtubules, while leaving the motor free to
grab passing microtubules, can also lead to stable interac-
tions between asters.

Materials and methods
Animations, executables, and instructions can be found online at http://
www.embl-heidelberg.de/ExternalInfo/nedelec/asters. Requests for the
source code should be sent to the author or to EMBL Enterprise Manage-
ment Technology Transfer.

The principle of the simulation, simulated dynamics, is intuitive: from
an initial configuration, the future of the sample is calculated in small suc-
cessive time steps. All the forces and movements of individual filaments
and motors are calculated by solving the equations of motion, which are
set according to the laws of classical mechanics. These motions include
simple and natural processes; the filaments diffuse, grow and shrink, and
respond elastically to deformation. The motors diffuse, can bind and move
onto the filaments, exert forces on them, and eventually unbind. All inter-

Figure 7. The zipper effect. Schematically, the action of homo-
complexes on two microtubules produces parallel microtubule 
overlap, whereas heterocomplexes produce antiparallel overlaps.
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actions are based on “first principles.” All parameters could, in principle,
be directly obtained from single molecule experiments. Importantly, this
makes the conditions we find on parameter values simple to interpret. Be-
cause the thermal noise present in the world of molecules is essential to
their function, the simulation is largely stochastic. The probabilities of
most events (e.g., binding and release of motors) are calibrated according
to rates given as parameters to the program, but their exact timing is not
predictable. The simulations thus include at least some of the noise present
in nature.

All features of the natural world cannot, and should not, be retained.
Among the many simplifications introduced, the biggest is that two fila-
ments will only feel their respective presence if they are somehow linked
by motors. As a consequence, the filaments can cross or overlap freely
without any steric or hydrodynamic interactions. In some of the simula-
tions that we discarded (fusion and oscillatory solutions), the distance be-
tween the asters came close to zero. The solutions S1–4, on the contrary,
were selected because the distance between the asters was always �2 �m,
and steric interaction should not alter them significantly. With the methods
described, a PC build in 2001 could each day simulate a fully connected
structure of 1,000 microtubules. Such a system is roughly comparable in
size to an animal mitotic spindle. Hence, the limitations are not so much
numerical, but really in the intrinsic biological complexity of the subject.

For each time step, the objects in the system are considered in random
order in each of the following: (a) dynamic instability of microtubules (sto-
chastic transitions between growing/shrinking state, lengthen/shorten ac-
cording to state); (b) solve the motion of the filaments, considering their
elasticity, the action of motor complexes, and Brownian forces; (c) sto-
chastic attachment of free motors, detachments of bound ones, optional
detachment if the force is above a threshold, and displacement along the
filament; and (d) diffusion of free motor complexes. These processes are
detailed below.

Microtubules
Simulated microtubules are linear, infinitely thin, oriented objects that me-
chanically behave like inextensible elastic rods (Feynman, 1989). The po-
sition of a microtubule is represented by N � 1 points Mi, for i � 0 to N,
with all the distances |MiMi�1| being equal. M0 is the minus end and MN is
the plus end. The length L of the microtubule can take any value, and as it
grows or shrinks, points are dynamically added or removed to ensure that
at all times N achieves the minimum of the absolute value of R � L/N
while staying �1. R is a parameter of the model called the filament section
length. Hence, all segments |MiMi�1| on the same microtubule have the
same length L/N, which is always close to R, but L/N can vary from micro-
tubule to microtubule.

Smaller values of R ensure more accurate computation, but require more
processor time. One consideration when choosing R is that it should be
smaller than the radius of curvature of the filaments, and this can be
checked after the simulation has been performed. The force needed to fold
a filament on a radius of curvature R is �E/R2, where E is its mechanical
bending modulus. Knowing the motor’s maximum forces, this formula pro-
vides a guideline to initially choose R. The simulations presented here were
calculated with R � 1.2 �m (E/R2 �14 pN), and occasionally R � 0.5 �m.

Simulated microtubules are not stretchable, but can bend elastically un-
der external forces or Brownian motion. For any three consecutive points
Mi � 1, Mi, and Mi � 1, the program calculates F � E � (N/L)3 � (Mi � 1 � 2Mi �
Mi � 1), where E is the bending modulus (20 pN �m2 for microtubules;
Kurachi et al., 1995) and L/N the distance between consecutive points. The
force 2F is applied to Mi, while �F is applied to Mi � 1 and Mi � 1. This lin-
ear elastic torque realizes the theoretical value (Feynman, 1989) under
small deformations.

Asters
An aster is a set of microtubules attached at their minus end with static and
permanent Hookean links. Its structural integrity is independent of the ac-
tivity of the motors. The microtubules are also attached laterally to their
side neighbors at some distance from the center (0.75 �m). In 3D, the aster
is built similarly, by using a triangulation of the isocahedron as a template.
The resulting structure is always a very rigid tensegrity construction, in
which the microtubules are regularly distributed. Asters move or rotate as a
whole without much stretch (typically 	2 nm) in their static links.

Dynamic instability
The microtubule’s dynamic instability is modeled according to experimen-
tal data obtained for centrosome-nucleated asters in mitotic Xenopus egg
extract (Dogterom et al., 1996). The minus end of the microtubule, in the
center of the aster, is static. The plus end is either shrinking or growing,

and the transitions between these two states depend only on the microtu-
bule length L (Dogterom et al., 1996), making longer microtubules less sta-
ble: catastrophe frequency (s�1) is equal to L � 0.003, and rescue fre-
quency (s�1) is (13 � L) � 0.00333 (when L is in �m). The growth and
shrinkage speeds are constant, �10 and �15 �m/min, respectively. For
simplicity, microtubules do not shrink below 1 �m, hence their number is
constant. The microtubules have, under these conditions, a mean length of
�7 �m, with a (large) standard deviation of �3 �m. They spend �54% of
their time growing, �31% of their time shrinking, and �15% of their time
at their minimal length, 1 �m, waiting for a rescue.

Simpler models, where the transition probabilities are independent of the
microtubule length, can also be used. In fact, the simulations were initially
performed with static microtubules of fixed length and produced very simi-
lar results to those presented here (unpublished data). Dynamic instability is
considered here, because sudden catastrophes and fast microtubule disas-
sembly make the asters very variable and, hence, unpredictable structures.
Consequently, the simulations demonstrate better that the solutions are very
stable with respect to the number of microtubules and their lengths.

Motors
The minimal processive entity that can bind to a microtubule and move on
its surface is called a “hand.” A hand is always associated with a second
one, forming a bifunctional soluble motor complex.

Hands
Each hand (a single motor) is either detached or attached to a microtubule,
and transitions between these two states occur in the following way. A free
hand is at a position defined by the complex it belongs to. From this posi-
tion, it may bind, with given rate Pon (s�1), on every microtubule geometri-
cally closer than a given parameter � (�m), the reach of the motor. When �
is small, binding is limited by diffusion (Nédélec et al., 2001). Bound
hands are entirely characterized by a record of the microtubule they are at-
tached to and the position (or abscissa) at which they are bound, counted
from the minus end. Bound motors detach stochastically with a rate Poff (s�1),
but otherwise move along the microtubule in a direction defined by the
intrinsic directionality of the motor. A bound motor that has, by its move-
ment, reached the end of a microtubule detaches with a different unbind-
ing rate Pend (s�1). We can imagine that Poff is a property of a moving motor,
which goes through rounds of ATP hydrolysis, whereas Pend is a property of
an immobile motor probably arrested in one configuration at the end of its
track. Both rates can therefore have unrelated values.

Stochasticity
All the discrete events in the simulation, binding and unbinding events, ca-
tastrophes, and rescues, are modeled stochastically. To decide if a possible
event with a rate P (s�1) should be performed or not during a period dt (10�2 s),
the program draws a pseudorandom number (x) between 0 and 1 (Matsu-
moto and Nishimura, 1998). The event is performed if x 	 P � dt. Practi-
cally, this procedure limits the rates to P 	 50 s�1 (0.5/dt). Rates �100 s�1

are equivalent and result in an immediate and thus nonstochastic action.

Unbinding from the microtubule ends
The detachment of a motor from the plus end of a microtubule could be
different whether this end is shrinking or growing. In all generality, there
are two rates, Pend_shrinking and Pend_growing. For clarity, the exploration is lim-
ited to three situations: (1) screens 1, 2, and 3a, motors always detach at all
ends (Pend_shrinking and Pend_growing both �100 s�1, i.e., immediate); (2) screen
3b, motors detach fast from shrinking ends and slowly from growing ends
(Pend_shrinking immediate and Pend � Pend_growing randomly taken within 0.04
and 50 s�1); and (3) screen 3c, motors detach equally from shrinking and
growing ends (Pend � Pend_shrinking � Pend_growing randomly taken within 0.04
and 50 s�1). The minus ends of the microtubules are not static, and minus
end–directed motors always unbind from this end with the same rate, Pend.

Motor movement
All interactions between motors while bound to the same microtubule are
neglected. Motors pass or cross each other without interacting. Similarly,
the microtubule lattice never saturates, and more motors can always bind.
This simplification should be true at low density of motors, but might break
down at high densities. Simulated microtubules are “smooth” and their
structure is neglected; they also have similar properties all along their
length and are all equivalent. Motors always bind to the geometrically
closest point on the microtubule, and not to specific sites that would be
defined by the tubulin lattice. Similarly, if a motor moves at speed V, its
abscissa will be simply increased during a time dt by V � dt, whether or
not this represents a multiple of the tubulin lattice. An unloaded motor is
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moving at a speed given by a parameter Vmax, plus end directed if Vmax � 0
or minus end directed if Vmax 	 0. We will see later how the effective
speed V of the motor is determined by the possible load applied to the mo-
tor, created when the motor is part of a complex linking two microtubules.

Motor complexes
A motor complex is a set of two hands linked by a Hooke’s spring (i.e., a
linear force). These two hands behave independently, with the exception
that a complex cannot be bound twice to the same or to successive seg-
ments on the same microtubule. The states of its two hands determine the
state of the complex and its behavior. Free complexes diffuse with a coeffi-
cient D (20 �m2/s). Complexes attached to only one microtubule are trans-
ported along this microtubule at the unloaded speed of the attached hand
without exerting force. On the contrary, a complex attached to two micro-
tubules effectively links them with a force F � K � dx, which is propor-
tional to the separation vector between the two hands, dx. For simplicity,
the stiffness K (pN/�m) is the same for all complexes.

Force–velocity relationship
Four similar models for the force–velocity curves of hands were used,
which are defined by two parameters: a maximum force, Fmax (always pos-
itive), and a maximum speed, Vmax. Movement occurs at decreasing speed
for increasing load; the simplest model implements a full linear force–
velocity dependency, V � Vmax(1 � Faxis/Fmax), where the scalar Faxis is the
projection of the force F on the axis of the microtubule, taking into account
the directionality of the motor. Faxis � 0 for a force that resists the natural
movement of the motor, and Faxis 	 0 for a force that helps it. With this
simple model, a motor pulling a passive load, for example a bead, would
never exceed its maximum force (Fmax) or its maximum velocity (Vmax).
However, this motor can be forced backward, for example if it is pulled by
other motors.

In experiments, a motor like kinesin has never been observed to make a
backward step. The model therefore includes two mechanisms to prevent
backward motions. The first limits the linear range to �Fmax 	 Faxis 	 Fmax.
Outside this range, the motor is either moving at 2Vmax or held immobile,
respectively. The second mechanism imposes detachment on motors if
they satisfy F2 � dim Fmax

2. The test is here on the norm of the vector force
F, hence the factor dim (the number of dimensions in space), to allow a
motor to effectively reach a stall force along the filament axis, with an ad-
ditional off-axis component. Three models for the motors are derived from
the full linear one by including one or both of these restricting mecha-
nisms. However, apart from oscillations, there is no strong qualitative dif-
ference between all four models in the present study. The oscillations re-
quired that the detachment of a motor depends on its load, which is only
achieved here in the models that include detachment at maximum force
(F2 � dim Fmax

2).

Elasticity of the motors
We can generally expect that molecules act as nonHookean springs with a
nonzero resting length. For simplicity, the simulated complexes follow
Hooke’s law with a null resting length (kinesin stiffness seems to be con-
stant, �400 pN/�m; Kawaguchi and Ishiwata, 2001). This contributes
greatly to the simplicity and to the numerical stability of the final algo-
rithm, but implies that the stiffness (K), the stalling force (Fmax), and the
reach (�) depend on each other.

1. The equipartition theorem of statistical mechanics states that at a tem-
perature T, any spring stores on average an energy dim/2kBT (this is also
true in the simulations). If the stiffness of the spring is K, this corresponds to
a random force of magnitude 	F2� � dim � K � kBT. For the motors that
detach at their maximum force, this random force should be 	Fmax. There-
fore, to simulate kinesin (Fmax � 5 pN), K as high as 500 pN/�m is appro-
priate, but to simulate a weaker motor with a stalling force of 0.5 pN, the
stiffness needs to be lower, for example K � 5 pN/�m. 

2. Consistency of the model also requires that the force at the time of
binding be inferior to the maximum force of the motor, i.e., K � � 	 Fmax.

For the screen presented here, K and Fmax were drawn randomly be-
tween 5 and 60 pN/�m and 0.5 to 2 pN, respectively. To satisfy the first
condition with a safety factor of 3, only sets which satisfied dim � K � kBT 	
1/9 Fmax

2 were kept. To satisfy the second condition, � was always equal to
Fmax/K and altogether varied between 25 and 200 nm.

Linearity of the forces
A position (X) on a microtubule between two consecutive points Mi and
Mi�1 is calculated as X � Mi � (Mi � 1 � Mi)|MiX|/|MiMi�1|. The force ex-
erted by a complex is the difference of two such positions, F � K(Y � X). F
is acting on the first microtubule at the position X, and �F applies to the

second microtubule at point Y. For the first microtubule, F is further split,
according to the position of X between Mi and Mi�1: Fi � F|XMi � 1|/
|MiMi�1| applies in Mi, and Fi � 1 � F|MiX|/|MiMi�1| applies in Mi � 1.
Hence, the contribution of a motor link is linear.

Initialization and confinement inside a box
Motors are initially free and uniformly distributed over the simulation box
of 60 � 60 �m. Confinement is achieved by reflecting boundaries. To en-
sure that the asters are close enough to interact, they are set randomly
within the 12 � 12-�m central square. The microtubules are all initially 1
�m long, in a growing state, but lose this synchrony after �100 s. Confining
the filaments was not necessary, as the box is much larger than their size.

Movement of the filaments
As usual on the scales of micrometers, the movement is dominated by vis-
cosity and inertia is neglected (Berg, 1993). The speed of each microtubule
point is proportional to the sum of the forces acting on it: dMi/dt � mobi �
Fi. The mobility mobi of the N � 1 points in a microtubule of length L is the
same for all i: mobi � H(N�1)(4� viscosity L)�1. For simplicity, no correc-
tion is made for the filament orientation or for hydrodynamic interactions.
To yield more accurate drag forces, the factor H � loge(2 �m/25 nm) � 4.38
corrects for the tubular shape of the microtubule (Hunt et al., 1994). It is
based on a hydrodynamic cut-off length of 2 �m and the diameter of the mi-
crotubules, 25 nm. All the simulations are performed with a viscosity of
0.05 pN s/�m2, or �50 times the viscosity of water, and are intended to rep-
resent the conditions inside a cell or a developing egg, of which the viscos-
ity could be as high as 100 times the viscosity of water (Hiramoto, 1970).

Integration of the motion
Altogether, the model reduces to the points defining the microtubule’s po-
sitions, connected by forces that are linear in the coordinates of these
points (elasticity, motor complexes, and aster static links). The problem is
technically difficult because the total number of variables is large (typically
2,000 for the current work). The first order differential equation is solved
implicitly with a constant time step dt � 10�2 s. Practically, the coordi-
nates of the points Mi of all microtubules at time t are pooled in a vector
(Mt). Scanning through the interactions builds a matrix (A) such that A � Mt

is the force acting at time t on the points. To represent the Brownian forces
in the system, a random vector (E) is calibrated to yield 	Ei

2� � kBT/
(mobavg � dt), with mobavg � H(4� viscosity R)�1, and kBT for a tempera-
ture of 37C. The Jacobian projection (P) defined by the conservation of
the lengths MiMi � 1 for each microtubule is calculated. Finally, the implicit
system Mt � dt � Mt � dt mob � P(A � Mt � dt � E) is solved to get Mt � dt,
with mob the diagonal of all the mobi. The constraints are not perfectly
preserved, and the points are further moved to restore the length of each
microtubule. This is only a small contribution to the movement of the
points, usually 	0.1 nm per time step and per point (the diffusion is �40
nm/step). This correction is done while conserving the barycenter of each
microtubule to avoid introducing any systematic error. The most intensive
part of the computation is usually to solve the linear system, and processor
times vary mostly with the size of the matrix, i.e., the number of microtu-
bules considered. The simulations took here on average �20 min in 1D,
�3 h in 2D, and �5 h in 3D on a 700-MHz Pentium III Linux PC.

Internal controls
To check that the choice of time step (dt), section length (R), and size of the
box did not affect the outcome of the simulations beyond numerical preci-
sion, simulations were repeated with all possible combinations of R � 0.5
or 1 �m and dt � 5 or 10 ms within a simulation box of 60 or 120 �m,
while conserving the concentration of the motor complexes. All these dif-
ferent choices produced virtually identical outcomes (http://www.embl-
heidelberg.de/ExternalInfo/nedelec/asters). Indeed, the numerical preci-
sion achieved by the standard choice of R, dt, and box size is sufficient
with respect to the Brownian forces in the model.

Parameter values
Appropriate values for kinesin would be roughly Fmax � 5 pN, Vmax � 0.8
�m/s, K � 100 pN/�m, � � 50 nm, Pon � 50 /s, and Poff � 1 /s. These esti-
mates are used as guidelines to set the ranges in which the values of the
motor parameters are drawn randomly for any individual simulation (Table
1). The number of motors in the simulation is also chosen randomly, their
force–velocity relation is any one of the four described. The number of mi-
crotubules in the aster is chosen between 20 and 80, as this is typically the
number of microtubules nucleated by a centrosome in Xenopus egg ex-
tracts. In the 1,000 s simulated, very slow motors would not have enough
time to produce a stable situation between the asters. In the automatic
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screen, these slowly evolving interactions would be mistakenly selected,
because they persist during the simulated period. To limit this, I a priori did
not consider simulations in which the speeds of the motors were below
0.01 �m/s, or for which rates were below 0.04/s.
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