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Macaques are frequently used to evaluate candidate vaccines and to study infection-
induced antibody responses, requiring an improved understanding of their naïve
immunoglobulin (IG) repertoires. Baseline gene usage frequencies contextualize studies
of antigen-specific immune responses, providing information about how easily one may
stimulate a response with a particular VDJ recombination. Studies of human IgM
repertoires have shown that IG VDJ gene frequencies vary several orders of magnitude
between the most and least utilized genes in a manner that is consistent across many
individuals but to date similar analyses are lacking for macaque IgM repertoires. Here, we
quantified VDJ gene usage levels in unmutated IgM repertoires of 45 macaques,
belonging to two species and four commonly used subgroups: Indian and Chinese
origin rhesus macaques and Indonesian and Mauritian origin cynomolgus macaques. We
show that VDJ gene frequencies differed greatly between the most and least used genes,
with similar overall patterns observed in macaque subgroups and individuals. However,
there were also clear differences affecting the use of specific V, D and J genes.
Furthermore, in contrast to humans, macaques of both species utilized IGHV4 family
genes to a much higher extent and showed evidence of evolutionary expansion of genes
of this family. Finally, we used the results to inform the analysis of a broadly neutralizing
HIV-1 antibody elicited in SHIV-infected rhesus macaques, RHA1.V2.01, which binds the
apex of the Env trimer in a manner that mimics the binding mode of PGT145. We discuss
the likelihood that similar antibodies could be elicited in different macaque subgroups.

Keywords: immunoglobulin, IgM repertoires, VDJ frequency, macaques, neutralizing antibodies
INTRODUCTION

Naïve B cells express highly diverse antigen receptors (B cell receptors, BCRs) to allow recognition of a
vast range of possible foreign structures. Upon antigen recognition, naïve B cells proliferate and
undergo selection, resulting in the generation of memory B cells and antibody-producing plasma cells.
Hundreds of unique B cells may be engaged in the response to a given antigenic target, where each B
cell lineage is defined by a characteristic VDJ arrangement. Studies of human B cell repertoires
demonstrate that VDJ genes are not equally used in naïve B cell repertoires, but their frequencies can
differ by up to two orders of magnitude (1–3). The VDJ gene usage frequency in naïve human B cell
repertoires is largely consistent between different individuals, suggesting preferences for certain gene
rearrangements during B cell development that are similar between individuals.
org January 2022 | Volume 12 | Article 8156801

https://www.frontiersin.org/articles/10.3389/fimmu.2021.815680/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.815680/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.815680/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Gunilla.Karlsson.Hedestam@ki.se
https://doi.org/10.3389/fimmu.2021.815680
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.815680
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.815680&domain=pdf&date_stamp=2022-01-11


Chernyshev et al. Immunoglobulin VDJ Usage in Macaques
While the characteristics of IgM repertoires are relatively
well-studied in humans, macaque IgM repertoires are less well
defined. An obstacle to performing such studies has been the lack
of a comprehensive database of macaque germline VDJ genes.
Despite the publication of the first rhesus macaque genome in
2007 (4), more detailed information about macaque IG germline
genes and alleles is only now starting to become available. The
generation of initial IG VDJ databases by several research groups
over the past years has illustrated the challenge of capturing the
genetic diversity in macaques (5–13). Like in humans and other
outbred species, the macaque IG heavy chain (IGH) locus
contains significant structural variation, with frequent deletions
and duplications of IGHV genes (13).

Our recent study describing the construction of a
comprehensive IG heavy chain (IGH) database from a set of 45
rhesus and cynomolgus macaques, the Karolinska Institutet
Macaque Database (KIMDB, http://kimdb.gkhlab.se/),
highlighted the high structural and allelic diversity between
animals of both macaque species (13). While further work is
required to define the location of the full set of VDJ genes, the
availability of genomic assemblies from three rhesus macaques,
RhemacS_1.0 (14), Rhemac10 (15) and ASM545330 (16), allows
comparative analyses of IG gene content. Knowledge of basic
properties of macaque B cell repertoires is necessary for correct
interpretations of antigen-specific antibody responses, where a
critical first analysis step is to assign germline VDJ gene usage.
The use of computational inference methods, such as IgDiscover
(6), partis (17) and TIgGER (18), provides a means to define VDJ
genotypes in individuals in amore time-efficientmanner (6, 17, 18).
This approach has been used successfully for studies of antibody
diversity, affinity maturation and B cell lineage tracing in
immunized macaques (19–23).

Here, we analyzed IGHV gene family usage in unmutated
IgM repertoires in rhesus and cynomolgus macaques in
comparison with human repertoires. We also compared IGHV,
IGHD and IGHJ gene usage between the four subgroups,
Mauritius origin and Indonesian origin cynomolgus macaques,
and Indian origin and Chinese origin rhesus macaques, as well as
between the 45 individual macaques. We found that the overall
IG gene usage was highly similar between the subgroups but with
some distinct differences in the usage of specific IGHV, IGHD
and IGHJ genes. Finally, we used a broadly neutralizing
antibody, RHA1.V2.01, isolated from a SHIV-infected rhesus
macaque (24), as an example to illustrate how knowledge about
VDJ gene usage can inform questions about how frequent
antibodies with specific genetic features may be found in the
naïve repertoires of different macaque subgroups.
RESULTS

Macaque and Human IGHV and IGHJ
Genes Sort Into Distinct Families
Independent of Species Origin
We first examined the phylogenetic relationships between
macaque and human IGHV (Figures 1A, B) and IGHJ genes
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(Figure 1C) using MAFFT alignment and FastTree. All IGHV
and IGHJ genes clustered together independent of species,
demonstrating high levels of homology between the IGHV and
IGHJ genes of humans and macaques at the level of gene families.
IGHV families 2, 5, 6 and 7 contain the lowest number of genes
in both human and the two macaque species. IGHV families 1
and 3 contain many genes with substantial variation within each
species, with human and macaque representatives at multiple
points along the circular phylogenetic tree, indicative of multiple
genes in the IGHV1 and IGHV3 families that have been present
for a long evolutionary timespan. In contrast, IGHV4 genes,
although numerous in both humans and macaques, show much
less divergence within species. All human IGHV4 genes
resembled each other more than they resembled any macaque
IGHV4 gene. Likewise, the macaque genes showed greater
homology to each other than to any of the human IGHV4 genes.

A striking difference between human and macaque IGHV
genes was the number of IGHV4 genes (Figure 1B). The median
number of IGHV4 genes found in individual rhesus and
cynomolgus macaques was 21 and 25 respectively, in contrast
to the 9 IGHV4 genes found in humans. The total number of
IGHV4 genes in all animals in this dataset was 45 for the rhesus
macaques and 47 for cynomolgus macaques. A measure of the
relative evolutionary time since divergence of a duplicated
ancestral IGHV gene may be gauged by sequence difference
between genes of the same IGHV family that will have descended
from duplication and mutation of the ancestral gene. We found
that the average Levenshtein distance between macaque IGHV4
alleles was 20.5 nucleotides, in contrast to 45.4 nucleotides
between macaque IGHV3 family alleles. This, in combination
with the variability of IGHV4 gene presence in different animals,
is consistent with a more recent expansion of this gene family in
macaques through a process of gene duplication.

VDJ Gene Family Usage in IgM
Repertoires Is Consistent Between
Macaque Species and Subgroups
For the subsequent results presented in this study that focus on
VDJ gene usage in expressed IgM repertoires, we analyzed
macaque IgM libraries with IgDiscover version v0.10b, utilizing
KIMDB (13), including the 67 candidate IGHV genes in the
database. We first compared IGH VDJ gene usage in libraries
generated using either the 5’ untranslated region (UTR) or the
leader primer set for rhesus and cynomolgus macaques (13).
Thus, for each of the 45 animals, two independently generated
IgM libraries were analyzed and compared (Supplementary
Figures 1, 2). For rhesus macaques, the gene-wise averages
between the libraries for a given animal displayed Spearman
correlation coefficients of 0.843, 0.996, and 1.0 for V genes, D
genes, and J genes, respectively. For cynomolgus macaques, the
gene wise averages had Spearman correlation coefficients of
0.833, 0.997, and 0.964 for V genes, D genes, and J genes
respectively (Supplementary Table 2). High spearman
correlation values and a greater than 93% overlap in V genes
found between the 5’ UTR and leader primer sets demonstrate
that our expression analysis is robust to primer bias.
January 2022 | Volume 12 | Article 815680
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We next analyzed IGH VDJ gene family usage between rhesus
and cynomolgus macaques in comparison to humans. As
previously shown, IGHV1 family usage is considerably higher
in humans than in macaques (25, 26). Here, we confirm and
extend these findings to also include cynomolgus macaques,
which were similar to the rhesus macaques in this regard
(Figure 2A). Genes belonging to the IGHV3 and IGHV4
families were most common in both species of macaques,
while the IGHV3 family was most common in humans,
followed by the IGHV4 and IGHV1 families. IGHV4 genes
accounted for an average of 50% of the macaque unmutated
antibody sequences, compared to 34% for IGHV3, 7% for
IGHV5, 4.5% for IGHV2, 3% for IGHV1, 0.8% for IGHV7,
and 0.3% IGHV6. When we examined IGHV family usage
between subgroups and between individual animals, we found
that gene family usage was generally consistent across all
comparisons (Figure 2B). Of the IGHD genes, the IGHD3
family genes were the most frequently used, while the other
IGHD genes were used to a similar extent. For the IGHJ genes,
IGHJ4-3 was used noticeably more often in rhesus macaques
(53%) than in cynomolgus macaques (41%), while IGHJ5-4 and
IGHJ5-5 was utilized more in cynomolgus macaques compared
to in rhesus macaques (22% vs 15% for IGHJ5-4 and 13% vs 7%
for IGHJ5-5).

Comparison of IGH VDJ Gene Usage
Between Species and Subgroups Reveals
Moderate Differences
We next compared IGHV, IGHD and IGHJ gene usage between
rhesus and cynomolgusmacaques. Overall, genes that were frequently
used in the repertoire of one species were also frequently used
in the other species (Figure 3A). The most frequently used
IGHV genes belonged to the IGHV3 and IGHV4 families
and included IGHV4-117, IGHV4-NL_14, IGHV3-NL_11 and
IGHV3-76, where each of these genes made up close to 5% of the
total repertoire. However, the majority of IGHV genes were used
at a frequency of 1% or less in the total IgM repertoire (27).
When comparing the IGHV frequency usage in the two macaque
species, we obtained a Spearman correlation coefficient of 0.881
(Supplementary Table 2).

IGHD usage followed a similar pattern with similar frequency
usage between rhesus and cynomolgus macaques (Figure 3B).
Two of the most frequently used IGHD genes, IGHD3-16, and
IGHD3-41, however, showed different usage between the species,
where the former was more frequently used in cynomolgus
macaques, and the latter more frequently used in rhesus
macaques. However, IGHD3-16 was missing from the repertoire
of 5 cynomolgus macaques (see below additional data on the
cynomolgus subgroups). IGHD gene usage was diverse with
most genes being well represented in the repertoire. In
contrast, the IGHJ gene usage was more biased with IGHJ4-3
dominating the IgM repertoire in both species (Figure 3C). The
difference between IGHJ4-3 and IGHJ5-4 usage was greater in
rhesus compared to cynomolgus macaques. Among the IGHJ
genes, IGHJ2 was markedly less used in cynomolgus macaques
and was in fact not detectable at all in 7 of the 12 animals.
A

B

C

FIGURE 1 | Maximum likelihood phylogenetic trees of human and macaque
IGH locus alleles to illustrate homology between macaque and human IGH
gene families. The macaque alleles are from KIMDB v1.0, while the human
sequences were from the IMGT database from October 11th, 2021. (A) The
phylogeny for IGHV genes. (B) Expanded phylogeny for IGH4 genes. (C) The
phylogeny for IGHJ genes.
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The average frequency usage of the IGHD and IGHJ genes in
rhesus compared to cynomolgus macaque repertoires have
Spearman correlation coefficients of 0.926, and 0.929,
respectively (Supplementary Table 2).

We next compared IGHV, IGHD and IGHJ usage between
Chinese and Indian origin rhesus macaques. We observed
similar gene usage frequencies between these subgroups
(Figures 4A–C), with Spearman correlation coefficients of
0.913 for the IGHV genes, 0.958 for the IGHD genes and 1.0
for the IGHJ genes (Supplementary Table 2). However, when
comparing IGHV, IGHD and IGHJ gene usage between
Indonesian and Mauritius cynomolgus macaques, more
pronounced differences in gene usage was observed (Figure 5).
The Spearman correlation coefficients were 0.656, 0.799 and
0.964, respectively for IGHV, IGHD and IGHJ (Supplementary
Table 2). These data are consistent with the fact that Mauritian
macaques are an island population, isolated from other
cynomolgus macaques around 500 years ago (28, 29).
Furthermore, the low correlation coefficient for IGHD is likely
influenced by the fact that several Indonesian origin cynomolgus
macaque completely lacked expression of the IGHD3-16 gene.

Naïve Repertoire VDJ Gene Frequencies
Provide Important Baseline Information for
Understanding Antibody Elicitation
Knowledge about antibody VDJ gene frequencies in expressed
unmutated B cell repertoires provides a foundation for the design
of vaccine strategies where the goal is to elicit certain classes of
antibodies. So far, this approach was applied primarily in the
Frontiers in Immunology | www.frontiersin.org 4
HIV-1 vaccine field where broadly neutralizing antibodies
(bNAbs) isolated from chronically infected human individuals
are used as templates for vaccine design (30, 31). Elicitation of
HIV-1 bNAbs by vaccination is known to be extremely
challenging since the virus has evolved extensive immune
evasion strategies. Yet, during chronic HIV-1 infection, bNAb
responses develop in a subset of individuals and similar bNAbs
have been isolated from different subjects suggesting common
solutions to their development (32). Re-elicitation of certain
classes of bNAbs by targeting and expanding specific Ab
germline genes is known as germline targeting (33–35). This
approach has been validated in engineered mouse models (36, 37),
but not yet in animal models with natural IgM repertoires.

Another approach to bNAb elicitation in an experimental
system was reported by Roark et al., who inoculated rhesus
macaques with a chimeric simian-human immunodeficiency
virus (SHIV) encoding molecularly well-defined HIV-1 Env
trimers, SHIV.CH505 (24). After over a year of chronic
infection, some animals develo"_xm_f1ped broadly neutralizing
plasma antibody responses and several bNAbs were isolated,
including an antibody called RHA1.V2.01. Characterization of
this bNAb revealed that it bound an epitope that mirrored that
recognized by the human bNAbs, PGT145 (38) and PCT64-35S.
Here, we used RHA1.V2.01 as an example to illustrate how
knowledge about VDJ gene frequencies can inform researchers
about the possibility that a given antibody may be elicited in
different macaque subgroups.

Roark et al. assigned RHA1.V2.01 to IGHV4-ABB-
S*01_S8200, IGHD3-9 and IGHJ2-P based on an IgDiscover
A

B

FIGURE 2 | (A) Bar plots of unmutated IGHV family-specific mean gene frequency in human, rhesus and cynomolgus IgM libraries. The error bars represent one
standard deviation from the mean values. (B) A heat map of VDJ gene family usage across individual animals. The table to the right indicates the median number of
genes per V and D gene families and in individual J genes in each macaque as detected by IgDiscover analysis using the KIMDB as the reference database.
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FIGURE 3 | Box plots of VDJ gene usage in cynomolgus and rhesus
macaques. The gene names are listed on the left and the text on the right
indicates the number of cynomolgus (C) and rhesus (R) macaques each of
the genes was found in. (A) IGHV gene usage box plots. (B) IGHD gene
usage box plots. (C) IGHJ gene usage box plots.
5

A

B

C

FIGURE 4 | Box plots of VDJ gene usage in Chinese and Indian origin
rhesus macaques. The gene names are listed on the left and the text on the
right indicates the number of Chinese (C) and Indian (I) rhesus macaques
each of the genes was found in. (A) IGHV gene usage box plots. (B) IGHD
gene usage box plots. (C) IGHJ gene usage box plots.
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run that used an input database from Ramesh et al. (11). Using
KIMDB, we assigned RHA1.V2.01 to IGHV4-NL_36*01_S0211,
IGHD3-15*01, and IGHJ2*01 (Figure 6A). When comparing
IGHV4-ABB-S*01_S8200 and IGHV4-NL_36*01_S0211, we
found that IGHV4-NL_36*01_S0211 was one nucleotide closer
to RHA1.V2.01. KIMDB also contained the IGHV4-
NL_36*01_S8200 allele, which is identical to IGHV4-ABB-
S*01_S8200. The IGHD3-15*01 and IGHJ2*01 alleles were
identical to IGHD3-9 and IGHJ2P alleles assigned to
RHA1.V2.01 by Roark et al.

We next examined the frequency of the VDJ germline alleles
used by RHA1.V2.01 in the IgM repertoires of the 45 macaques
studied here. While the IGHV4-NL_36 and IGHD3-15 genes
were relatively common, the IGHJ2 gene was not. In fact,
Ramesh et al. labeled the IGHJ2 gene as a pseudogene
(IGHJ2P), presumably due to a non-canonical recombination
signal sequence (RSS) for this gene in their rhesus macaque
genomic assembly. We found that IGHJ2P was expressed in all
rhesus macaques, albeit at low levels and in several cynomolgus
macaques it was not detected at all. We estimated the frequency
of rearrangements using the IGHV4-NL_36 gene, IGHD3-15*01,
and IGHJ2 to be 4.1% * 5.5% * 3.7% = 0.008%. However, other
IGHV4 genes may be able to replace the IGHV4-NL_36 gene for
RHA1.V2.01-like antibodies since many IGHV4 genes are
similar and antigen recognition is primarily driven by
the HCDR3.

The greatest challenge to re-elicitation of RHA1.V2.01 is
probably a 2 amino acid insertion in the germline IGHV4-
NL_36*01_S0211 allele at positions 28 and 29 of the HCDR1
(Figure 6A). This insertion, a rare consequence of SHM, adds
one of the key amino acids for antigen interaction, aspartic acid
29 (D29). Insertions and deletions are observed frequently in
HIV-1 antibodies but are thought to be a consequence of the
chronic infection (39). The 24 aa long HCDR3 of RHA1.V2.01 is
another challenge to re-elicitation. Specifically, the tyrosine
sulfated EDDY motif in the HCDR3, which aligns to the
tyrosine sulfated HCDR3s of the human Fabs PGT145 and
PCT64-35S and inserts into a cavity at the V2 apex of the Env
trimer is important for the interaction. In KIMDB, the only
IGHD sequence containing an EDDY motif was IGHD3-15*01.
The 24 aa long HCDR3 of the RHA1.V2.01 antibody is in the
99.66th percentile of macaque HCDR3 lengths. Long HCDR3s
are slightly more common in human B cell repertoire, with a 24
amino acid HCDR3 falling in the 98.13th percentile. HCDR3
lengths are consistent between macaque species and subgroups
(Figure 6B), with an average of 14.81 amino acids for all
macaques, while the human antibodies had an average HCDR3
length of 16.01 amino acids. The human average HCDR3 length
was obtained from the IgM repertoires of 16 healthy control
individuals from the dataset described by Gidoni et al. in
2019 (2).

Finally, we investigated whether the choice of macaque
subgroup may affect the chance of eliciting RHA1.V2.01-like
antibodies. We found that IGHV4-NL_36 was infrequent in
Mauritius origin cynomolgus macaques and IGHJ2 was very
infrequent in both cynomolgus macaque subgroups (Figure 6C),
A

B

C

FIGURE 5 | Box plots of VDJ gene usage in Mauritian and Indonesian origin
cynomolgus macaques. The gene names are listed on the left and the text on
the right indicates the number of Mauritian (M) and Indonesian (I) cynomolgus
macaques each of the genes was found in. (A) IGHV gene usage box plots.
(B) IGHD gene usage box plots. (C) IGHJ gene usage box plots.
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suggesting that these macaque groups would not be a primary
choice of studies aimed to re-elicit this class of antibody.
DISCUSSION

Non-human primates are important models in immunological
research due to their relative evolutionary closeness to humans.
Two species are most used, rhesus and cynomolgus macaques.
The rhesus macaques used in medical research are generally
either Indian or Chinese in origin, while the cynomolgus
macaques derive from a wider geographical set of origins. Most
cynomolgus based research, however, utilize Indonesian or
Mauritian origin macaques. The choice of which species and
subgroup of macaques to use may be critical for specific
immunological questions. There is an increasing interest in
defining genetic properties of macaque IGH repertoires and
understanding the model in relation to human antibody
responses. In this regard both similarities and divergences in
antibody genetics between humans and macaques exist. For
example, a rhesus macaque IGHV gene was shown to mediate
a similar response to immunization with Hepatitis C virus
(HCV) envelope glycoproteins (Env) as used by HCV Env-
directed antibodies in humans (40), while in contrast, an
orthologue to the human IGHV1-2*02 allele, encoding the
three amino acid motif known to be important for HIV-1
bNAbs of the VRC01-class, was so far not identified in
macaques (41).

The most striking difference in IGHV gene usage between
humans and macaques found in this study was in relation to both
the number and frequency of usage of IGHV4 family genes. The
number of IGHV4 genes is markedly higher in macaques
compared to humans. A total of 52 IGHV4 predicted genes
were identified within the 27 rhesus macaques used to construct
Frontiers in Immunology | www.frontiersin.org 7
the KIMDB. The number of IGHV4 genes in each animal,
however, was lower than this total number, with a median of
21, 20, 26, 23 IGHV4 genes expressed in individual Chinese
origin rhesus, Indian origin rhesus, Indonesian origin
cynomolgus, and Mauritius origin cynomolgus macaques,
respectively. The differences in IGHV4 gene content were
consistent with structural variation in the macaque IGHV
locus that frequently includes IGHV4 genes. In humans,
common structural variations exist, which affect several
IGHV4 genes including IGHV4-30-2, IGHV4-30-4, IGHV4-39
(39) and IGHV4-31 (40). Furthermore, several human IGHV4
genes, IGHV4-4, IGHV4-59, and IGHV4-61 are remarkably
similar in sequence, indicating they are derived from the
duplication and expansion of a single ancestral gene.

The variation in IGHV4 gene content in macaques was shown
clearly by genotype comparison of the 45 animals used to
construct the KIMDB (13) and in the presence of different
subsets of these genes in the separate rhesus macaque genomic
assemblies (14–16). IGHV4 genes are the most frequent in the
macaque unmutated repertoire (Figure 2A) in contrast to genes
of the IGHV1 family in humans, with six out of ten of the most
frequently used genes in macaque being IGHV4 genes
(Figure 3). In humans, the role of several IGHV genes in
response to pathogens is known from previous studies. The
most highly utilized human IGHV family, IGHV1, includes the
genes IGHV1-2 and IGHV1-69 that have been shown to be
associated with bNAb responses to HIV-1 (42), Influenza (43)
and HCV (44). Human IGHV1-69 has multiple allelic variants
and is present as a duplicated gene in a proportion of individuals.
Similarly, duplicative expansion and the subsequent
development of allelic variation are consistent with an as-yet-
undiscovered functional role for IGHV4 genes in macaques.

Structural IGHV4 gene variation is particularly evident in the
comparison of the Mauritian and Indonesian cynomolgus
A

B

C

FIGURE 6 | Analysis of the HIV-1 bNAb RHA1.V2.01H isolated from rhesus macaques (A) Amino acid alignment of RHA1.V2.01H amino acid alignment to KIMDB
(B) Kernel density estimate plots of amino acid length distributions in humans and macaque. The red vertical dotted line is at 24 amino acids, the length of the
RHA1.V2.01H HCDR3, while the other vertical lines are the mean values of the humans and macaque subgroups. (C) Frequency of germline genes of the
RHA1.V2.01H antibody in different macaque subgroups.
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macaque subgroups. Twelve IGHV4 genes present in Indonesian
macaques are absent in the Mauritian subgroup (Figure 5). This
difference is consistent with an extreme genetic bottleneck in the
Mauritian cynomolgus macaque colony. The species is not native
to the island and is believed to have begun with a group of
approximately 20 animals brought to the islands in the 16th

century (28). Given the fact that IGHV structural variation is
present in the general macaque population, limiting the numbers
of a founding colony, will inevitably result in a subset of IGHV4
genes being absent in subsequent generations.

While IGHJ usage was generally similar between the different
macaque subgroups, we observed two divergent features. IGHJ2,
although the lowest utilized IGHJ gene in general, was present in
all the rhesus macaques but almost entirely absent in the
cynomolgus macaques analyzed. The precise reason for
the lack of IGHJ2 usage in cynomolgus is unclear. While the
rhesus IGHJ2 gene has a non-canonical recombination signal
sequence (RSS) sequence, GGCTGTG, the currently available
cynomolgus genomic sequence (macFas5 assembly) (45)
encompassing the IGHJ2 gene is identical to that found in a
rhesus assembly (RheMac10) (15). One possibility is that of a
cynomolgus-specific IGHJ2 sequence variant that may impact
expression or frequency of IGHJ2 containing VDJ recombinants,
which would therefore inhibit IGHJ germline inference in
expressed libraries. A variant of this kind would be expected to
be identifiable in the IGHJ2 genomic sequence of affected
animals. An additional source of IGHJ gene variation was
identified for IGHJ5-5. Our analysis of four Chinese origin and
one Indian origin rhesus macaques, Mac_D11, Mac_D16,
Mac_Rh1, Mac_Rh3 and Mac_A3, respectively, showed very
low counts for IGHJ5-5 (Figure 2B). None of the 18
cynomolgus animals showed reduced usage of IGHJ5-5, where
the gene is the third most frequently utilized IGHJ gene in
unmutated sequences.

In recent years, macaques were used to isolate neutralizing
monoclonal antibody responses to several human vaccine
targets, including HIV-1 (12), dengue virus, HCV (40), Ebola
(46) and Enterovirus D68 (47). While B cell responses elicited by
immunization are usually highly polyclonal with many
alternative VDJ recombinations, we know from human studies
that certain classes of neutralizing antibodies utilize a restricted
set of IGH germline genes (48). The identification of gene
frequencies and allelic variation between macaques is
particularly informative in the analysis of the bNAb
RHA1.V2.01 antibody sequence elicited in a rhesus macaque.
We found that the IGH gene components of RHA1.V2.01 were
not distributed equally amongst the different macaque
subgroups. While the IGHV4-NL_36 gene is present in all
groups it was far less frequent in the Mauritian cynomolgus
animals. This may not be critical, as the similarity between
macaque IGHV4 genes could allow other related genes to
function in place of IGHV4-NL_36. However, IGHJ2
expression was absent in almost all Mauritian cynomolgus
animals analyzed (Figure 5). If IGHJ2 expression is necessary
for the formation of RHA1.V2.01 class antibodies then
cynomolgus macaques, and particularly Mauritian cynomolgus
Frontiers in Immunology | www.frontiersin.org 8
macaques, will be far less likely to produce such antibodies
compared to rhesus macaques.

Future analyses of antibody function will require
comprehensive reference databases for germline assignment,
SHM calculation and lineage tracing. Such analyses also
require knowledge of the frequency of specific IG genetic
components in the population analyzed, thereby enabling the
estimation of the frequency of formation of targeted antibody
classes. The results detailed in the current analysis will inform
such immunological research, both in the choice of macaque
subgroups for specific projects, and in the careful interpretation
of the results of macaque-based antibody studies.
METHODS

Macaque Libraries
The study included data from IgM repertoire sequencing of 45
macaques divided in the following groups: 15 Indian origin
rhesus macaques, 12 Chinese origin rhesus macaques, 12
Mauritian cynomolgus macaques and 6 Indonesian origin
cynomolgus macaques, as described in Vazquez Bernat et al.
(13). All macaque libraries analyzed for this study are available in
the European nucleotide archive (ENA) including the MTPX
leader primer set and the MTPX UTR primer set libraries:
ERR4238026-ERR4238115 (Supplementary Table 1). Read
preprocessing, expression analysis, germline inference and
validations of alleles in the final database of macaque alleles,
KIMDB, were performed as described (13). This paper obtained
the individual macaque genotypes from the iteration-01 results
of the IgDiscover runs. An explanation of the folders and files
produced by IgDiscover can be found in the IgDiscover
documentation at http://docs.igdiscover.se/en/stable/guide.
h tml . IGHV genes were geno typed accord ing to
iteration-01/new_V_germline.tab, IGHD genes according to
iteration-01/expressed_D.tab, and IGHJ genes according
to iteration-01/expressed_J.tab. We could utilize the iteration-
01 results because we already had obtained the database of alleles
present in the 45 macaques from KIMDB. Only alleles contained
in the KIMDB database of the corresponding macaque species
were considered part of the genotype. The average distance
between genes within a gene family was calculated by taking
the mean of all (n(n-1))/2 where n is the number of genes)
pairwise Levenshtein distances (computed by python-
Levenshtein), excluding self-comparisons. An independent
analysis of the macaque libraries utilized in this study may be
available in future through vdjbase (https://vdjbase.org/). Ethical
permits for the samples analyzed in this study include: N85/09,
N275/14, N193/16 (Stockholms Norra Djurförsöksetiska
nämnd) and APAFIS#3132-2015121014521340v2 and
IACUC: TR01_IP00000028.

Human Libraries
The human data for this paper are available in ENA with the
study accession PRJEB26509 (2). We utilized a subset of 16
healthy individuals from the dataset, whose sample aliases are
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listed in Supplementary Table 1. The read processing,
expression analysis, and germline inference was performed
with IgDiscover v0.12.4 (the starting database consisted of all
the functional alleles from human IGH IMGT V-QUEST release
202141-1 (11 October 2021). The human library data were
orientated such that read 1 is in the 3’ end of the antibody
sequence and so the sequences were reverse complemented
before CDR3 detection by the program. Individual genotypes
were obtained from the iteration-01 results of the IgDiscover
runs. IGHV genes are genotyped according to iteration-
01/new_V_germline.tab, IGHD genes according to iteration-01/
expressed_D.tab, and IGHJ genes according to iteration-01/
expressed_J.tab. We did not consider any novel alleles, allowing
only IMGT alleles from release 202141-1 (11 October 2021) in
the genotypes.

Post Processing Data to Get
Recombination Counts
The VDJ expression counts in this paper were from clonally
collapsed unmutated IgM antibodies. First, we took the
iteration-01/filtered.tab.gz file from the IgDiscover runs,
which are high-quality subsets of the IgBLASTresults of the
merged sequences. To isolate unmutated IgM sequences, only
results with 0 V somatic hypermutation (SHM) and 0 J SHM
were taken. To reduce noise, only results with VDJ assignments
to the corresponding VDJ databases (KIMDB for macaques and
IMGT V-QUEST release 202141-1 for humans) and in the
iteration-01 genotype calls from IgDiscover were taken. Next, 5’
UTR and leader libraries for each individual macaque
were combined. Since only sequences with 0 SHM were
taken, clonotypes were collapsed by identical V allele
assignment, J allele assignment, and CDR3 nucleotide
sequence. The sequence counts at each preprocessing step
were recorded in Supplementary Table 1. We compared
average gene frequencies between groups using Spearman’s
rank correlation coefficient instead of Pearson correlation
because it is more robust towards variables with non-normal
distributions and extreme values such as those observed in our
gene frequency data (27). During the gene frequency
comparisons between groups, genes expressed by 0 macaques
in one of the groups were excluded from the spearman rank
correlation calculations since they were not considered part of
the expressed repertoire in that group.

Software Availability
The macaque data was processed using IgDiscover version
v0.10b (https://gitlab.com/gkhlab/igdiscover-macaca), while the
human data was analyzed using IgDiscover v0.12.4 (https://
github.com/NBISweden/IgDiscover/). Aggregation of
IgDiscover run results and subsequent count analysis was
performed using python v3.7.4. Data frame manipulation was
done using pandas v1.1.4 and Spearman correlation coefficients
calculated with scipy v1.4.1. Plots were generated using the R
language v4.1.2. The heatmap was generated using
ComplexHeatmap v2.9.3, amino acid alignment visualizations
with msa v1.26.0, and ggplot2 v3.3.5 generated the boxplots and
Frontiers in Immunology | www.frontiersin.org 9
bar charts. Alignments were calculated with MAFFT v7.471
(49)–maxiterate 1000, phylogenetics trees were generated with
double-precision FastTree v2.1.11 (50), and phylogenetic trees
were annotated using ggtree v3.0.4 (51). FastTree employs an
approximate-maximum-likelihood method with a heuristic
variant of the neighbor-joining algorithm. We used the
generalized time reversible model on nucleotide alignments
from MAFFT as well as the options the FastTree website
recommends to increase accuracy (-spr 4 –mlacc 2 –slownni).
The scripts used to generate the results for this paper are
available at https://gitlab.com/gkhlab/.
DATA AVAILABILITY STATEMENT

The datasets utilized in this study can be found on the European
Nucleotide Archive https://www.ebi.ac.uk/ena/. The human data
from Gidoni et al. is under the project accession PRJEB26509,
while the macaque data from Vazquez Bernat et al. is under
accession number PRJEB38839.
ETHICS STATEMENT

Ethics approvals for the studies analyzed here were described in
Vazquez Bernat et al. (macaque data) and Gidoni et al.
(human data).
AUTHOR CONTRIBUTIONS

Conceptualization: MCh, MCo and GKH; Methodology and
analysis: MC and MK; Writing original draft: MCh, MCo and
GKH; Review & Editing, MCh, MK, MCo, and GKH. All authors
contributed to the article and approved the submitted version.
FUNDING

This work was funded by a Distinguished Professor grant from the
Swedish Research Council (2017-00968), grants from the National
Institutes of Health (HIVRAD 1P01AI157299 and CHAVD
UM1Al144462), and the European Union’s Horizon 2020
research and innovation programme under grant agreement
No 681137.
ACKNOWLEDGMENTS

We thank Andrew Ward and Richard Wyatt at the Scripps
Research Center for helpful discussions about the
RHA1.V2.01 antibody.
January 2022 | Volume 12 | Article 815680

https://gitlab.com/gkhlab/igdiscover-macaca
https://github.com/NBISweden/IgDiscover/
https://github.com/NBISweden/IgDiscover/
https://gitlab.com/gkhlab/
https://www.ebi.ac.uk/ena/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chernyshev et al. Immunoglobulin VDJ Usage in Macaques
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2021.815680/
full#supplementary-material

Supplementary Figure 1 | Box plots of VDJ gene usage in rhesus macaques
sequencedwith 5’UTRprimer set vs leader primer set. Box plots of VDJ gene usage in
Chinese and Indian origin rhesusmacaques. The gene names are listed on the left and
the text on the right indicates the number of animals positive with the 5’ UTR located
multiplex primer sets (U) or 5’ leader located primer sets (L). (A) IGHV gene usage box
plots, (B) IGHD gene usage box plots and (C) IGHJ gene usage box plots

Supplementary Figure 2 | Box plots of VDJ gene usage in Cynomolgus
macaques sequenced with 5’ UTR primer set vs leader primer set. The gene names
Frontiers in Immunology | www.frontiersin.org 10
are listed on the left and the text on the right indicates the number of animals positive
with the 5’ UTR located multiplex primer sets (U) or 5’ leader located primer sets (L).
(A) IGHV gene usage box plots, (B) IGHD gene usage box plots and (C) IGHJ gene
usage box plots.

Supplementary Table 1 | The number of sequences left at every step of the
preprocessing steps. The libraries starting with S are human individuals, while all
others are macaques. For the macaque libraries, a “_1” suffix indicates the library
was sequenced with the leader primer set, while a “_100” suffix indicates
sequencing with the 5’ UTR primer set.

Supplementary Table 2 | Spearman correlation table. The “Collapsed
Spearman” column contains the results when clones are collapsed by identical V
allele, J allele, and HCDR3 nucleotide sequence, while the “Uncollapsed Spearman”
is the same calculation for the counts before collapsing by clonotype.
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