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ABSTRACT As multi-individual population-scale data become available, more complex modeling strategies are needed to quantify
genome-wide patterns of nucleotide usage and associated mechanisms of evolution. Recently, the multivariate neutral Moran model
was proposed. However, it was shown insufficient to explain the distribution of alleles in great apes. Here, we propose a new model
that includes allelic selection. Our theoretical results constitute the basis of a new Bayesian framework to estimate mutation rates and
selection coefficients from population data. We apply the new framework to a great ape dataset, where we found patterns of allelic
selection that match those of genome-wide GC-biased gene conversion (gBGC). In particular, we show that great apes have patterns
of allelic selection that vary in intensity—a feature that we correlated with great apes’ distinct demographies. We also demonstrate that
the AT/GC toggling effect decreases the probability of a substitution, promoting more polymorphisms in the base composition of great
ape genomes. We further assess the impact of GC-bias in molecular analysis, and find that mutation rates and genetic distances are
estimated under bias when gBGC is not properly accounted for. Our results contribute to the discussion on the tempo and mode of
gBGC evolution, while stressing the need for gBGC-aware models in population genetics and phylogenetics.
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THE field of molecular population genetics is currently
being revolutionized by progress in data acquisition.

New challenges are emerging as new lines of inquiry are
posed by increasingly large population-scale sequence data
(Casillas and Barbadilla 2017). Mathematical theory describ-
ing population dynamics was developed before molecular
sequences were available (e.g., Fisher 1930; Wright 1931;
Moran 1958; Kimura 1964); now that ample data are avail-
able to perform statistical inference, many models have been
revisited. Recently, the multivariate Moran model with
boundary mutations was developed and applied to exome-
wide allele frequency data from great ape populations

(Schrempf and Hobolth 2017). However, drift and mutation
are not fully sufficient to explain the observed allele counts
(Schrempf and Hobolth 2017). It was hypothesized that
other forces, such as directional selection and GC-biased gene
conversion (gBGC), may also play a role in shaping the dis-
tribution of alleles in great apes.

Directional selection and gBGC have different causes but
similar signatures: under directional selection, the advanta-
geous allele increases as a consequence of differences in
survival and reproductionamongdifferent phenotypes; under
gBGC, GC alleles are systematically preferred. gBGC is a
recombination-associated segregation bias that favors
GC-alleles (hereafter, strong alleles) over AT-alleles (hereaf-
ter, weak alleles) during the repair of mismatches that occur
within heteroduplex DNA during meiotic recombination
(Marais 2003). gBGC has been studied in several taxa includ-
ingmammals (Duret andGaltier 2009; Romiguier et al. 2010;
Lartillot 2013), birds (Webster et al. 2006; Weber et al. 2014;
Smeds et al. 2016; Corcoran et al. 2017), reptiles (Figuet et al.
2015), plants (Muyle et al. 2011; Serres-Giardi et al. 2012;
Clément et al. 2017; Liu et al. 2018), and fungi (Pessia et al.
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2012; Lesecque et al. 2013; Liu et al. 2018). However, apart
from some studies in human populations (Katzman et al.
2011; Glémin et al. 2015; Pouyet et al. 2018), a population-
level perspective of the intensity and diversity of patterns of
gBGC among closely related populations is still lacking.

Several questions remain open regarding the tempo and
mode of gBGC evolution. For example, the effect of demog-
raphy on gBGC is still controversial. While theoretical results
and studies in mammals and birds advocate a positive re-
lationship between the effective population size and the in-
tensity of gBGC (Nagylaki 1983; Romiguier et al. 2010;
Weber et al. 2014), Galtier et al. (2018) failed to detect such
relationship between animal phyla. These results open the
question as to which extent demography shapes the intensity
of gBGC in closely vs. distantly related species/populations.
Another aspect that is not completely understood is the im-
pact of GC-bias on the base composition of genomes (Phillips
et al. 2004; Romiguier et al. 2013). In particular, the individ-
ual and joint effect of gBGC and mutations shaping the sub-
stitution process remains elusive. Here, we address these two
questions by revisiting great ape data (Prado-Martinez et al.
2013) with a Moran model that accounts for allelic selection.

The Moran model (Moran 1958) has a central position in
describing the evolution of a population in that it models the
dynamics of allele frequency changes in a finite haploid pop-
ulation. Recently, an approximate solution for the multi-
variate Moran model with boundary mutations (i.e., low
mutation rates) was derived (Schrempf and Hobolth 2017).
In particular, the stationary distribution was shown useful to
infer population parameters from allele frequency data
(Schrempf et al. 2016; Schrempf and Hobolth 2017). Here,
we present the Moran model with boundary mutations and
allelic selection, derive the stationary distribution, and build
a Bayesian framework to estimate population parameters.
While DeMaio et al. (2013) had previously proposed aMoran
model with allelic selection, we introduce further assump-
tions on the mutation scheme that permit us to mechanisti-
cally describe the relative importance and impact of the
population processes mediating the base composition of ge-
nomes and expected divergence.

Other approaches making use of allele frequency data to
estimate mutation rates and selection coefficients have been
proposed in the literature. Glémin et al. (2015) proposed a
method to quantify gBGC from the derived allele frequency
spectra that incorporates polarization errors, takes spatial
heterogeneity into account, and jointly estimates mutation
bias. The number of derived alleles is modeled by a Poisson
distribution on the mutation rates among weak, strong, and
neutral alleles (Muyle et al. 2011). Our approach differs from
that of Glémin et al. (2015) as it does not require polarized
data or need to account for polarization errors. In addition,
our method makes use of the information given by the fixed
sites—information that is usually discarded by othermethods
(Glémin et al. 2015 included).

Furthermore, our application togreat apes shows thatmost
great apes have patterns of allelic selection consistent with

gBGC. Our results suggest further that demography plays a
major role in determining the intensity of gBGC among great
apes, as the intensity of the obtained selection coefficients
correlates significantly with the effective population size of
great apes.We also show that not accounting for GC-bias may
considerably distort the reconstructed evolutionary process,
as mutation and substitution rates are estimated under bias.

Methods

The multivariate Moran model with allelic selection

The modeling framework defined in this work builds on the
model described by Schrempf et al. (2016), which, according
to some proposed terminology (Vogl and Bergman 2015;
Schrempf and Hobolth 2017), can be addressed as the mul-
tivariate Moran model with boundary mutations (hereafter,
MM). Here, we describe the MMand allelic selection (here-
after, MS). The multivariate Moran model can be also re-
ferred to as a polymorphism-aware phylogenetic model
(PoMo) if we consider the four-variate case (De Maio et al.
2013, 2015; Schrempf et al. 2016), i.e., representing the four
nucleotide bases (Figure 1).

Consider a haploid population ofN individuals and a single
locus with K alleles: ai and aj are two possible alleles. The
evolution of this population over time is described by a
continuous-time Markov chain with a discrete character-
space defined by N and K, each of which represents a specific
assortment of alleles. Two types of state can be defined: if all
the individuals in a populations have the same allele, the

Figure 1 PoMo state-space using N ¼ 3. The four alleles represent the
four nucleotide bases. Black and gray arrows indicate mutations, and
genetic drift plus selection, respectively. Monomorphic or boundary states
fNaig are represented in the tetrahedron’s vertices, while the polymor-
phic states fnai ; ðN2nÞajg are represented in its edges. Monomorphic
states interact with polymorphic states via mutation, but a polymorphic
state can reach a monomorphic state only via drift or selection. Between
polymorphic states, only drift and selection events occur.
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population is monomorphic fNaig, i.e., theN individuals have
the allele ai; differently, if two alleles are present in the pop-
ulation, the population is polymorphic fnai; ðN2 nÞajg,
meaning that n individuals have the allele ai and ðN2 nÞ
have the allele aj. n=N is therefore the frequency of allele ai
in the population.

Allele trajectories are given by the rate matrix Q. Time
is accelerated by a factor of N, and, therefore, instead of de-
scribing Moran dynamics in terms of Moran events (Moran
1958), we developed a continuous version in which time is
measured as the coalescent in generation time (in units ofN).

Drift is defined by the neutral Moran model: the transition
rates of the allelic frequency shifts depend only on the allele
frequency, and are therefore equal regardless of allele in-
creases or decreases in the population (Durrett 2008).

qfnai;ðN2nÞajg/fðnþ1Þai;ðN2n21Þajg

¼ qfnai;ðN2nÞajg/fðn21Þai;ðN2nþ1Þajg ¼ nðN2 nÞ
N

: (1)

We accommodated mutation and selection in the framework
of theneutralMoranmodel byassuming themtobedecoupled
(Baake and Bialowons 2008; Etheridge et al. 2010).

Mutation is incorporated based on a boundary mutation
model, in which mutations occur only in the boundary states.

The boundary mutations assumption is met if the muta-
tion rates maiaj are small (and N is not too large). More
specifically, by comparing the expectations of the diffusion
equation with the polymorphic diversity under the Moran
model, Schrempf et al. (2016) established that Nmaiaj should
be lower than 0.1. In fact, most eukaryotes fulfill this con-
dition [see Lynch et al. (2016) for a review of mutation
rates]. Another assumption of our boundary mutation
model is that the polymorphic states can only be biallelic.
However, this assumption is not a significant constraint as
tri-or-more allelic sites are rare in sequences with low mu-
tation rates.

We employed the strategy used by Burden and Tang
(2016), and separated our model into a time-reversible and
a flux part. We wrote the mutation rates as the entries of a
specific mutation model, the general time-reversible model
(GTR) (Tavaré 1986): maiaj ¼ raiajpaj ¼ rajaipaj, where r rep-

resents the exchangeabilities between any two alleles ,and p

the allele base composition (Equation 2). Here, we restricted
ourselves to the GTR, as this model simplifies obtaining for-
mal results (Burden and Tang 2016). Because p has K2 1
free parameters, and r includes the exchangeabilities for all
the possible pairwise combinations of K alleles, we ended up
having KðK þ 1Þ=22 1 free parameters in the GTR-based
boundary mutation model.

Until now, we have essentially described the model pro-
posed by Schrempf et al. (2016); this work extends this
model by including allelic selection. We modeled allelic
selection by defining K2 1 relative selection coeffi-
cients s: the selection coefficient of an arbitrary allele (A
in our experiments) is fixed to 0. The selection coeffi-
cients defined this way guarantee that our multi-allelic
model behaves neutrally only under the condition that all
the selection coefficients are the same and equal to 0. De-
fining the fitness as the probability that an offspring of allele
ai is replaced with probability 1þ sai (Durrett 2008), we
can formulate the component of allelic selection alongside
with drift, and thus among the polymorphic states (Equa-
tion 2).

Altogether, the instantaneous rate matrix Q of the multi-
variate Moran model with boundary mutations and allelic
selection can be defined as

where u and v represent a frequency change in the allele
counts (though N remains constant). The diagonal elements
are defined by the mathematical requirement such that the
respective row sum is 0.

As the parameters of the population size, mutation rate,
and selection coefficients are confined, it is possible to scale
them down to a small value of N while keeping the overall
dynamics unchanged (Appendix A). The virtual population
sizeN becomes a parameter describing the number of bins the
allele frequencies can fall into. As a result, we can think of N
either as a population size or a discretization scheme.

The stationary distribution

The stationary distribution of a Markov process can be
obtained by computing the vector c satisfying the condition

qfuai;ðN2uÞajg/fvai;ðN2vÞajg ¼

maiaj ¼ raiajpaj u ¼ N; v ¼ N2 1

majai ¼ raiajpai u ¼ 0; v ¼ 1

n
N
ðN2 nÞð1þ saiÞ u ¼ n; v ¼ nþ 1; 0, n,N

n
N
ðN2 nÞð1þ sajÞ u ¼ n; v ¼ n21; 0, n,N

0 ju2 vj. 1

;

8>>>>>>>>>><
>>>>>>>>>>:

(2)
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cQ ¼ 0 (Appendix B). c is the normalized stationary vector,
and has the solution

k is the normalization constant

k ¼
X
ai2A

paið1þ saiÞN21

þ
X

aiaj2AC

XN21

n¼1

paipajraiajð1þ saiÞn21ð1þ sajÞN2n21 N
nðN2 nÞ;

(4)

whereA is the alphabet of theK alleles fa1; . . . ; aKg, representing
the monomorphic states, and AC all the possible pairwise combi-
nations of A representing the KðK2 1Þ=2 types of polymorphic
states fa1a2, a1a3, . . ., aK21aKg. For example, for the four-
multivariate case, we write A as the alphabet of the four nucle-
otide bases fA;C;G;Tg andAC as all the possible pairwise com-
binations of the four nucleotide bases fAC;AG;AT;CG;CT;GTg.

For a population of sizeN, we have 4þ 6ðN2 1Þ possible states,
four of which are monomorphic (Figure 1).

Expected number of Moran events

From .Q. and c, we can compute the expected number of
Moran events (mutations, drift, and selection) or the
expected divergence per unit of time (in generations) under
the MS model (Appendix C):

dMS ¼ 2
k

X
aiaj2AC

XN
n¼1

pairaiajpajð1þ saiÞn21ð1þ sajÞN2n: (5)

The quantity (5) can also be interpreted as the overall rate of the
model. The expected number of Moran events for the neutral
model can be easily calculated by letting s/0. To compare the
Moran distance dMS with the standard models of evolution, we
recalculated theMoran distance to account only for substitutions

events d*MS:we corrected dMS by the probability of amutation and
subsequent fixation under the Moran model (Appendix D)

d*MS ¼ 2
k

X
aiaj2AC

paipajraiajð1þ saiÞNð1þ sajÞNP N
n¼1ð1þ sajÞnð1þ saiÞN2nþ1: (6)

Bayesian inference with stationary distribution

We can define a likelihood function based on the stationary
distribution for a set of S independent sites inN individuals by
taking the product of cx over counts of monomorphic and
polymorphic sites cðxÞ, thus:

We employed a Bayesian approach: we define the prior distribu-
tions independently, a Dirichlet prior for p and an exponential
prior for r ands; a Dirichlet andmultiplier proposals were set
for the aforementioned parameters with tuning parameters

guaranteeing a target acceptance rate of 0.234 (Roberts
et al. 1997).We employed theMetropolis-Hastings algorithm
(Hastings 1970) for each conditional posterior in a Markov
chain Monte Carlo (MCMC) sequence to obtain random sam-
ples from the posterior. The algorithm was coded in the R
statistical programing language (R Core Team 2015): the
packages MCMCpack and expm were integrated in our code
to obtain samples from the Dirichlet density and to com-
pute the matrix exponential, respectively (Martin et al.
2011; Goulet et al. 2017).

Application: great ape population data

The stationarydistribution of the four-multivariatemodelwas
employed to infer the distribution of allele frequencies, selec-
tion coefficients, andmutation rates from fourfold degenerate
sites of exome-wide population data from great apes (Prado-
Martinez et al. 2013). We used 11 populations with up to

pðcjp; r;sÞ ¼
Y
x
c
cðxÞ
x ¼ k2S

Y
ai2A

h
paið1þ saiÞN21

icðfNaigÞ
3

                                                                                                                     
Y

aiaj2AC

YN21

n¼1

h
paipajraiajð1þ saiÞn21ð1þ sajÞN2n21 N

nðN2nÞ
icðfnai;ðN2nÞajgÞ

:

(7)

cx ¼
paið1þ saiÞN21k21     if   x ¼ fNaig

paipajraiajð1þ saiÞn21ð1þ sajÞN2n21 N
nðN2 nÞk

21     if   x ¼ fnai; ðN2 nÞajg :

8>>><
>>>:

(3)
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27 diploid individuals, totaling �2.8 million sites per popu-
lation (Table 1). Data preparation follows the pipeline de-
scribed in De Maio et al. (2015). Estimates of the Watterson’s
u genetic diversity is ,0.003 for all the studied populations
(Schrempf et al. 2016), validating the boundary mutations
assumption of 0.1.

Data availability

Data and R scripts necessary to confirm the findings of this
articleareavailableonGitHub(https://github.com/pomo-dev/
pomo_selection). Supplemental material available at FigShare:
https://doi.org/10.6084/m9.figshare.8180960.

Results

Simulations and algorithm validation

To validate the analytical solution for the stationary distribu-
tion of the multivariate Moran model, we compare it to the
numerical solution obtained by calculating the probability
matrix of Qt for large enough t. We confirmed that the nu-
merical solution converges to the analytical solution (Supple-
mental Material, Figure S1).

We validated the Bayesian algorithm for estimating popu-
lation parameters from the stationary distribution by perform-
ing simulations (Figures S2–S5 and Table S2). Our algorithm
efficiently recovers the true population parameters from simu-
lated allele counts. We tested the algorithms for different num-
bers of sites (103, 106; and 109) and state-spaces (N ¼ 5, 10,
and 50). The number of sites does not increase the computa-
tional time substantially and is not a limiting factor for
genome-wide analysis. In contrast, the size of the state-space
influences the computational time. For larger state-spaces, N,
more iterations are needed to obtain converged, independent,
and mixed MCMC chains during the posterior estimation.

Patterns of allelic selection in great apes

To test the role of allelic selection defining the distribution of
alleles in thegreat apes,wecompared theneutralmodel ðMMÞ
and the model with allelic selection (MS). Using the predic-
tive stationary distribution and the observed allele counts, we

computed the Bayes factors (BF) favoring the more complex
model MS (i.e., log BF . 0 favors the model with allelic
selection) for all populations. It is clear that MS fits the data
considerably better for most of the studied great apes (log BF
. 100, Table 1). The only exception is the Eastern gorilla
population, for which a lower log BF was obtained (log
BF ¼ 5:497, Table 1).

We have also corroborated our BF by inspecting the fit of
the predictive distribution of MM and MS with the allele
counts (Figure S6, A–K). The allele counts for the polymor-
phic states are not symmetrical; generally, one allele is pre-
ferred, and thus also the polymorphic states that have it in
higher proportions. As expected, we observed thatMS better
reproduces the skewed distribution of allele counts among
great apes.

We further investigated the patterns of allelic selection in
great apes by analyzing the posterior distribution of the
relative selection coefficients of C, G, and T (sA was set to
0) underMS. A general pattern of allelic selection is observed
in great apes: the selection coefficients of C and G are similar
(meaning that their posterior distributions largely overlap),
but different from the selection coefficient of T, which, in
turn, overlaps 0 (approximately equal to the selection coeffi-
cient of A) (Figure 2). The only exception is Eastern gorillas,
for which the selection coefficients are all only slightly higher
than 0 and rather similar (Figure 2). This result corroborates
the relatively low BF found for evidence of allelic selection in
the Eastern gorilla population.

Wefurtherexploredthis result inorder tocheck if thepatterns
of GC-bias found among great apes can be associated with
gBGC.We correlate the GC-bias per chromosome (by averaging
the scaled sC and sG) with the chromosome size and recombi-
nation rate in the non-African human population (Figure S7),
forwhich these data are particularlywell characterized (Jensen-
Seaman 2004). We found a significant positive correlation
between the GC-bias and recombination rate (Spearman’s
r = 0.57, P = 0.006), but a negative correlation with the
chromosome length (Spearman’s r = 20.52, P = 0.014).

Although the patterns of selection among great apes are
similar qualitatively, they differ quantitatively. For example,

Table 1 Evidence of allelic selection among the great ape populations.

Population N S log  pðcjMMÞ log  pðcjMSÞ log BF

African humans 6 2827135 23941390.98 23940993.95 397
Non-African humans 12 2826956 23940071.64 23939858.12 213
Eastern gorillas 6 2823830 23917375.00 23917370.00 5
Western gorillas 54 2813092 23955462.98 23954663.09 799
Western chimpanzees 10 2823911 23935188.83 23934928.50 260
Nigeria-Cameroon chimpanzees 20 2825739 23980386.43 23979429.05 957
Eastern chimpanzees 12 2822976 23961202.57 23960561.15 641
Central chimpanzees 8 2822685 23958674.29 23957704.55 969
Bonobos 26 2824240 23948520.55 23947835.54 685
Bornean orangutans 10 2824768 23952527.89 23952358.67 169
Sumatran orangutans 10 2824618 23973247.40 23972725.44 521

The number of haploid individuals and the number of fourfold degenerate sites per population are indicated by N and S, respectively. The log Bayes factors (log BF) were
calculated as the sum over the product of the allele counts c and the posterior predictive probabilities under the Moran model with boundary mutations ðMMÞ and allelic
selection ðMSÞ. BF favors the model with allelic selection when .1.
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theCentral chimpanzeeshavepatternsofGC-bias�6.17/4.05
(sC=sG, Table S3 and Figure 2; scaled according to Equation
11), while the closely related population of Western chim-
panzees shows less strong patterns (�2.21/2.30). Likewise,
the GC-bias content in African and non-African human pop-
ulations contrasts: 4.47/2.86 and 1.83/1.76, respectively.
These results show that the patterns of allelic selection vary
greatly among great apes, even among closely related
populations.

It has been hypothesized that gBGC is a compensation
mechanism for themutational bias that exists in favor of the
weak alleles, A and T (Duret and Galtier 2009; Philippe
et al. 2011)—the AT/GC toggling effect. We observed that
mutation rates from strong to weak alleles are more fre-
quent (by a factor of 2.80; 3.26 if the stationary frequen-
cies are accounted for), while no mutational bias was
found between alleles of the same type (1.02; 0.98 if the
stationary frequencies are accounted for; Table S3). As the
estimated selection coefficients have a clear pattern of
GC-bias in most great apes, we can conclude that our anal-

yses are congruent with the expectations of the AT/GC
toggling effect.

Furthermore, we compared our method with that of
Glémin et al. (2015), by considering only two alleles [the
strong (S) and weak (W) alleles] using human allele counts
from the first human chromosome, divided into 51 regions of
1 million sites (data taken from Glémin et al. 2015). We
compared estimates of the gBGC rate coefficient as predicted
by our model and that of Glémin et al. (2015) (sS and B,
respectively), and observed that they are negatively corre-
lated (Spearman’s r ¼ 2 0:37, p2 value = 0.012). Interest-
ingly, B correlates significantly with our estimates ofmWS (the
mutation rate of weak to strong alleles; r ¼ 0:50, p2 value=
0.001). We have further checked the influence of the fixed
sites in our estimates of gBGC, and, as expected, we observed
that sS correlates positively with the percentage of mono-
morphic sites (r ¼ 0:36, p2 value = 0.012); intriguingly, B
is negatively correlated (r ¼ 20:46, p2 value = 0.001).
Scatter plots of the mentioned correlation tests can all be
found in Figure S8.

Figure 2 Scaled allelic selection
coefficients for the great apes
fourfold degenerate synonymous
sites. The boxplots represent the
posterior distribution of the C,
G, and T scaled selection coeffi-
cients (sA was set to 0); the esti-
mates were obtained using the
four-variate Moran model. The
line in blue represents sA ¼ 0.
We scaled or selection coefficients
according to Equation 11 in Ap-
pendix A: ð1þ sÞN21. Note that,
if s is small enough, the scaling
ðN21Þs is valid, as ð1þ sÞN21

� 1þ ðN21Þs. Table S3 summa-
rizes the average unscaled selection
coefficients for each great ape
population.
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Ne and the total rate of mutation and selection in great
apes

It is widely known that the intensity ofmutation and selection
reflect population demography. To check whether the esti-
mated mutation and selection coefficients among great ape
populations may be explained by demography, we tested the
correlation between the total rate of mutation and selection
and Ne (obtained from Tenesa et al. (2007); Prado-Martinez
et al. (2013)). Positive correlations between the total muta-
tion and selection rates and the effective population size were
obtained (Figure 3): Pearson’s correlation coefficient of 0.57
(P = 0.089) and 0.89 (P , 0.001), respectively. These
correlations were obtained using independent contrasts
(Felsenstein 1985) accounting for the great apes phylogeny
as predicted in Prado-Martinez et al. (2013).

This result shows that Ne plays an important role in de-
termining the intensity of selection. In particular, it becomes
clear that the different patterns of GC-bias found among
great apes are due, in part, to different demographies. For
example, Central chimpanzees have the highest GC-bias
among the studied great apes, and they are indeed the pop-
ulation that was estimated with the largest Ne (30,000;
Prado-Martinez et al. 2013). Eastern gorillas showed the op-
posite pattern; this population had no evidence of GC-bias
(with very homogeneous selection coefficients) and congru-
ently Prado-Martinez et al. (2013) estimated its Ne as only
2000—the lowest of the studied populations.

Comparing the expected number of substitutions in
great apes

We calculated the expected number of substitutions under
MM and MS to evaluate the impact of allelic selection (in
particular, GC-bias) in the evolutionary process. With Equa-
tion 6, we calculated d*MM and d*MS using the posterior esti-
mates of the respective model parameters. We observe that,
for most great ape populations, the expected number of sub-
stitutions is lower when allelic selection is accounted for (Ta-
ble 2); Eastern gorillas are an exception, and the opposite
pattern was observed. We also calculated the ratio between

the expected number of substitutions in both models (i.e.,
d*MS=d

*
MM), and we obtained minor (99.8% in Bornean orang-

utans) to major (82.1% in bonobos) deviations; the average
difference is27.3% (Table 2). These results suggest that not
accounting for GC-bias may distort the reconstructed evolu-
tionary process by overestimating the expected number of
substitutions.

We complement this result by comparing the posterior
distribution of the mutations rates in MM and MS. Because
we wanted to identify the mutational types that may be esti-
mated differently between these models, we calculated the
relative difference between themutation rate from allele ai to
allele aj using the following ratio: raiaj ¼ mMS

aiaj=m
MM
aiaj . If raiaj . 1

for a certain mutation rate aiaj, then this mutation rate is
being underestimated in MM when compared with MS
(and vice versa if raiaj , 1); if raiaj � 1 the mutation rates
are equally estimated in both models.

We observed a systematic bias among great apes. While
weak-to-weak and strong-to-strong mutation rates are gen-
erally nondeferentially estimated in both models (most
of their r overlap 1, Figure 4) the strong-to-weak and weak-
to-strong mutation rates are generally biased in MM. In par-
ticular, we obtained that weak-to-strong mutation rates are
augmented, while mutations rates from strong-to-weak al-
leles are deprecated (Figure 4), which suggests that not ac-
counting for GC-bias may bias the estimation of mutation
rates. Eastern gorillas behave differently by not showing sig-
nificant differences between the estimated mutations rates
(all raiaj overlap 1, Figure 4).

Discussion

In this work, we built on the multivariate Moran model with
boundary mutations and allelic selection to explain the pop-
ulation processes shaping the observed distribution of alleles.
We obtained new formulae to characterize this model. In
particular, we derived the stationary distribution and the rate
of the process. In addition, we built a Bayesian framework to
estimate populationparameters (mutation rates and selection

Figure 3 Correlating Ne with the strength of
(A) mutation and (B) selection in great apes.
The strength of mutation and selection were
obtained by summing up the scaled mutation
rates and selection coefficients, respectively.
Great ape populations are numbered: 1. Afri-
can humans, 2. Non-African humans, 3. East-
ern gorillas, 4. Western gorillas, 5. Western
chimpanzees, 6. Nigeria-Cameroon chimpan-
zees, 7. Eastern chimpanzees, 8. Central chim-
panzees, 9. Bonobos, 10. Bornean orangutans,
and 11. Sumatran orangutans. Estimates of Ne

were taken from Prado-Martinez et al. (2013)
and Tenesa et al. (2007). *Correlation coeffi-
cients calculated using independent contrasts
and correcting for the effect of the great apes
phylogeny [as predicted in Prado-Martinez et al.
(2013)].
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coefficients) from population data. This work accomplishes
tasks set by Schrempf and Hobolth (2017), who observed
derivations from neutrality without having a model in place
to enlighten the causes.

Variable patterns of gBGC among great apes

A genome-wide application to the great apes provides impor-
tant insight into the strength and magnitude of GC-bias
patterns and also the impact of gBGC in the evolutionary
process. To our knowledge, this is the first work giving a
population perspective of the patterns of GC-bias in nonhu-
man populations.

Here, we focus on GC-bias because it is a genome-wide
effect. Mathematically speaking, it is difficult to disentangle
gBGC from directional selection: they may have different
biological explanations, but represent the exact same process
modeling-wise (i.e., one allele is preferred over the others).
Therefore, existing signatures of directional selection are
most likely canceling out, when several site-histories (�2.8
million sites in our case) are summarized to perform
inferences.

In agreement with previous studies in mammals and hu-
mans (Spencer et al. 2006; Capra et al. 2013; Lartillot 2013;
Lachance and Tishkoff 2014; Glémin et al. 2015), we found
that gBGC is weak on average. Indeed, among great apes, the
effect of GC-bias is 2.7561.27 (value obtained by averaging
scaled sC and sG), consistent with the nearly neutral scenario
(Ohta and Gillespie 1996; Vogl and Bergman 2015). Other
studies provided estimates of the scaled conversion coeffi-
cient in coding regions: Lynch (2010) estimated 4Nes as
0.82 in humans and Lartillot (2013) adopted a phylogenetic
approach that predicted scaled conversion coefficients ,1 in
all apes. Our estimates are comparatively higher; however,
ours methods and those of Lynch (2010) and Lartillot (2013)
have different underlying assumptions. In particular, our
method employs the Moran model, which has a rate of ge-
netic drift twice as fast as the Wright-Fisher model. There-
fore, we expect to estimate selection coefficients that are
twice as high as those in the studies cited.

We found no quantitative agreement between our esti-
mates of the gBGC rate coefficient and those derived from the
method of Glémin et al. (2015). In addition, we found that
our model attributes to mutation what Glémin et al. (2015)
attributes to gBGC. This might be a consequence the use of
monomorphic sites in our method. Indeed, unlike those of
Glémin et al. (2015), our estimates of gBGC correlate posi-
tively with the percentage of fixed sizes. In general, the gBGC
rate coefficient should promote greater fixation by boosting
the purging of polymorphic sites (at least for low mutation
rates, as those observed in humans). On the other hand,
Glémin et al. (2015) also considered a varying GC-content,
which may explain why their estimates of gBGC do not cor-
relate with the percentage of fixed sites. We have preliminary
evidence showing that monomorphic sites can significantly
impact estimates of population parameters. Nevertheless, a
more comprehensive model accounting for both fixed states
and variable GC-content would be necessary to disentangle
their relative contribution to explaining allele counts.

The patterns of GC-bias we found in great apes are in
concordance with the well-known process of gBGC. As
expected, we observed that the larger the recombination rate
or the lower the chromosome length, thehigher theGC-effect.
Evidently, recombination promotes gBGC; however, a nega-
tive association between gBGC and chromosome size is
expected [in most organisms, small chromosomes undergo
more recombination per unit of physical distance than large
chromosomes (Kaback et al. 1989)]. We performed these
analyses in non-African humans, for which these data are
available; however, we are confident that the patterns of
GC-bias found in great apes are due to gBGC.

It has been hypothesized that GC-bias is a compensation
mechanism for the mutational bias that exists in favor of the
weak alleles, A and T (Duret and Galtier 2009; Galtier et al.
2009; Philippe et al. 2011). Congruent with this expectation,
we observed that mutation rates from strong to weak alleles
are higher, but rather similar between alleles of the same
type. Interestingly, as we have demonstrated, this symmetric
manner by which mutations and selection act in great apes
leads the number of substitutions to decrease on average.
This suggests that AT/GC toggling may increase population
variability by promoting more polymorphic sites; however,
further studies would be necessary to clarify this prediction.

Intensity of gBGC and demography in great apes

Glémin et al. (2015) hypothesized that differences in GC-bias
intensity among human populations were due to the effects of
demography. We also advance that demography regulates the
intensity of gBGC in great apes. We obtained a positive correla-
tion between the total rate of selection and Ne in great apes. An
important conclusion of our study is that patterns of gBGC can
change rapidly due to demography, even among closely related
populations. In fact, most of the studied populations are known
to have diverged ,0.5 MYA (Prado-Martinez et al. 2013).

Here, we showed that GC-bias determines the genome-
wide base composition of genomes in a factor proportional to

Table 2 Expected number of substitutions per unit of time

Population d*
MM 3103 d*

MS 3103 d*
MS=d

*
MM

African humans 0.123 0.120 0.978
Non-African humans 0.041 0.039 0.954
Eastern gorillas 0.061 0.064 1.045
Western gorillas 0.011 0.009 0.845
Western chimpanzees 0.054 0.052 0.956
Nigeria-Cameroon chimpanzees 0.045 0.038 0.858
Eastern chimpanzees 0.073 0.066 0.910
Central chimpanzees 0.130 0.114 0.873
Bonobos 0.019 0.016 0.821
Bornean orangutans 0.077 0.077 0.998
Sumatran orangutans 0.111 0.106 0.959

The expected number of substitutions for the four-variate Moran model with
boundary mutations d*

MM and allelic selection d*
MS were calculated based on the

posterior distributions of the model parameters and Equation 6. The relative differ-
ence between the average number of events between the two models ðd*

MS=d
*
MMÞ

was used to assess how dissimilar these distances are.
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ð1þ sC=GÞN21 [or ð1þ sÞNe21 in the true dynamic]. There-
fore, by either changing Ne or s, we are able to change the
AT/GC composition of genomes. Because we were able to
correlate Ne with the intensity of allelic selection (Pearson’s
r = 0.89), we are convinced that demography plays a major
role determining the base composition of great ape genomes.
Studies using life history traits (i.e., body size) in mammals
(Romiguier et al. 2010) and ancestral reconstructions of the
effective population size in birds (Weber et al. 2014) also
advocated for correlations between Ne and GC-content [al-
though not as strong as that found here; r �0:302 0:55 in
Weber et al. (2014)].

In contrast, Galtier et al. (2018) did not find this correla-
tion in a data set covering 31 species of distinct metazoa
phyla (including vertebrates, insects, molluscs, crustaceans,
echinoderms, tunicates, annelids, nematodes, nemertians,
and cnidarians). This is most likely happening because as-
pects of the recombination landscape, such as genome-wide
recombination rate, length of gene conversion tracts, and
repair biases, may also affect the intensity of gBGC (Duret
and Galtier 2009; Lesecque et al. 2014; Galtier et al. 2018).
As the recombination landscape varies significantly across

species, but not so much across closely related populations
(e.g., the karyotype is very conserved among great apes, with
humans having 46 diploid chromosomes whereas other great
apes having 48), we expected stronger correlations between
the intensity of gBGC and demography.

Knowing to what extent variations inNe or s determine the
base composition of genomes will require further study. In
particular, determining s experimentally in different popula-
tions/species would help assess the real impact of gBGC. If
we assume that s varies slightly among closely related pop-
ulations/species, then we might attribute different intensi-
ties of GC-bias almost solely to demographic effects, which
simplifies the task of accommodating gBGC in population
models.

gBGC calls for caution in molecular and
phylogenetic analyses

The effects of gBGC inmolecular analysis have beendescribed
extensively in the literature [reviewed in Romiguier and Roux
(2017)]. We complement these results by showing how
GC-bias affects the base composition of genomes, and how
the mutation rates and genetic distances may be biased if

Figure 4 Relative difference in
the mutation rates estimated un-
der the neutral and non-neutral
Moran model. raiaj represents the
ratio between the mutation from
allele ai to allele aj in the model
with allelic selection and the
model with boundary mutations:
raiaj ¼ mMS

aiaj
=mMM

aiaj
. The 12 muta-

tional types are indicated in the
western gorillas plot: all of the
plots follow this arrangement.
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GC-bias is not properly accounted for. In particular, we ob-
served that mutation rates from weak-to-strong and strong-
to-weak alleles are systematically over and underestimated,
respectively.

The idea that gBGC may distort the reconstructed evolu-
tionary process comes mainly from phylogenetic studies. For
example, it is hypothesized that gBGC may promote substi-
tution saturation (Romiguier and Roux 2017). We have
shown that the number of substitutions may be significantly
overestimated if we do not account for GC-bias, meaning that
gBGC may indeed promote branch saturation. Based on this
and other gBGC-related complications [e.g., GC-bias pro-
motes incomplete lineage sorting (Hobolth et al. 2011)],
some authors advocate that only GC-poor markers should
be used for phylogenetic analysis (McCormack et al. 2012;
Romiguier et al. 2013). Contradicting this approach, our
results show that we may gain more inferential power if
GC-bias is accounted for when estimating evolutionary
distances.

Here, we have not performed phylogenetic inference, but
previous applications of the Moran model to phylogenetic
problems (i.e., PoMo) (De Maio et al. 2015; Schrempf et al.
2016) show that it can be done. Therefore, a necessary future
work would be to test the effect of allelic selection (or, more
specifically, GC-bias) in phylogeny reconstruction; in partic-
ular, it would be of major interest to determine how much of
its signal can account for the increase in accuracy of tree
estimation.

Recently, a nucleotide substitution process that accounts
for gBGC was proposed by Lartillot (2013). In this latter
model, a scaled conversion coefficient is used to correct sub-
stitution rates in a manner similar to that used here to calcu-
late the expected number of substitutions for the Moran
distance (i.e., assessing the relative fixation probabilities un-
der GC-bias, File S3). Therefore, these models should per-
form similarly, with the exception that PoMo should be able
to disentangle the contribution of selection and mutation to
the observed diversity, as it additionally accounts for poly-
morphic sites.

Conclusions

Despite widespread evidence of gBGC in several taxa, several
questions remain open regarding the role of gBGC in de-
termining the base composition of genomes. In this work,
we provide a mechanistic model and theoretical results that
allow quantification of patterns of gBGC in nonhuman closely
related populations, providing a new layer of understanding
of the tempo and mode of gBGC evolution in vertebrate
genomes.

In addition, our multivariate Moran model with allelic
selection makes a significant contribution to the endeavor
of estimating population parameters from multi-individual
population-scale data. Importantly, our analysis showed that
gBGC may significantly distort estimates of population pa-
rameters andgeneticdistances, highlighting thatgBGC-aware
models should be used when employing molecular phyloge-

netics and population genetics analyses. We stress that,
although our application to great apes show evidence of
GC-bias, our framework can be employed more generally to
estimate patterns of nucleotide usage and associated mech-
anisms of evolution.
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Appendix A

Virtual Population Size

Consider two populations, A and A9; with different population size, N andM, respectively. We want to mimic the dynamics of
population A, relying on the population parameters of a population A9 of different size (larger or smaller). Both populations
have the same number of monomorphic states (equaling the number of alleles K) and so we assume them equally frequent in
both populations. The number of polymorphic states differs: there are KðN2 1Þ polymorphic states in population A, while A9
has KðM2 1Þ. Because we cannot make polymorphic states equivalent, we assume that the sum of polymorphic states for each
pairwise comparison of the K alleles should be equal in both populations. These conditions can be written in the following
system of equations (

pfNaig ¼ p9fMaigXN21

n¼1
pfnai;ðN2nÞajg ¼

XM21

m¼1
p9fmai;ðM2mÞajg

: (8)

As we have derived an estimator of the site frequency spectrum, we can write this conditions for the multivariate Moran model
with boundary mutations and selection as

paið1þ saiÞN211
k
¼ p9aið1þ s9ÞM21 1

k9

paipaj
raiaj
k

XN21

n¼1
ð1þ saiÞn21ð1þ sajÞN2n21 N

nðN2 nÞ ¼ p9aip9aj
r9aiaj
k9

XM21

m¼1
ð1þ s9aiÞm21ð1þ s9ajÞM2m21 M

mðM2mÞ

8>><
>>: :

(9)

This system has K þ KðK2 1Þ=2 conditions and 2K2 2þ KðK2 1Þ=2 parameters and therefore cannot be solved. However, we
know that the entries of p are constrained in ½0; 1� and should sum up to 1 in both populations, therefore we make the
additional assumption that pai ¼ p9ai. In addition, and by definition, the reference allele a*i is considered to evolve neutrally in
both systems, which permits the conclusion that the normalization constants k and k9 are equal. Simplifying,

pai ¼ p9ai

ð1þ saiÞN21 ¼ ð1þ s9aiÞM21

raiaj

XN21

n¼1
ð1þ saiÞn21ð1þ sajÞN2n21 N

nðN2 nÞ ¼ r9aiaj
XM21

m¼1
ð1þ s9aiÞm21ð1þ s9ajÞM2m21 M

mðM2mÞ

:

8>>>><
>>>>:

(10)

we obtain that the population parameters of population A9 can be expressed in terms of the parameters of population A

p9ai ¼ pai

ð1þ s9aiÞ ¼ ð1þ saiÞ
N21
M21

r9aiaj ¼ raiaj

PN21
n¼1 ð1þ saiÞn21ð1þ sajÞN2n21 N

nðN2 nÞPM21
m¼1 ð1þ saiÞ

N21
M21 ðm21Þð1þ sajÞ

N21
M21 ðM2m21Þ M

mðM2mÞ

8>>>>>>>><
>>>>>>>>:

: (11)

This expression looks tedious, but the neutral case ðsai ¼ 0Þ can be very intuitive. In this scenario,mutation rates of populations
A and A9 change by a factor that is simply the ratio of two harmonic numbers, each of which determined by the population size
of the respective population. Intuitively, if N.M; then r9aiaj . raiaj, meaning that, in order to compensate the smaller number
of individuals, M (i.e. stronger effect of genetic drift), mutation rates are augmented in population A9. Figure 5 depicts the
effect of the effective population size on the mutation rates and selection coefficients.

Appendix B

Proof of the Stationary Vector

Let c be a stationary vector of Q; with cn
aiaj and ci being the elements of the stationary vector corresponding to the states

fnai; ðN2 nÞajg and fNaig, respectively. In the multivariate Moran model with low mutation rates and selection, mutation is
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occurring only in the boundary states, permitting the monomorphic states to communicate with the polymorphic states, while
drift and selection are both acting among the polymorphic states. The detailed balance conditions can be defined and lead to
equations for themonomorphic and the polymorphic states. In the boundary states, an allele ai is either fixed ðn ¼ NÞ or absent
(n ¼ 0, i.e. aj is fixed), for which we may write

ciq
N/N21
aiaj ¼ cN21

aiaj q
N21/N
aiaj       cjq

0/1
aiaj ¼ c1

aiajq
1/0
aiaj ; (12)

while, between the polymorphic states, the general condition is valid

cn
aiajq

n/nþ1
aiaj ¼ cnþ1

aiaj q
nþ1/n
aiaj : (13)

Condition (13) can be rewritten in the recursive form

cnþ1
aiaj ¼ cn

aiaj

qn/nþ1
aiaj

qnþ1/n
aiaj

(14)

and then combined with Equation 12

ciq
N/N21
aiaj ¼ cn

aiaj

qn/nþ1
aiaj

qnþ1/n
aiaj

. . .
qN22/N21
aiaj

qN21/N22
aiaj

qN21/N
aiaj ¼ cn

aiajq
n/nþ1
aiaj

YN21

r¼nþ1

qr/rþ1
aiaj

qr/r21
aiaj

: (15)

The product can be further simplified by recognizing that, for r ¼ N21, qN/N21
aiaj ¼ maiaj ¼ pajraiaj, while for r,N21, the rates

inside the product are just the combined rate of drift and selection [according to expression (2)]. We can now rewrite Equation
14 in order to the cn

aiaj element of the stationary vector of Q

cn
aiaj ¼

cipajraiaj

qn/nþ1
aiaj

ð1þ saj

1þ sai
ÞN2n21 : (16)

Because c0
aiaj ¼ cj and q0/1

aiaj ¼ mji ¼ pairaiaj, we obtain a possible solution for the monomorphic states of the stationary
distribution by making n ¼ 0 in Equation 16

cj

ci
¼ paj

pai
ð1þ saj

1þ sai
ÞN21 : (17)

The stationary solution for the polymorphic states can be obtained from Equation 16 by noting that ci ¼ pais
N21
ai and

qn/nþ1
aiaj ¼ nðN2 nÞ

N ð1þ saiÞ

Figure 5 Population parameters transforma-
tion for different population sizes. We consid-
ered the simple case of two alleles: W stands
for the weak alleles A and T, and S stands for
the strong alleles C and G. Model parameters
were set to represent (A) a neutral case (black
dots: mSW ¼ 931025, mWS ¼ 631025 and
mWW ¼ mSS ¼ 331025) and (B) a GC-bias
case (black dots: mutations rates equal to the
neutral scenario and sW ¼ 0, s ¼ 0:01).
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cn
aiaj ¼ paipajraiajð1þ saiÞn21ð1þ sajÞN2n21 N

nðN2 nÞ : (18)

The stationary distribution obtained here can be related with the stationary vector of the neutral boundary multivariate Moran
model. We observe that, when s ¼ 0, we obtain the solution computed by Schrempf et al. (2016) for the multivariate Moran
model with drift only

ci ¼ pai       cn
aiaj ¼ paipajraiaj

N
nðN2 nÞ : (19)

Appendix C

Proof of the Expected Number of Moran Events per Unit of Time

To assess the impact of allelic selection in branch length estimation (or the total rate of the process), we computed the expected
number of events per unit of time for the multivariate Moran model with selection

dMSðt ¼ 1Þ ¼ 2
X
u
cuquu   ; (20)

Where c is the stationary vector and quu the diagonal elements of Q. Equation 20 can be solved by observing that a mono-
morphic state can be escaped only by mutation, while a polymorphic state can be escaped only by selection and drift

dMS ¼
X
ai2A

X
j6¼i

cimaiaj þ
X

aiaj2AC

XN21

n¼1

cn
aiaj

nðN2 nÞ
N

ð1þ sai þ 1þ sajÞ: (21)

The stationary vector is known from Equations 17 and 18

dMS ¼ 1
k

X
ai2A

X
j 6¼i

ð1þ saiÞN21pairaiajpaj þ
1
k

X
aiaj2AC

XN21

n¼1

pairaiajpaj

h
ð1þ saiÞnð1þ sajÞN2n21 þ ð1þ saiÞn21ð1þ sajÞN2n

i
;

(22)

where k is the normalization constant defined in Equation 4. Expression (22) can be further simplified by observing that the
sum in n results in doubling every ð1þ saiÞn21ð1þ sajÞN2n element. Therefore, the expected number of events can be
simplified to

dMS ¼ 2
k

X
aiaj2AC

XN
n¼1

pairaiajpajð1þ saiÞn21ð1þ sajÞN2n: (23)

Appendix D

Proof of the Moran Distance in Number Substitutions

The Moran distance dMS accounts for several events (mutation, driftnewpage, and selection), and differs from the standard
evolutionary distances because they are calculated in terms of the expected number of substitutions d*MS.

d*MS ¼ dMS3 s ; (24)

where s is the probability of a substitution. s can be calculated multiplying the probability m of an event being a mutation, by
the probability h of that mutation getting fixed in the population

s ¼
X

aiaj2AP

sai/aj ¼
X
aiaj

mai/aj 3 hjji   ; (25)

where AP represents all the possible pairwise permutations without repetition of K alleles.
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Solving mai/aj

The probability of an event being a mutation is simply the ratio between the rate of mutation and the total rate (i.e., the rate of
mutation plus the rate of drift and selection). In stationarity, we know that the total rate rT ¼ dMSð1Þ is simply the expected
number of events of the Moran model and follows Equation 23. The rate of a ai/aj mutation is the rate of escaping the
monomorphic state fNaig, from which we can write

mai/aj ¼
ri/j

rT
¼ paipajraiajð1þ saiÞN21

2
P

aiaj2AC
PN

n¼1paipajraiajð1þ saiÞn21ð1þ sajÞN2n: (26)

We can see that mai/aj differs from maj/ai only due to the selection coefficient in the numerator.

Solving hai jaj

According to Kluth and Baake (2013), the fixation probability of an allele with fitness 1þ s is for the Moran model

h ¼ ð1þ sÞN21PN21
n¼0 ð1þ sÞn: (27)

As we are using themultivariate Moranmodel, we have to extend the denominator of (27) to account for the different possible
combinations of two selection coefficients. In particular, we may have

haijaj ¼
ð1þ saiÞNPN

n¼1ð1þ saiÞnð1þ sajÞN2n     and    hajjai ¼
ð1þ sajÞNPN

n¼1ð1þ sajÞnð1þ saiÞN2n: (28)

We further redefine the denominators in order to make them equal

haijaj ¼
ð1þ saiÞNð1þ sajÞPN

n¼1ð1þ saiÞnð1þ sajÞN2nþ1     and    hajjai ¼
ð1þ sajÞNð1þ saiÞPN

n¼1ð1þ sajÞnð1þ saiÞN2nþ1: (29)

Solving s

The probability of a ai/aj substitution under the multivariate Moran model with boundary mutations and selection can be
computed as

sai/aj ¼ mai/aj 3 hajjai ¼
paipajraiajð1þ saiÞNð1þ sajÞN

23
P

aiaj2AC
PN

n¼1paipajraiajð1þ saiÞn21ð1þ sajÞN2n 3
PN

n¼1ð1þ sajÞnð1þ saiÞN2nþ1: (30)

We see that sai/aj ¼ saj/ai, which is an expected consequence of stationarity. We can now generalize sai/aj for all the sub-
stitution types by using Equation 25

s ¼ 1P
aiaj2AC

PN
n¼1paipajraiajð1þ saiÞn21ð1þ sajÞN2n

X
aiaj2AC

paipajraiajð1þ saiÞNð1þ sajÞNPN
n¼1ð1þ sajÞnð1þ saiÞN2nþ1: (31)

The relationship between the Moran distance in events and substitutions can be defined based on Equation 24,

d*MS ¼ dMS
1P

aiaj2AC
PN

n¼1paipajraiajð1þ saiÞn21ð1þ sajÞN2n

X
aiaj2AC

paipajraiajð1þ saiÞNð1þ sajÞNPN
n¼1ð1þ sajÞnð1þ saiÞN2nþ1: (32)

This quantity can be evaluated for neutral regimes: i.e. s/ð0; 0; 0; 0Þ. We obtain the probability of a substitutions under the
neutral Moran model, and it matches the result computed by Schrempf et al. (2016):

d*MS ¼ dMS
1
N2 (33)
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